用户名: 密码: 验证码:
挡土桩—土相互作用模型及抗滑桩加固边坡简化计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种古老的基础形式,桩的应用至今己有12,000~14,000年的历史。目前,桩有多种多样的使用方法,已不仅仅是支承上部结构基础桩的概念,而是承受竖向荷载、水平荷载和力矩的共同作用。对于土木工程领域挡土桩(抗滑桩、基坑支护桩、堆载临近桩等)承受水平侧向荷载的案例层出不穷,由于此类桩基的承载特性、桩-土相互作用机理、荷载传递规律与边坡土体失稳机制等尚不十分明确,其工作机理与设计方法仍有待更深入的研究。
     本文采用“文献阅读及试验数据收集→理论模型→数值模拟→工程应用”的研究思路,以土体侧向位移作用下的基坑邻近桩基或边坡中抗滑桩为研究对象,以数值分析、理论推导为研究手段,对挡土桩-土相互作用性状及抗滑桩加固边坡计算方法进行深入的研究后,取得了以下创新性研究成果:
     (一)新颖的桩挠曲方程求解方法:以Winkler模型模拟挡土桩单桩与土之间的相互作用,建立挡土桩-土体相互作用的四阶非齐次微分挠曲方程,用多项式逼近非齐次项,运用递推法得出四阶非齐次微分方程的特解形式,结合齐次微分方程的通解,从而实现其解析解求解过程。
     (二)提出边坡失稳的突变倍率判据:在场变量-位移(Fs U)变化关系曲线基础上,绘制场变量-位移突变倍率曲线,以突变倍率(当前分析步位移与上一分析步位移之比)急剧增大时所对应的场变量(即强度折减系数)作为边坡的整体稳定安全系数,避免了人为判断边坡极限状态的不确定性。
     (三)创新的简化计算方法:采用Excel电子表格内嵌的VBA语言编写程序以实现较为复杂函数的计算和计算的自动化,用“规划求解”功能解决抗滑桩加固边坡后稳定安全系数计算的问题,最后根据桩挠曲方程求解抗滑桩内力及变形。
     (四)确定抗滑桩最优桩位的充分必要条件:借鉴传递系数法剩余下滑力的概念,绘制剩余下滑力矩曲线判断坡体稳定区域,并确保桩前土体承受抗滑桩向下传递的下滑力后仍能保持稳定,作为最优桩位的充分条件;由稳定性系数N s控制桩顶以上坡体的临界高度以避免发生越顶破坏,作为最优桩位的必要条件。
     应用以上创新性研究成果,结合具体工程实例进行参数分析后得出以下结论:
     (一)通过计算证明滑坡推力分布形式对抗滑桩的响应影响较大,各种不同分布形式中三角形分布将产生大的弯矩,抛物线分布次之,均匀分布最小;相同地基水平抗力条件下,均匀分布桩顶挠度大于三角形和抛物线分布。
     (二)土体侧移模式包括侧移大小、分布形状、侧移势(侧移曲线与零纵轴之间的面积定义为侧移势)及重心等对抗滑桩的挠度和弯矩影响较为显著。土体水平位移越大,桩身挠度就越大,地表附近挠度最大;随着土体水平位移增大,桩身弯矩相应增加;均匀分布土体侧向位移对桩身最大挠度及弯矩的影响效果相同;即使侧移势相同,若土体侧移分布重心升高,挠度及弯矩值均呈现增大趋势(相差分别可达57%和48%),且最大弯矩位置也呈现略微上移现象。
     (三)桩土之间相互作用呈非线性特征,若采用弹性方法计算将产生较大误差。当土体进入塑性状态时,桩土间作用力达到极限值p_u=kv~*后,不再随水平相对位移的增加而发生变化。
     (四)对比研究三维与二维数值所得边坡稳定安全系数的差异,得出采用三维有限元法计算出的边坡稳定性安全系数略高于二维有限元法算出安全系数2.3%的结论。因此,在对常规平面应变边坡进行稳定性分析时,为获得较快的计算速度可以优先考虑采用二维有限元模型可以满足工程精度的要求,然而在对边坡地形、地质情况复杂的非平面应变边坡进行稳定性分析时,应采用三维状态下的有限元分析。
     (五)通过建立有限元强度折减法数值模型来分析不同抗滑桩加固位置对边坡稳定性的影响。如果仅从安全系数数值上考虑,抗滑桩加固于边坡中部将获得最大安全系数,但边坡中部滑动面较深从工程上不经济,因此建议在优先保障安全的前提下,若兼顾经济因素,最优设桩位置可略向坡趾偏移,考虑设置在边坡的中下部。
As an ancient foundation type, the piles have been applied in civil engineering sinceabout12,000to14,000years ago. So far, the function of piles has various approaches tosupport not only the upper part of the structure, but the vertical load, the combined effect ofhorizontal loads and the moments. Just as for the projects of civil engineering, there arenumerous cases of retaining pile, such as anti-slide pile, retaining pile of foundation pit, pilenearing to heaping load, to withstand the horizontal lateral loads. However, it is not clear forthe bearing behavior of pile, pile-soil interaction mechanism, load transferring law, slopeinstability mechanism. Thus, the working mechanism and design methods of retaining pileremains to be researched further.
     In this paper, the scope of the study object is limited to the adjacent pile near tofoundation pit and anti-slide pile in an unstable slope. Based on the research ideas of thatcollecting the literature and test data firstly, then doing theoretical model and numericalsimulation, finally implementing the engineering applications, the feature of pile-soilinteraction and calculating method of anti-slide pile used to reinforcement unstable slope arestudied. The innovative research results of this paper are shown as following
     1. The novel solving methods is put forward for deflection equation of piles
     In order to analyze mechanical mechanism of passive pile-soil interaction in slope, basedon the Winkler elastic model which assumes that soil displacement is elastic, a fourth-ordernon-homogeneous differential equation considering passive pile-soil interaction is presentedto describe the stabilizing pile subjected to an arbitrary profile of residual thrust. Theinhomogeneous term is approached by polynomial and the particular solution of fourth-ordernon-homogeneous differential equation is derived by the recursive method.
     2. A new instability criterion of slope, displacement mutation ratio, is raised.
     Based on the curve of field variables-displacement, draw the curve of field variable-displacement mutation rate, which be defined as current analysis step displacement with theprevious analysis step displacement of ratio. When the displacement mutation rate increasessharply, the slope safety factor equals to the corresponding strength reduction factor. Themethod may avoid the uncertainty of human judgment.
     3. Innovative simplified calculation method of slope stability is established.
     VBA language, which is be embedded in Microsoft Excel spreadsheet, is programmed toachieve more complex function calculation and computing automation. Then, the stabilityfactor of reinforced slope is solved by the "solver" function of Microsoft Excel. Finally, the pile deflection equation is used to solve the deflection and internal forces of anti-slide pile.
     4. The sufficient and requirement conditions of optimal anti-slide pile position aredetermined.
     Learning from the concept of the remaining downward force of the transfer coefficientmethod to draw the remaining force moment curve to determine slope stability region, and itis ensure that the soil mass front the pile remains stability exposed to the load that theanti-slide pile passed downward, which should be the sufficient conditions for the optimalanti-slide pile position. To avoid the soil mass overtopping the pile head, the stability factor,N s, is take as a requirement condition for the optimal pile position.
     The following conclusions are drawn based on the above innovative achievements,combined with specific engineering parameter analysis.
     1.The calculations show that the distribution function of residual thrust has large effectson the behavior of anti-slide pile. The triangular distribution forms of residual trust will havethe largest moment of passive piles, followed by a parabola, uniform distribution of thesmallest. Under the same level of subgrade modulus conditions, the uniform distribution ofresidual trust has large displacement of passive piles at the top around the piles than that oftriangle and parabola distribution.
     2. It shows that the pile deflection and bending moment are obviously affected by soillateral movement model, such as maximum displacements, distribution shapes and center ofgravity, lateral displacements energy which is defined as the area of between the lateral soildisplacement curve with zero longitudinal axis. Along with the increasing of lateral soildisplacement, the pile deflection is increasing and the deflection of pile head is the maximum,the pile moment is also increasing.
     Uniform distribution of lateral displacement has the same effect on the maximumdeflection and bending moment of the pile. Even if the same lateral displacements energy, thedeflection and bending moment values are increased by up to57%and48%, respectively, andthe location of maximum bending moment has also found a slight upshift, during the lateralsoil movement distribution center is up ward.
     3. When the soil goes into the state of plastic, the interaction force between pile and soilreaches its maximum value no longer increasing with the increase of the relative displacementbetween pile and soil. So, the elastic method will bring great error due to the behavior ofinteraction between pile and soil is nonlinear,
     4. Contrasting3D to2D numerical results of safety factor of slope stability, we drew the conclusion that the slope stability safety factor calculated by three-dimensional finite elementmethod is slightly higher than that of the two-dimensional finite element method about2.3%.The priority should be given to the2D finite element model, which has a fast calculationspeed and the results of which could meet the requirements of engineering accuracy in thecase of stability analysis of the conventional plane strain slope. Whilever,3D finite elementmodel are the best choice of the stability analysis on the non-plane strain slope with complexgeological and topography conditions.
     5. Establishing strength reduction FEM numerical model to analyze the different effectsof anti-slide pile reinforcement position on slope stability. To judge by the value of the slopestability safety coefficient, it will receive maximum value when the anti-slide pile is placed inthe middle of the slope to reinforcement the unstable slope. But, the position of slidingsurface is deep in particularly in the middle part of slope, which will costs much toreinforcement the slope. Considering the economic factors, the optimal pile position cansomewhat shift to the toe of the slope on the premise of ensuring the security.
引文
[1]史佩栋.深基础工程特殊技术问题[M].北京:人民交通出版社,2004.
    [2]周创兵,李典庆.暴雨诱发滑坡致灾机理与减灾方法研究进展[J].地球科学进展,2009,24(5):477~487.
    [3]张忠苗.桩基工程[M].北京:中国建筑工业出版社,2007.
    [4]韩理安.水平承载桩的计算[M].长沙:中南大学出版社,2004.
    [5]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999.
    [6]卢世深,林亚超.桩基础的计算和分析[M].北京:人民交通出版社,1987.
    [7]横山幸满,唐业清,吴庆荪.桩结构物的计算方法和计算实例[M].北京:中国铁道出版社,1984.
    [8]朱碧堂.土体的极限抗力与侧向受荷桩性状[博士].同济大学,2005.
    [9] De Beer E E. Piles subjected to static lateral loads[A]. Piles J A F S.9th International Conference onSoil Mechanics and Foundation Engineering[C]. Tokyo:1977.1~14.
    [10]李仁平.软土地基中被动桩与土体的相互作用及其工程应用[博士].浙江大学,2001.
    [11] Poulos H G. Analysis of piles in soil undergoing lateral movement[J]. Journal of the soil mechanicsand foundations division,1973,99(5):391~406.
    [12] Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement[J]. Journal ofGeotechnical and geoenvironmental engineering,1997,123(2):94~99.
    [13]张玲,赵明华,赵衡.双层地基水平受荷桩受力变形分析[J].岩土力学,2011,32(S2):302~305.
    [14] Broms B B. Lateral resistance of piles in cohesive soils[J]. Journal of Soil Mechanics FoundationDivision, ASCE,1964,90(2):27~63.
    [15] Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York: Wiley,1980.
    [16] Chen L T P. Piles Subjected to Lateral Soil Movements[J]. Journal of Geotechnical andGeoenvironmental Engineering,1997,123(9):802~811.
    [17] Chow Y K. Analysis of piles used for slope stabilization[J]. International journal for numerical andanalytical methods in geomechanics,1998,20(9):635~646.
    [18] Poulos H G. Behavior of laterally loaded piles: I-single piles[J]. Journal of the Soil Mechanics andfoundations Division,1971,97(5):711~731.
    [19] Mindlin R D. Force at a point in the interior of a semi‐infinite solid[J]. Physics,1936,7(5):195~202.
    [20]刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):151~157.
    [21]王年香.被动桩与土体相互作用研究综述[J].水利水运科学研究,2000,(3):69~76.
    [22]王年香.桩基码头岸坡稳定和桩基性状的简化计算[J].水利水运科学研究,2000,(1):21~29.
    [23]魏汝龙.大面积填土对邻近桩基的影响[J].岩土工程学报,1982,4(2):132~137.
    [24] Heyman L. Measurement of the influence of lateral earth pressure on pile foundations[A]. Proc.6thICSMFE[C]. Canadian:1965.
    [25]王化卿,廖正环,周熹.预应力锚索抗滑桩-新一代抗滑结构[M].成都:四川科学技术出版社,1996.
    [26] Franx C, Boonstra G C. Horizontal pressures on pile foundations[A]. Proc.2nd ICSMFE[C].1948.131~135.
    [27] Heyman L, Boersma L. Bending moments in piles due to lateral earth pressure[A]. Proc. of5thICSMFE[C]. Paris: AA Balkema,1961.425~429.
    [28] Wenz K P. Large scale tests for determination of lateral loads on piles in soft cohesive soils[A]. Proc8th ICSMFE[C]. Moscow: Elsevier,1973.247~255.
    [29] Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpassabutment[J]. Highway Research Record,1971.
    [30] Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations,1975,15(4):43~59.
    [31]唐志成,徐良德,彭隆银.抗滑桩模型试验的非线性分析[J].重庆交通学院学报,1992,11(4):76~86.
    [32]马骥.单根抗滑桩受力条件的实验研究[A].滑坡文集(第5集)[C].北京:中国铁道出版社,1986.88~96.
    [33] Matsui T, Hong W P, Ito T. Earth Pressures on Piles in a row due to Lateral soil movements[J]. Soilsand Foundations,1982,22(2):71~81.
    [34] Begemann H, De Leeuw E H. Horizontal earth pressures on foundation piles as a result of nearby soilfills[A]. Proc.5th Eur. Conf. Soil Mech.&Fdn. Engrg., Madrid[C].1972.1~9.
    [35]铁道部第二勘测设计院.抗滑桩设计与计算[M].铁道部第二勘测设计院科学技术研究所,1983.
    [36]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报,2002,21(4):517~521.
    [37]胡晓军,王建国.弹性抗滑桩锚固段内力计算的反力荷载法[J].工程地质学报,2007,15(2):244~248.
    [38]胡晓军,谭晓惠.弹性抗滑桩全桩内力计算的地基反力荷载法[J].岩土力学,2010,31(1):299~303.
    [39]沈珠江.桩的抗滑阻力和抗滑桩的极限设计[J].岩土工程学报,1992,14(1):51~56.
    [40]张友良,陈从新,夏元友.杆件有限单元法在抗滑桩设计中的应用研究[J].中国地质灾害与防治学报,2000,11(1):30~32,40.
    [41]张友良,范建海,等.抗滑桩与滑坡体相互作用的研究[J].岩石力学与工程学报,2002,21(6):839~842.
    [42]邹广电,陈生水.抗滑桩工程的整体设计方法及其优化数值模型[J].岩土工程学报,2003,25(1):11~17.
    [43] Ito T, Matsui T, Hong W P. Extended design method for multi-row stabilizing piles againstlandslide[J]. Soils and Foundations,1982,22(1):1~13.
    [44] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(4):314~323.
    [45] Cai F, Ugai K. Response of flexible piles under laterally linear movement of the sliding layer inlandslides[J]. Canadian geotechnical journal,2003,40(1):46~53.
    [46]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法[J].浙江大学学报:工学版,2001,35(6):618~622.
    [47] Marche R, Schneeberger C E. Bending moments prediction in piles subjected to horizontal soilmovements[A]. Proc.9th International Conference on Soil Mechanics and Foundation Engineering[C].1977.93~99.
    [48] Maugeri M, Motta E. Stresses on piles used to stabilize landslides[A]. Proceedings of the6thInternational Symposium on Landslides, Christchurch, New Zealand. Edited by DH Bell. AA Balkema,Rotterdam[C].1992.785~790.
    [49]励国良.锚索抗滑桩与滑坡相互作用的计算[A].滑坡文集(第八集)[C].1991.
    [50]励国良.关于抗滑桩计算的一个建议[A].滑坡文集(第六集)[C].1988.39~48.
    [51]刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法[J].岩石力学与工程学报,2004,23(15):2568~2572.
    [52]刘小丽,周德培,杨涛.加固土坡的抗滑桩内力计算新方法[J].工业建筑,2003,33(4):39~41.
    [53]梁发云,于峰,李镜培,等.土体水平位移对邻近既有桩基承载性状影响分析[J].岩土力学,2010,31(2):449~454.
    [54]黄茂松,张陈蓉,李早.开挖条件下非均质地基中被动群桩水平反应分析[J].岩土工程学报,2008,30(7):1017~1023.
    [55] Matlock H. Correlations for design of laterally loaded piles in soft clay[A]. Proceedings of the2ndAnnual Offshore Technology Conference[C]. Houston,Texas: ASCE,1970.577~594.
    [56] Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[A]. Proceedings of the6thAnnual Offshore Technology Conference[C]. Houston,Texas: ASCE,1974.473~483.
    [57]栾茂田,韩丽娟,年延凯,等.被动桩——土相互作用的简化分析[J].防灾减灾工程学报,2004,24(4):370~374.
    [58]韩丽娟.被动条件下桩-土相互作用机理及被动桩工作性能分析[硕士].大连理工大学,2004.
    [59]赵明华,刘建华,杨明辉.倾斜荷载下高陡边坡桥梁基桩内力计算[J].岩石力学与工程学报,2006,25(11):2352~2357.
    [60]赵明华,邬龙刚,刘建华.基于p-y曲线法的承重阻滑桩内力及位移分析[J].岩石力学与工程学报,2007,26(6):1220~1225.
    [61] Wang S, Reese L C. Design of pile foundations in liquefied soils[A]. Geotechnical EarthquakeEngineering and Soil Dynamics III (GSP75)[C]. ASCE,1998.1331~1343.
    [62] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of SoilMechanics&Foundations Div,1968,99(5):637~660.
    [63] Kuwabara F, Poulos H. Downdrag Forces in Group of Piles[J]. Journal of Geotechnical Engineering,1989,115(6):806~818.
    [64] Wong K, Teh C. Negative Skin Friction on Piles in Layered Soil Deposits[J]. Journal of GeotechnicalEngineering,1995,121(6):457~465.
    [65] Chow Y, Chin J, Kog Y, et al. Settlement Analysis of Socketed Pile Groups[J]. Journal ofGeotechnical Engineering,1990,116(8):1171~1184.
    [66] Xu K J, Poulos H G.3-D elastic analysis of vertical piles subjected to “passive” loadings[J].Computers and Geotechnics,2001,28(5):349~375.
    [67] Chen L. The effect of lateral soil movements on pile foundations[Ph.D]. Sydney: The University ofSydney,1994.
    [68] Bransby M F. Difference between Load-Transfer Relationships for Laterally Loaded Pile Groups:Active p-y or Passive p-$\delta$[J]. Journal of geotechnical engineering,1996,122(12):1015~1018.
    [69] Won J, You K, Jeong S, et al. Coupled effects in stability analysis of pile--slope systems[J].Computers and Geotechnics,2005,32(4):304~315.
    [70] Cho K H, Gabr M A, Clark S, et al. Field P-y curves in weathered rock[J]. Canadian GeotechnicalJournal,2007,44(7):753~764.
    [71]吴恒立.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社,2000.
    [72] Kelesoglu M K, Cinicioglu S F. Free-field measurements to disclose lateral reaction mechanism ofpiles subjected to soil movements[J]. Journal of geotechnical and geoenvironmental engineering,2009,136(2):331~343.
    [73]徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1990.
    [74] Hetenyi M I. Beams on elastic foundations: theory with applications in the fields of civil andmechanical engineering[M]. Ann Arbor: The University of Michigan Press,1946.
    [75]张磊.水平荷载作用下单桩性状研究[博士].浙江大学,2011.
    [76]陈广峰,梁雅强.水平基床系数影响因素的探讨[J].兰州理工大学学报,2005,31(2):116~119.
    [77] Biot M A. Bending of an infinite beam on an elastic foundation[J]. Journal of Applied Mechanics,1937,3: A1~A7.
    [78] Vesic A S. Bending of beams resting on isotropic elastic solids[J]. Journal of the EngineeringMechanics Division,1961,87(EM2):35~53.
    [79] Bowles E J. Foundation analysis and design[M]. New York: McGraw Hill,1997.
    [80] VALSANGKAP A J, Kameswara Rao N S V, Basudhar P. Generalized solutions of axially andlaterally loaded piles in elasto-plastic soil [J]. SOILS AND FOUNDATIONS,1973,13(4):1~14.
    [81] Rajashree S S S. Nonlinear Finite-Element Modeling of Batter Piles under Lateral Load[J]. Journalof Geotechnical and Geoenvironmental Engineering,2001,127(7):604~612.
    [82] Carter D P. A nonlinear soil model for predicting lateral pile response[M.Sc. thesis]. Auckland, NewZealand.: University of Auckland,1984.
    [83] Liang R, Shatnawi E S, Nusairat J. Hyperbolic p-y criterion for cohesive soils[J]. Journal of CivilEngineering,2007,1(1):38~58.
    [84] Kim Y, Jeong S, Lee S. Wedge failure analysis of soil resistance on laterally loaded piles in clay[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,137(7):678~694.
    [85] Guo W D L. Load transfer approach for laterally loaded piles[J]. International Journal forNumerical and Analytical Methods in Geomechanics,2001,25(11):1101~1129.
    [86] Randolph M F. The response of flexible piles to lateral loading[J]. Geotechnique,1981,31(2):247~259.
    [87]钱家欢.土力学[M].南京:河海大学出版社,1988.
    [88] Decourt L. Load-deflection prediction for laterally loaded piles based on N-SPT values[A].Proceedings of the4th International Conference on Piling and Deep Foundations[C]. Stresa: InternationalSociety for Soil Mechanics and Geotechnical Engineering,1991.549~556.
    [89] Kishida H, Nakai S. Large deflection of a single pile under horizontal load[A]. Proceedings of the IXInternational Conference on Soil Mechanics and Foundation Engineering[C]. Tokyo: Japanese Society ofSoil Mechanics and Foundation Engineering,1977.87~92.
    [90] Leung C, Chow Y, Shen R. Behavior of Pile Subject to Excavation-Induced Soil Movement[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(11):947~954.
    [91] Skempton A W. The bearing capacity of clays[A]. Proc. Building Research Congress[C].1951.180~189.
    [92] Davisson M T. Lateral load capacity of piles[J]. Highway Research Record,1970,(333).
    [93] Terzaghi K. Evaluation of Coefficients of subgrade reaction[J]. Geotechnique,1955,5(4):297~326.
    [94] Liang R. Drilled shaft foundations for noise barrier walls and slope stabilization[R]. Ohio: OhioDeptement of Transportation,2002.
    [95] JGJ120-2012.建筑基坑支护技术规程[S].
    [96]吴恒立.推力桩非线性全过程分析及控制性设计——综合刚度原理和双参数法[J].重庆交通学院学报,2001,20(11):77~82.
    [97]吴恒立,杨祖敦.虎门大桥嵌岩压桩试验的分析和建议[J].岩土工程学报,2002,24(1):56~60.
    [98] Briaud J L. The pressuremeter[M]. Rotterdam, The Netherlands: A. A. Balkema,1992.
    [99]陈忠汉,黄书秩,程丽萍.深基坑工程[M].北京:机械工业出版社,2002.
    [100]贺建清,张家生.弹性抗滑桩设计中几个问题的探讨[J].岩石力学与工程学报,1999,18(5):600~602.
    [101] GB50330-2002.建筑边坡工程技术规范[S].
    [102]吴恒立.关于“水平荷载桩桩土共同作用全过程分析”的讨论[J].岩土工程学报,2002,24(1):118.
    [103] Fleming W K, Weltman A J, Randolph M F, et al. Piling engineering[M]. The third ed. London andNew York: Taylor&Francis,2009.
    [104]任伟中,陈浩,唐新建,等.运用钻孔测斜仪监测滑坡抗滑桩变形受力状态研究[J].岩石力学与工程学报,2008,27(2):3667~3672.
    [105]李毓林.铁路工程设计技术手册路基(修订版)[M].北京:中国铁道出版社,1992.
    [106]李爱国,王兰生.深圳地区水土流失地质灾害[J].中国地质灾害与防治学报,1998,9:258~262.
    [107]丘建金,文建鹏,高伟.深圳光汇油库边坡稳定性分析及工程治理[J].岩石力学与工程学报,2009,28(11):2201~2207.
    [108]金亚兵,刘祖德.悬臂支护桩变形计算方法探讨[J].岩土力学,2000,21(3):217~221.
    [109] Leroueil S. Natural slopes and cuts: movement and failure mechanisms[J]. Geotechnique,2001,51(3):197~243.
    [110] Frank R, Pouget P. Experimental pile subjected to long duration thrusts owing to a moving slope[J].Geotechnique,2008,58(8):645~658.
    [111] Chang C, Chang C, Wang M, et al. Repair of displaced shield tunnel of the Taipei rapid transitsystem[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2001,16(3):167~173.
    [112] Whittle A J, Davies R V. Nicoll Highway collapse: evaluation of geotechnical factors affectingdesign of excavation support system[A].2006.30.
    [113]张爱军,莫海鸿,朱珍德,等.被动桩与土相互作用解析计算研究[J].岩土工程学报,2011,33(S2):120~127.
    [114] Ai-jun Z, Hai-hong M, Zhen-de Z. Theoretical Elastio-Plastic Solution for Piles Subject to LateralSoil Movement[J]. Procedia Earth and Planetary Science,2012,5:58~63.
    [115]杨敏,周洪波.承受侧向土体位移桩基的一种耦合算法[J].岩石力学与工程学报,2005,24(24):4491~4497.
    [116] Poulos H G. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal,1995,32(5):808~818.
    [117] Hsiung Y, Chen S, Chou Y. Analytical solution for piles supporting combined lateral loads[J].Journal of geotechnical and geoenvironmental engineering,2006,132(10):1315~1324.
    [118] Viggiani C. Ultimate lateral load on piles used to stabilize landslides[A]. Balkema A A. Proc10thInternational Conference on Soil Mechanics and Foundation Engineering[C]. Stockholm: Publ Rotterdam,1981.555~560.
    [119] Bolton M D, Sun H W, Springman S M. Foundation displacement mechanisms[J]. GroundEngineering,1991,4:26~29.
    [120] Ito T, Matsui T, Hong W P. Extended design method for multi-row stabilizing piles againstlandslide[J]. Soils and Foundations,1982,22(1):1~13.
    [121] Esu F, D Elia B. Interazione terreno-struttura in un palo sollecitato da una frana tipo colata[J]. RivistaItaliana di Geotecnica,1974,8(1):27~38.
    [122]王翠,闫澍旺,张启斌.深基坑开挖对邻近桥桩的影响机制及控制措施研究[J].岩石力学与工程学报,2010,29(01):2994~3000.
    [123]杨敏,周洪波,杨桦.基坑开挖与临近桩基相互作用分析[J].土木工程学报,2005,38(4):91~96.
    [124]郑刚,颜志雄,雷华阳,等.基坑开挖对临近桩基影响的实测及有限元数值模拟分析[J].岩土工程学报,2007,29(5):638~643.
    [125] Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1988,38(4):301~320.
    [126] Xu K J, Poulos H G. Theoretical study of pile behaviour induced by a soil cut[A]. Proceedings ofGeoEng[C].2000.1~5.
    [127] Goh A, Wong K S, Teh C I, et al. Pile response adjacent to braced excavation[J]. Journal ofgeotechnical and geoenvironmental engineering,2003,129(4):383~386.
    [128] White D J, Thompson M J, Suleiman M T, et al. Behavior of slender piles subject to free-field lateralsoil movement[J]. Journal of geotechnical and geoenvironmental engineering,2008,134(4):428~436.
    [129] Pan J L, Goh A, Wong K S, et al. Ultimate soil pressures for piles subjected to lateral soilmovements[J]. Journal of geotechnical and geoenvironmental engineering,2002,128(6):530~535.
    [130] Byrne P M, Anderson D L, Janzen W. Response of piles and casings to horizontal free-field soildisplacements[J]. Canadian Geotechnical Journal,1984,21(4):720~725.
    [131] Goh A, Teh C I, Wong K S. Analysis of piles subjected to embankment induced lateral soilmovements[J]. Journal of geotechnical and geoenvironmental engineering,1997,123(9):792~801.
    [132] Hsiung Y. Theoretical elastic-plastic solution for laterally loaded piles[J]. Journal of geotechnical andgeoenvironmental engineering,2003,129(5):475~480.
    [133] Guo W D. Nonlinear response of laterally loaded piles and pile groups[J]. International journal fornumerical and analytical methods in geomechanics,2009,33(7):879~914.
    [134] Guo W D. On limiting force profile, slip depth and response of lateral piles[J]. Computers andGeotechnics,2006,33(1):47~67.
    [135] Randolph M F, Houlsby G T. The limiting pressure on a circular pile loaded laterally in cohesivesoil[J].1984,34(4):613~623.
    [136] Hansen J B, Christensen N H. The Ultimate Resistance of Rigid Piles Against Transversal Forces[R].Copenhagen: Geoteknisk Institut,1961.
    [137] Bogard D, Matlock H. Simplified calculation of py curves for laterally loaded piles in sand[J].unpublished report), The Earth Technology Corporation, Inc., Houston, TX,1980.
    [138] JTS147-1-2010.港口工程地基规范[S].
    [139] Beer E E, Wallays M. Franke piles with very enlarged bases[J]. Tech. Trav.,1972,48(333).
    [140] Poulos H G, Chen L T, Hull T S. Model tests on single piles subjected to lateral soil movement[J].Soils and Foundations,1995,35(4):85~92.
    [141] Bransby M F, Springman S. Selection of load--transfer functions for passive lateral loading of pilegroups[J]. Computers and Geotechnics,1999,24(3):155~184.
    [142] Pan J L, Goh A T, Wong K S, et al. Model tests on single piles in soft clay[J]. Canadian geotechnicaljournal,2000,37(4):890~897.
    [143] Pan J L, Goh A, Wong K S, et al. Three-dimensional analysis of single pile response to lateral soilmovements[J]. International journal for numerical and analytical methods in geomechanics,2002,26(8):747~758.
    [144] Reese L C, Cox W R, Koop F D. Field testing and analysis of laterally loaded piles in stiff clay[A].Offshore Technology Conference[C]. Houston, Texas:1975.671~675.
    [145] Stevens J, Audibert J. Re-examination of p-y curve formulations[A]. Proceedings of the11th AnnualOffshore Technology Conference[C]. New York: American Institute of Mining Metallurgical andPetroleum Engineers,1979.397~403.
    [146] Lee P, Gilbert L. Behavior of laterally loaded pile in very soft clay[A]. Proceedings of the11thAnnual Offshore Technology Conference[C]. New York: American Institute of Mining,Metallurgical andPetroleum Engineers,1979.387~395.
    [147] Sullivan W R, Reese L C, Fenske C W. Unified Method for Analysis of laterally loaded piles inclay[A]. Conference on Numerical methods in Offshore Piling[C]. London:1979.135~146.
    [148] Dunnavant T W, O'Neill M W. Experimental p-y Model for Submerged, Stiff Clay[J]. Journal ofGeotechnical Engineering,1989,115(1):95~114.
    [149] Murff J D, Hamilton J M. P-ultimate for undrained analysis of laterally loaded piles[J]. Journal ofGeotechnical Engineering,1993,119(1):91~107.
    [150] Martin C M, Randolph M F. Upper-bound analysis of lateral pile capacity in cohesive soil[J].Geotechnique,2006,56(2):141~145.
    [151] Georgiadis K, Georgiadis M. Undrained lateral pile response in sloping ground[J]. Journal ofgeotechnical and geoenvironmental engineering,2010,136(11):1489~1500.
    [152]王惠初,鲁子爱. P-y曲线法在镇江大港横向受载桩中的应用[J].华东水利学院报,1986,14(1):124~131.
    [153]章连洋,陈竹昌.粘性土中P-y曲线的计算新方法[J].港口工程,1991,2:29~35.
    [154]王国粹,杨敏.黏土中水平受荷桩基计算方法[J].同济大学学报:自然科学版,2012,40(3):373~378.
    [155]常林越,王金昌,朱向荣,等.双层弹塑性地基水平受荷桩解析计算[J].岩土工程学报,2011,33(3):433~440.
    [156]张爱军,莫海鸿,朱珍德.受土体侧移作用的单桩的弹塑性地基反力解析法[J].华南理工大学学报(自然科学版),2012,40(9):153~159.
    [157] Guo W D G W, Qin H Y Q H. Thrust and bending moment of rigid piles subjected to moving soil[J].Canadian Geotechnical Journal,2010,47(2):180~196.
    [158] Guo W D G W. Laterally loaded rigid piles in cohesionless soil[J]. Canadian Geotechnical Journal,2008,45(5):676~697.
    [159] Chiou J, Yang H, Chen C. Use of plastic hinge model in nonlinear pushover analysis of a pile[J].Journal of geotechnical and geoenvironmental engineering,2009,135(9):1341~1346.
    [160] Poulos H G, Hull T S. The role of analytical geomechanics in foundation engineering[A]. FoundationEngineering Conference Current Principles and Practices (GSP22)[C]. American Society of CivilEngineers,1989.1578~1606.
    [161]赵明华.轴向和橫向荷载同时作用下的桩基计算[J].湖南大学学报(自然科学版),1987,14(2):68~81.
    [162]王哲,龚晓南.轴向与横向力同时作用下大直径灌注筒桩的受力分析[J].苏州科技学院学报(工程技术版),2005,18(3):31~37.
    [163]李微哲,赵明华,单远铭,等.倾斜偏心荷载下基桩内力位移分析[J].中南公路工程,2005,30(3):53~57.
    [164] Han J, Frost J D. Load--Deflection response of transversely isotropic piles under lateral loads[J].International journal for numerical and analytical methods in geomechanics,2000,24(5):509~529.
    [165] Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral loads in layered elastic–plastic soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(14):1385~1406.
    [166]张爱军,莫海鸿,向玮.边坡土体侧移模式对抗滑桩影响分析[J].岩土力学,2012,33(9):2719~2723.
    [167] Zhang A J, Mo H H, Li A G, et al. Analytical solution for passive piles subject to lateral soilmovement[A]. The2nd ISRM International Young Scholars'Symposium on Rock Mechanics[C]. Beijing:2011.703~708.
    [168]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1~8.
    [169]武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[博士].大连:大连理工大学,2003.
    [170] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity andplasticity in soil mechanics[J]. Geotechnique,1975,25(4):671~689.
    [171]陈卫忠,伍国军,贾善坡. ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010.
    [172]杨波,郑颖人,赵尚毅,等.双排抗滑桩在三种典型滑坡的计算与受力规律分析[J].岩土力学,2010,31(S1):237~244.
    [173]连镇营,韩国城,等.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407~411.
    [174]谭波,杨和平.有限元强度折减法在膨胀土堑坡滑坍分析中的应用[J].长沙理工大学学报(自然科学版),2006,3(4):18~22.
    [175]李新坡,陈永波,王永杰,等.用强度折减法和FLAC3D计算边坡的安全系数[J].山地学报,2006,24(10):235~239.
    [176]朱俊高,周喜武.抗滑桩极限阻力的有限元分析[J].岩土力学,2004,25(s2):301~304,314.
    [177]凌道盛,任涛,王云岗.砂土地基斜桩水平承载特性p-y曲线法[J].岩土力学,2013,34(1):155~162.
    [178]赵亚军,王艳梅.基床系数法在支护桩计算中的应用[J].山西建筑,2010,36(29):81~82.
    [179]陈林靖,戴自航.基坑悬臂支护桩双参数弹性地基杆系有限元法[J].岩土力学,2007,28(2):415~419.
    [180]杨敏,朱碧堂.超载软土地基被动加固控制邻近桩基侧向变形分析[J].岩石力学与工程学报,2004,23(11):1912~1918.
    [181]郑俊杰,彭小荣.桩土共同作用设计理论研究[J].岩土力学,2003,24(2):242~245.
    [182]马文生,张建根,杨旭朝,等.基于FLAC2D的膨胀土边坡稳定性影响因素分析[J].城市道桥与防洪,2012,10:152~154.
    [183]钟志辉,刘祚秋,杨光华,等.基于Midas/GTS的FLAC3D边坡建模技术及工程应用[J].西北地震学报,2011,33(08):261~265.
    [184]唐晓松,刘明维,叶海林.基于ABAQUS的抗滑桩三维有限元分析[J].地下空间与工程学报,2010,6(02):1614~1618.
    [185]喻波,黄政宇.基于ANSYS的ABAQUS强度折减边坡稳定性分析[J].公路工程,2008,33(2):47~50.
    [186]雷文杰,郑颖人,王恭先,等.沉埋桩加固滑坡体模型试验的机制分析[J].岩石力学与工程学报,2007,26(7):1347~1355.
    [187]雷文杰.沉埋桩加固滑坡体的有限元设计方法与大型物理模型试验研究[博士].武汉:中国科学院武汉岩土力学研究所,2006.
    [188]高明,陈锦珍,郑国芳,等.桩在侧向静、动、循环荷载下的性能研究及p-y曲线建议公式[J].海洋工程,1988,6(3):34~44.
    [189]刘洪佳,门玉明,李寻昌,等.悬臂式抗滑桩模型试验研究[J].岩土力学,2012,33(10):2960~2966.
    [190]欧孝夺,唐迎春,崔伟,等. h型抗滑桩模型试验及数值模拟[J].岩石力学与工程学报,2012,31(9):1936~1943.
    [191]陶志平,周德培.用抗滑桩整治滑坡地段隧道变形的模型试验研究[J].岩石力学与工程学报,2004,23(3):457~460.
    [192]梁发云,姚国圣,陈海兵,等.土体侧移作用下既有轴向受荷桩性状的室内模型试验研究[J].岩土工程学报,2010,32(10):1603~1609.
    [193]邓建辉,张嘉翔,闵弘,等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅱ):加固安全系数计算[J].岩土力学,2004,25(6):871~875.
    [194] Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils andfoundations,2000,40(1):73~84.
    [195] Jeong S, Kim B, Won J, et al. Uncoupled analysis of stabilizing piles in weathered slopes[J].Computers and Geotechnics,2003,30(8):671~682.
    [196] LIANG R, SANPING Z. Numerical study of soil arching mechanism in drilled shafts for slopestabilization[J]. Soils and foundations,2002,42(2):83~92.
    [197] ZENG S, LIANG R. Stability analysis of drilled shafts reinforced slope[J]. Soils and foundations,2002,42(2):93~102.
    [198] Chen C, Martin G R. Soil--structure interaction for landslide stabilizing piles[J]. Computers andGeotechnics,2002,29(5):363~386.
    [199]戴自航,徐祥.边坡抗滑桩设计计算的三维有限元法[J].岩石力学与工程学报,2012,31(12):2572~2578.
    [200]余神光,别社安,李伟,等.高桩码头岸坡滑弧模式研究与变形稳定性分析[J].岩土力学,2013,34(1):227~234.
    [201]雷文杰,郑颖人,冯夏庭.滑坡加固系统中沉埋桩的有限元极限分析研究[J].岩石力学与工程学报,2006,25(1):27~33.
    [202]郑颖人,赵尚毅,梁斌,等.抗滑桩设计新方法—有限元强度折减法[A].2008年(第十届)中国科协年会[C].郑州:2008.230~243.
    [203]雷文杰,郑颖人,冯夏庭.滑坡治理中抗滑桩桩位分析[J].岩土力学,2006,27(6):950~954.
    [204] Ugai K. A method of calculation of total factor of safety of slopes by elasto-plastic FEM[J]. Soils andFoundations,1989,29(2):190~195.
    [205] Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique,1999,49(3):387~403.
    [206] Dawson E M, Roth W H, Drescher A. Slope stability by strength reduction[J]. Geotechnique,1999,49(6):835~840.
    [207]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343~346.
    [208]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):4~10.
    [209]马建勋,赖志生,蔡庆娥,等.基于强度折减法的边坡稳定性三维有限元分析[J].岩石力学与工程学报,2004,23(16):2690~2693.
    [210]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388.
    [211] Matsui T, San K. Finite element slope stability analysis by shear strength reduction technique[J].Soils and Foundations,1992,32(1):59~70.
    [212]刘祚秋,周翠英,董立国,等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(4):558~561.
    [213]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626~628.
    [214]赵少飞,栾茂田,吕爱钟.土工极限平衡问题的非线性有限元数值分析[J].岩土力学,2004,25(S2):121~125.
    [215]郭明伟,李春光,王水林.基于有限元应力的三维边坡稳定性分析[J].岩石力学与工程学报,2012,31(12):2494~2500.
    [216]迟世春,关立军.应用强度折减有限元法分析土坡稳定的适应性[J].哈尔滨工业大学学报,2005,37(9):1298~1302.
    [217]刘明维,郑颖人.基于有限元强度折减法确定滑坡多滑动面方法[J].岩石力学与工程学报,2006,25(8):1544~1549.
    [218] SORENSEN H K. ABAQUS Scripting User's Manual (Version6.3)[M]. Pawtucket.. HKS,2002.
    [219]朱以文,蔡元奇,徐晗. ABAQUS与岩土工程分析[M].北京:中国图书出版社,2005.
    [220]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [221]张晓咏,戴自航.应用ABAQUS程序进行渗流作用下边坡稳定分析[J].岩石力学与工程学报,2010,29(01):2927~2934.
    [222]任艳荣. ABAQUS软件在管土相互作用中的应用[J].中国海洋平台,2007,22(4):48~51.
    [223]任艳荣,刘玉标.砂质海底管土相互作用的数值模拟[J].中国海洋平台,2006,21(3):18~22.
    [224]沈新普.超深井套管三维弹塑性ABAQUS有限元分析[J].天然气工业,2007,27(2):54~56.
    [225] Lawrence J, Li L. Finite element analysis of temperature distribution using ABAQUS for alaser-based tile grout sealing process[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2000,214(6):451~461.
    [226]庄茁, Hibbitt Karlsson. ABAQUS/Explicit有限元软件入门指南[M].北京:清华大学出版社,1999.
    [227]张欣,丁秀丽,李术才. ABAQUS有限元分析软件中Duncan--Chang模型的二次开发[J].长江科学院院报,2005,22(4):45~47.
    [228]杨曼娟. ABAQUS用户材料子程序开发及应用[硕士].武汉:华中科技大学,2005.
    [229]徐远杰,王观琪,李健,等.在ABAQUS中开发实现Duncan-Chang本构模型[J].岩土力学,2004,25(7):1032~1036.
    [230]郑颖人,沈珠江,龚晓南,等.岩土塑性力学原理:广义塑性力学[M].北京:中国建筑工业出版社,2002.
    [231]年廷凯.桩-土-边坡相互作用数值分析及阻滑桩简化设计方法研究[博士].大连:大连理工大学,2005.
    [232]陈祖煜.土质边坡稳定分析—原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [233]钱家欢,殷宗泽,建筑科学.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [234] Menetrey P, Willam K J. Triaxial failure criterion for concrete and its generalization[J]. ACIStructural Journal,1995,92(3):311~318.
    [235]曹先锋,徐千军.边坡稳定分析的温控参数折减有限元法[J].岩土工程学报,2006,28(11):2039~2042.
    [236]史恒通,王成华.土坡有限元稳定分析若干问题探讨[J].岩土力学,2000,21(2):152~155.
    [237]年廷凯,徐海洋,刘红帅.抗滑桩加固边坡三维数值分析中的几个问题[J].岩土力学,2012,33(8):2521~2526.
    [238] Wei W B, Cheng Y M. Strength reduction analysis for slope reinforced with one row of piles[J].Computers and Geotechnics,2009,36(7):1176~1185.
    [239]徐海洋.考虑土拱效应的抗滑桩加固边坡数值分析[硕士].大连:大连理工大学,2012.
    [240]宋雅坤,郑颖人,赵尚毅,等.有限元强度折减法在三维边坡中的应用研究[J].地下空间与工程学报,2006,2(5):822~827.
    [241]裴利剑,屈本宁,钱闪光.有限元强度折减法边坡失稳判据的统一性[J].岩土力学,2010,31(10):3337~3341.
    [242]杨光华,钟志辉,张玉成,等.根据应力场和位移场判断滑坡的破坏类型及最优加固位置确定[J].岩石力学与工程学报,2012,31(9):1879~1887.
    [243]杨光华,张有祥,张玉成,等.基于边坡变形场的抗滑桩最优加固位置探讨[J].岩土工程学报,2011,33(S1):8~13.
    [244]卢坤林,朱大勇,杨扬.二维与三维边坡稳定性分析结果的比较与分析[J].岩土力学,2012,33(S2):150~154.
    [245]刘仲秋,章青,束加庆. ABAQUS软件在岩体力学参数和初始地应力场反演中的应用[J].水力发电,2008,34(6):35~37.
    [246]代汝林,李忠芳,王姣.基于ABAQUS的初始地应力平衡方法研究[J].重庆工商大学学报(自然科学版),2012,29(9):76~81.
    [247] Desai C S, Zaman M M, Lightner J G, et al. Thin‐layer element for interfaces and joints[J].International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):19~43.
    [248]李守德,俞洪良. Goodman接触面单元的修正与探讨[J].岩石力学与工程学报,2004,23(15):2628~2631.
    [249] Ito T, Matsui T, Hong W P S F. Design method for stabilizing piles against landslide-one row ofpiles[J]. Soils and Foundations,1981,21(1):21~37.
    [250] Pradel D, Garner J, ANNIE O L K. Design of drilled shafts to enhance slope stability[A].Proceedings of2010Earth Retention Conference[C]. Los Angeles:2010.920~927.
    [251] Lee C Y, Hull T S, Poulos H G. Simplified pile-slope stability analysis[J]. Computers andGeotechnics,1995,17(1):1~16.
    [252] Ausilio E, Conte E, Dente G. Stability analysis of slopes reinforced with piles[J]. Computers andGeotechnics,2001,28(8):591~611.
    [253]栾茂田,年廷凯.1976年香港秀茂坪人工填土边坡滑坡灾害评析[J].防灾减灾工程学报,2003,23(1):114~117.
    [254]栾茂田.关于岩土工程研究中若干基本力学问题的思考[J].大连理工大学学报,1999,39(2):309~317.
    [255] Low B K, Gilbert R B, Wright S G. Slope reliability analysis using generalized method of slices[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(4):350~362.
    [256] Low B K, Tang W H. Efficient reliability evaluation using spreadsheet[J]. Journal of engineeringmechanics,1997,123(7):749~752.
    [257] Thomas F W. Spreadsheet Applications in Geotechnical Engineering[M]. Boston: PWS PublishingCo.,1995.
    [258]陈立宏,孙平,陈祖煜.边坡稳定分析的电子表格法LOSSAP[J].岩土工程学报,2012,34(7):1329~1332.
    [259]彭霜霜,汪友平,王伟. Excel和AutoCAD相结合边坡稳定性计算中的应用[J].西部探矿工程,2008,(6):50~51.
    [260]周春梅,殷坤龙,罗冲.锚拉桩应用于水库库岸滑坡治理的关键问题探讨[J].岩土力学,2005,26(3):450~454.
    [261]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [262]王恭先.滑坡防治工程措施的国内外现状[J].中国地质灾害与防治学报,1998,9(1):1~9.
    [263] Ginzburg L K, Koval V E, Lapkin V B, et al. Force distribution among slope-protection structure pilerows[J]. Soil Mechanics and Foundation Engineering,1990,27(2):52~58.
    [264] Tika T E, Vaughan P R, Lemos L. Fast shearing of pre-existing shear zones in soil[J]. Geotechnique,1996,46(2):197~233.
    [265] Mezazigh S, Levacher D. Laterally loaded piles in sand: slope effect on PY reaction curves[J].Canadian geotechnical journal,1998,35(3):433~441.
    [266]郑恒祥,袁志刚.滑坡分析与抗滑桩设计[J].人民黄河,1998,20(2):25~27.
    [267]姜春林,李晋.微型抗滑桩土拱效应空间特征的细观力学分析[J].岩土力学,2012,33(6):1754~1760.
    [268]刘斌,杨敏.疏排桩-土钉墙组合支护结构的疏排桩计算模型[J].土木工程学报,2012,45(11):159~165.
    [269]杨敏,刘斌.疏排桩-土钉墙组合支护结构工作原理[J].建筑结构学报,2011,32(2):126~133.
    [270]李忠诚,杨敏,张慧.侧移土体被动桩成拱效应及主动侧土压力计算[J].力学季刊,2006,27(3):505~510.
    [271]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699~703.
    [272]常保平.抗滑桩的桩间土拱和临界间距问题探讨[A].第十三届滑坡会议[C].1998.73~78.
    [273] Ono K, Yamada M. Analysis of the arching action in granular mass[J]. Geotechnique,1993,43(1):105~120.
    [274] Wang W L, Yen B C. Soil Arching in Slopes[J]. Journal of the Soil Mechanics and FoundationsDivision,1974,100(1):61~78.
    [275]王成华,陈永波,等.抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报,2001,19(6):556~559.
    [276] Ito T, Matsui T, Hong W P. Design method for the stability analysis of the slope with landing pier[J].Soils and Foundations,1979,19(4):43~57.
    [277] Duncan J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal ofGeotechnical engineering,1996,122(7):577~596.
    [278]栾茂田,年廷凯,赵少飞.土工建筑物与边坡研究进展综述[A].中国土木工程学会第九届土力学及岩土工程学术会议[C].中国北京:2003.19.
    [279]李萍,邓小鹏,相建华,等.基坑开挖与支护模拟的位移迭代法[J].岩土力学,2005,26(11):124~127.
    [280] Ng C W, Zhang L M. Three-dimensional analysis of performance of laterally loaded sleeved piles insloping ground[J]. Journal of geotechnical and geoenvironmental engineering,2001,127(6):499~509.
    [281]邓建辉,魏进兵,闵弘.基于强度折减概念的滑坡稳定性三维分析方法(Ⅰ):滑带土抗剪强度参数反演分析[J].岩土力学,2003,24(6):896~900.
    [282]张友良,朱瑞赓.滑坡整治中抗滑桩内力计算新方法[J].路基工程,2000,4:40~41.
    [283]廖雄华,张克绪.天津港高桩码头桩基—岸坡土体相互作用的数值分析[J].水利学报,2002,4:81~87.
    [284]廖雄华,张克绪,等.广义位移法在土—结构相互作用问题分析中的应用[J].岩土工程学报,2001,23(6):672~676.
    [285]戴自航,沈蒲生.圆弧滑面滑坡推力的数值解研究[J].地质与勘探,2004,40(3):93~96.
    [286]周梦佳,宋二祥.基坑桩锚支护体系的整体稳定性分析—圆弧滑动简单条分法与Kranz方法的比较[J].西北地震学报,2011,33(8):132~136.
    [287]刘振明.安全系数和滑坡推力的分析[J].路基工程,2006,1:131~132.
    [288]谢立辉,欧名贤.工程边坡的稳定性分析及抗滑桩的应用研究[J].长沙大学学报,2003,17(4):70~73.
    [289]聂文波,张利洁,胡江运.滑坡治理中抗滑桩设计推力计算探讨[J].岩石力学与工程学报,2004,23(2):5050~5052.
    [290]戴自航.非饱和土边坡稳定分析及抗滑桩优化设计研究[博士].长沙:中南大学,2001.
    [291]王建锋, Tnag Wilson H.,崔政权.边坡稳定性分析中的剩余推力法[J].中国地质灾害与防治学报,2001,12(3):73~81.
    [292]程文华,刘爱国,高建勇.利用AutoCAD和Excel进行土坡稳定计算[J].山西建筑,2012,38(20):284~285.
    [293]朱颖彦,崔鹏,陈晓晴.泥石流堆积体边坡失稳机理的试验与稳定性分析[J].岩石力学与工程学报,2005,24(21):3927~3934.
    [294]黄文斌,马容山. EXCEL加VBA用于边坡稳定计算之探索与实践[J].工程地质计算机应用,2003,32(4):19~23.
    [295]陈宝林.最优化理论和算法[M].第二版,北京:清华大学出版社,1989.
    [296] Fylstra D, Lasdon L, Watson J, et al. Design and Use of the Microsoft Excel Solver[J]. Interfaces,1998,28(5):29~55.
    [297] Lasdon L, Waren A, Jain A, et al. Design and Testing of a Generalized Reduced Gradient Code forNonlinear Programming[J]. ACM Transactions on Mathematical Software (TOMS),1978,4(1):34~50.
    [298]戴自航,彭振斌.土体滑坡治理的合理设计与计算[J].中南工业大学学报,2000,31(2):98~101.
    [299]谭捍华,赵炼恒,李亮,等.抗滑桩预加固边坡的能量分析方法[J].岩土力学,2011,32(S2):190~197.
    [300]韦立德,杨春和,高长胜.基于三维强度折减有限元的抗滑桩优化探讨[J].岩土工程学报,2005,27(11):1350~1352.
    [301]王亮清,唐辉明,胡新丽,等.剩余下滑力曲线在滑坡治理设计中的应用[A].2005年湖北省三峡库区地质灾害防治学术研讨会[C].武汉:2005.587~589.
    [302]谭捍华.类土质边坡稳定性及其控制技术研究[博士].重庆:重庆大学,2011.
    [303]张迎宾,李亮,赵炼恒,等.基于非线性破坏准则的边坡稳定性极限分析[J].岩土力学,2011,32(11):3312~3318.
    [304]尤明庆.均质土坡的圆弧滑动分析[J].岩土力学,2008,29(8):2025~2032.
    [305]胡卫东,张国祥.非线性破坏准则下的边坡稳定塑性极限分析[J].岩土力学,2007,28(9):1909~1913.
    [306] Michalowski R L. Slope stability analysis: a kinematical approach[J]. Geotechnique,1995,45(2):283~293.
    [307] Dawson E M, Roth W H, Drescher A. Slope stability by strength reduction[J]. Geotechnique,1999,49(6):835~840.
    [308] Gao Y F, Zhang F, Lei G H, et al. An extended limit analysis of three-dimensional slope stability[J].Geotechnique,2012.
    [309]金问鲁,顾尧章.地基基础实用设计施工手册[M].北京:中国建筑工业出版社,1995.
    [310]陈浩,杨春和,任伟中.蠕动滑坡变形机制的理论分析与模型试验研究[J].岩土力学,2008,27(s2):3705~3711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700