用户名: 密码: 验证码:
钢管混凝土界面状态试验研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土结构能适应现代工程向大跨、高耸、重载发展和承受恶劣条件的需要,已成为继砖石结构,混凝土结构,钢结构之后的第四种结构。其具有广阔的发展前景,成为结构工程科学的一个重要发展方向。
     钢管混凝土结构是由钢管与混凝土两种材料复合而成的组合结构,特殊的材料组合形式,一方面造就了限制并互补的增强作用,另一方面衍生出界面性能的复杂性。工程实践亦证明,在复杂的外界环境作用下钢管混凝土构件存在界面脱粘现象,这势必影响钢管混凝土的工作性能与结构安全。因此,研究复杂外界环境作用下的钢管混凝土界面性能及其优化方法具有重要的理论研究价值与工程实践意义。
     本文综合运用理论分析、试验研究与有限元法,分析了在热力耦合作用下钢管混凝土界面状态、性能与特征,主要内容包括:轴压荷载作用下界面结合状态的试验研究;界面结合状态的超声波定性试验研究;界面结合状态的自制应力盒定量试验研究;钢管混凝土膨胀性能及其界面结合性能优化试验研究;自应力钢管混凝土轴压试验研究、有限元分析及界面表征;钢管混凝土温度冲击试验、热力耦合试验及有限元对比分析等工作。主要的研究工作、结果与结论如下:
     1.开展圆钢管混凝土构件轴压性能试验研究。确定钢管混凝土的截面形式、径厚比(21~42)、长径比(3)、套箍系数等为试验参数,试验研究了不同轴压荷载水平作用下,钢管混凝土界面特征及应力状态。试验结果表明:钢管自密实微膨胀混凝土具有良好的轴压承载能力和抗变形能力,在轴压作用下,可通过测定应变变化,得出钢管混凝土短柱的受力状况,可通过进一步优化界面状态,实现两种材料的最优复合。
     2.进行了钢管混凝土界面结合状态的超声波定性测试方法研究。自制4组钢管混凝土试件(分别为密实基准试件、脱空试件、脱粘试件、中部空洞试件)和27个混凝土标准试块,分别测试在2d、3d、5d、7d、11d、14d、21d、28d、60d龄期下钢管混凝土试件各测点的声时、声速、振幅、频率、波形等声学参数,以及各龄期下混凝土试块波速和抗压强度。依据声波传播理论,测试分析并提出了钢管混凝土界面特征超声波综合评判法。
     3.完成了界面结合状态的自制应力盒定量试验研究工作。通过自制应力盒,形成界面应力测试单元。试验研究了在不同膨胀剂掺量下(5%、8%、12%、16%、20%)钢管混凝土限制膨胀性能和混凝土试件在标准养护状态下的自由膨胀性能。同时采用解析法得到了核心混凝土限制膨胀率的合理域;
     4.开展了自应力钢管混凝土轴压性能试验、有限元分析及界面表征。研究不同膨胀剂掺量下(5%、8%、12%、16%、20%)钢管混凝土试件的力学性能及受压全过程的界面特性。试验与分析结果表明:自应力钢管混凝土可以使核心混凝土从钢管混凝土构件初凝成型时即处于三向受压状态,有效确保界面紧密贴合,补偿核心混凝土收缩导致的脱空、改善钢管混凝土的延性、提高其极限承载力和抗变形能力。本次试验中,膨胀剂最佳掺量为12%,极限承载力比理论计算最大值提高了25%。
     5.进行了钢管混凝土温度冲击试验、热力耦合试验及有限元对比分析。对5个钢管混凝土试件分别在20℃、40℃、60℃、80℃恒温作用下,进行了轴向全过程加载、力热耦合作用下钢管混凝土试件截面温度场分布及钢管混凝土界面应力状态等工作。同时,应用热传导理论、热弹性力学、非线性有限元和虚拟温度场等方法,研究了轴压荷载和温度冲击作用下钢管混凝土界面状态与应力分布。
     本文在理论研究的基础上,以组合结构界面状态、定性定量测试技术手段、核心混凝土膨胀性能合理域、热力耦合试验方法设计为重点,开展了系列试验研究和有限元分析对比,系统研究分析了热、力等因素为主的环境作用下钢管混凝土界面状态,可为钢管混凝土界面优化以及确保恶劣环境下钢管混凝土长期工作性能提供一定的理论和试验参考。
Concrete-Filled Steel Tubular can adapt to the progress of long-span, erect modern engineering structures and meet the need of withstand hash condition. It has become the forth structure come after the masonry structure、concrete structures、steel structure. It has broad prospects for development, and it is an important direction of development of the science of structural engineering.
     CFST structure is the composite structure of steel tube and concrete. Because of its particular material combining forms, CFST, on the one hand results in the improving effort with their mutual constrain and complementary, on the other side derives the complex interface properties between steel tube and concrete. The engineering practices prove that, under the complicated influence of external circumstances, the interface between steel tube and concrete in CFST structure may debond which absolutely affects the workability and structure safety of CFST. Therefore, it is important and necessary to investigate the interface bonding properties of CFST and its optimizing methods either in theoretical research or engineering practice.
     In this paper, theoretical analysis, experimental study and finite element method were used to analyze the status, properties and characteristics of interface conditions in CFST under the effect of thermal-mechanical coupling, including:experimental study on the interface characteristics of CFST under axial compression load, the qualitative analysis on the interface bonding condition of CFST measured by ultrasonic, the interface characteristics of CFST studied by homemade-stressing box, expanding properties of CFST and its interface performance optimization, axial compressive test of self-stressing CFST and the process and interface circumstance also analyzed by finite element software ANSYS, thermal shock test, thermal-mechanical coupling test, etc. The main works and results of the research are follows:
     1. The axial compressive test of CFST was carried out in this paper. The cross-section form of CFST, radius-thickness ratio (21~42), aspect ratio (3)、ferrule coefficients and other parameters were determined in order to investigate the interface characteristics and stressing states of CFST under different axial loads. The result shows that:the CFST specimens with the incorporation of expanding agent show better axial bearing capacity and distortion-resistant ability, and under axial compression the force condition of CFST can be obtained by measuring the strain changes, also with further optimizations the optimal compound of steel tube and concrete can be achieved.
     2. Ultrasonic, a kind of qualitative test method, was used in this research to study the interface characteristics of CFST.4CFST specimens (dense reference specimen, void specimen, debonding specimen and central hollow specimen) and27standard concrete bricks were made to test their related parameters:sound velocity, amplitude, frequency, and waveform of CFST and the concrete specimens in different curing stage:2d,3d,5d,7d,11d,14d,21d,28d,60d respectively, and the compressive strength of concrete specimens. According to sound wave propagation theory, the comprehensive evaluation method of ultrasonic on the interface characteristics of CFST are analyzed and proposed.
     3. Quantitative experimental study on the interface characteristics of CFST were completed by self-made stressing box. The restrained expansion of CFST and free expansion of concrete specimens were studied with different content of incorporating expanding agent (5%,8%,12%,16%and20%). Meanwhile, the rational restrained expanding scope of the core concrete was got by analytic method.
     4. Axial load test of self-stressing CFST, finite element analysis and interface characterization were carried out. The mechanical properties and interface characteristics during the loading process of CFST were studied, containing different contents of expanding agent:5%,8%,12%,16%and20%, respectively. The experimental and analysis results show that:in self-stressing CFST, at the initial set the core concrete is under the three-dimensional pressure, effectively confirming the bonding interface conditions of steel tube and concrete, compensating the shrinkages of core concrete that will result in disengaging, improving the ductility, ultimate bearing capacity and non-deformability of CFST. In this experiment, the optimal incorporation of expanding agent is12%, and the ultimate bearing capacity of CFST values improved by25%than theoretical calculated values.
     5. Temperature shock test, thermal-mechanical coupling test and finite element analysis were researched. The sectional temperature and interface stress distribution of CFST was received by thermal-mechanical coupling test of total5specimens with axial load process under5different temperatures of20℃,40℃,60℃and80℃, respectively, and its results also calculated by the heat conduction theory, theory of thermoelasticity, the nonlinear finite element method and the virtual temperature field, etc.
     In this paper, On the basis of theoretical studies, Series studyexperimental researches were carried out as well as finite element analysis and comparison,which are focused on the state of the composite structure interface, qualitative and quantitative testing techniques, reasonable domain of the core concrete expansion properties, thermal coupling test method.The interface characteristics of CFST under the complicated circumstances (thermal, force, etc) were systematic investigated, and the results has a certain theoretical direction and practical reference value to the interface optimization and the long-term performance in the harsh conditions of CFST.
引文
[1]钟善桐.钢管混凝土结构研究新进展[J].钢结构,2009(5).
    [2]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2003.
    [3]钟善桐.钢管混凝土统一理论—研究与应用[M].北京:清华大学出版社,2006.
    [4]蔡绍怀.现代钢管混凝结构[M].北京:人民交通出版社,2003.
    [5]蔡绍怀.现代钢管混凝土结构.修订版[M].北京人民交通出版社,2007.
    [6]胡曙光,丁庆军.《钢管混凝土》[M]—北京:人民交通出版社,2007.1
    [7]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [8]韩林海,杨有福.现代钢管混凝土结构技术(第二版)[M].北京:中国建筑工业出版社,2007.
    [9]韩林海.钢管混凝土统一设计理论研究.博士后研究工作报告[R].黑龙江:国家地震局工程力学研究所,1995.
    [10]李慧.高强混凝土及其组合结构[M].北京:科学出版社,2004.7
    [11]罗阳军,亢战,邓子辰.多工况下结构鲁棒性拓扑优化设计.[J].力学学报,2011,(01):227-234..
    [12]孙士平.材料和结构的拓扑优化关键理论与方法研究[D].西北工业大学,2006.
    [13]汤国栋,王竹,廖光明,陈兵,吴洪朗.桥梁结构的鲁棒性[J]预应力技术,2011,(01):10-13
    [14]马小春.圆端形钢管混凝土轴压试验研究[D].武汉理工大学,2012
    [15]幸申淘,赵国藩,岳清瑞.高强混凝土核心柱轴压短柱的承载力研究.钢结构.2001,17(57):18-21.
    [16]蔡健,谢晓风等.核心高强钢管混凝土柱轴压性能的试验研究.华南理工大学学报(自然科学版).2002,30(6):81-85.
    [17]陈周熠,赵国藩,林立岩.钢管混凝土增强高强混凝土柱的正截面强度计算.建筑结构.2001,(7):7-11.
    [18]李明靖.钢管混凝土轴向受压力学性能分析[D].华南理工大学,2010
    [19]时军.钢管混凝土柱轴压承载力计算方法分析[D].大连理工大学,2012.5
    [20]黄雅宁.自应力钢管混凝土设计理论研究[D].重庆交通大学,2010
    [21]周念先.大跨拱桥的特点及发展途径[J]华东公路,1990(2,3,4).
    [22]Kloppel V.K.,Goder W..An investigation of the load carrying capacity of concrete-filled Steel tubes and development of design formula[J].Der Stahlbau,1957a,26(1):1-10.
    [23]Kloppel V.K.,Goder W..An investigation of the load carrying capacity of concrete-filled Steel tubes and development of design formula[J].Der Stahlbau,1957b,26(2):44-50.
    [24]Gardner J, Jacobson E R.Structural behaviour of concrete filled steel tubes [J].ACI Structural Journal,1967,64(7):404-413.
    [25]Furlong R W. Strength of steel-encased concrete beam columns[J].Journal of Structural Division,ASCE,1967,93(ST5):113-124.
    [26]Neogi P K;San H K;Chapman J C Concrete filled tubular steel columns under eccentrical loading 1969(05)
    [27]Knowles P.R.and Park R. Strength of concrete-filled steel tubul[J].Journal of the Structural Division.1969,95(12):2565-2587.
    [28]Knowles P B,Park R.Axial load design for conerete filled steel tubes.Journal ofStructural Division,ASCE,1970,96(ST10):2125-2153.
    [29]刘清平.水平荷载作用下半刚性连接组合梁框架的实用设计方法[D].同济大学,2006.
    [30]Bridge R Q. Conerete filleds teel tubular columns.Sehool of Civil Engineering,University of Sydney, Sydney, Australia.1976.
    [31]许奇.钢管混凝土综述[J].山西建筑,2007,09,第33卷,第9期,100-103.
    [32]Sakino K,Tomii M.Hysteretic behavior of concrete filled square steel tubular beam Columns failed in flexure,Transaction of the Japan Concrete Institute,1981,(3):439-446.
    [33]Sahino K, Hayashi H. Behavior of concrete filled steel tubular stub columns under concentric loading. Proc, The Third International Conference on Steel-Concrete Composite Structures, Fukoka, Japan,25-30
    [34]M.Tomii, K. Sakino, Y. Xiao, et al. Lateral load capacity of reinforced concrete short columns confined by steel tube [A]. In:Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures [C]. Harbin,China,1985:19-26
    [35]Xiao Y, Tomii M, Sakino K. Experimental Study on Design Method to Prevent Shear Failure of Reinforced Concrete Short Circular Columns by Confining in Steel Tube. Transactions of Japan Concrete Institute,1986,8:535-542
    [36]Xiao Y. Experimental study and analytical modeling of triaxial compressive behavior of confined concrete:[Ph.D.]. Department of Civil Engineering:Kyushu University,1989
    [37]Ge H, Usami T. Strength of concrete-filled thin walled steel box columns:experiment. Journal of Structural Engineering, ASCE 1992,118(11):36-54.
    [38]Matsui, Mitani I, Kawano A, et al.AIJ Design Method for Concrete Filled Steel Tubular Structures. In:International Conference on Composite Construction Conventional and lnnovative.Innsbruck:1997.
    [39]吴传伟,高轩能,金周.薄壁型钢-混凝土组合结构研究进展[J].福建建筑,2009,01,总第127期,50-53.
    [40]黄宏,杨超,张安哥,陈梦成,圆钢管混凝土不等端弯矩偏压柱的试验及理论研究[J].工业建筑,2011年第41卷11期,120-124.
    [41]Sakino K, Nakahara H, Morino S, Nishiyama I. Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng.,2004,130(2):180-188
    [42]汤关柞,招炳泉,竺惠仙,沈希明.钢管混凝土基本力学性能的研究.建筑结构学报,1982,(2):13-31.
    [43]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算.建筑结构学报,1984,5(6):13-29.
    [44]张正国.方钢管混凝土偏压短柱基本性能研究.建筑结构学报,1989,(6):10-20.
    [45]蒋家奋,汤关柞.三向应力混凝土.北京:中国铁道出版社,1998:1-106.
    [46]Wakabayashim.Review of research on concrete filled steel tubular structure in Japan, Proceedings of the International Specialty Conference on Concrete Filed Steel Tubular Structure,1988:5-11.
    [47]Virdi K S, Dowling P J. Bond Structure in Concrete Filled Circular Steel Tubes.CESLIC Report CCII[J]. Department of Civil Engineering, Imperial College, London,1975,31(4): 325-339
    [48]Sakino K,Tomii M.Hysteretic behavior of concrete filled square steel tubular beam-columns failed in flexure.Transaction of the Japan Concrete Institute,1981,(3):439-446.
    [49]Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force[J]. Transactions of Japan Concrete Institute,1982, (4):363 370.
    [50]Tomii,Sakino K,XiaoYan,et al.Earthquake-resisting hysteretic behavior of rein-forced concrete short columns confined by steel tube-experimental results of Preliminary research.Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structure,1985:119-125
    [51]Matsui C,Keir aK,Kawano A.et al.Development of concrete filled steel tubular structure with inner ribs.Proceeding of the Third International Conference on Steel-Concrete Composite Structure,1991:206-210.
    [52]Nakanishi K,Kitada T,Nakai H.Experimental study on deterioration of ultimate Strength and ductility of damage concrete filled steel box columns Proceedings of the 4th ASCCS International Conference on Steel-Concrete Composite Structures,1994:127-130.
    [53]Sun Y P,Sakiho K.Method of improving the ductility of RC columns high axial load by using steel tube,Proceedings of the 4th ASCCS International Conference on Steel-Concrete Composite Structure,1994:139-142.
    [54]Konno K,SatoY, KakutaY,Ohira M C.The property of recycled concrete column encased by steel tube subjected to axial compression.Transactions of the Japan Concrete Institute,1997,(19):351-358.
    [55]Park S M,Choi B C,Tae Y K.An experimental study on behavior of steel-tubes column filled with reinforced concrete connected to H-beam,Proceeding of Fifth Pacific Structural Steel Conference,1998:937-942.
    [56]Schneider,Stephen P. Axially loaded concrete-filled steel tubes.Journal of Structural Engineering.V124,n10,Oct,1998:1124-1138.
    [57]Rocder C W, Cameron B, Brown CB.Composite action in concrete filled tubes[J], Journal of Struetural Engineering, ASCE,1999,125(5):477-484.
    [58]Zhao X L,Grzebieta R H.Void-filled SHS beams subjected to large deformation cyclic bending.Journal of Structural Engineering,ASCE,1999,125(9):1020-1027.
    [59]Zhao X L,Grezebieta R H.Strength and ductility of concrete filled double skin tubes.Thin-Walled Structures,2002,40(2):199-213.
    [60]Inai E, Mukai A, Kai M, Tokinoya H, Fukumoto T, et al. Behavior of concrete-filled steel tube beam columns. Journal of Structural Engineering,ASCE,2004,130(2):189-202
    [61]Marson J, Bruneau M. Seismic design of concrete-filled circular steel bridge piers. Journal of Bridge Engineering, ASCE,2004,9(1):24-34
    [62]韩林海,陶忠,尧国皇,杨有福.新型钢管混凝土结构的力学性能与设计理论研究---第十三届全国结构工程学术会议特邀报告.2004
    [63]姜维山,安建利,钢管混凝土柱压弯剪试验与有限元分析.中国钢协钢-混凝土组合结构协会第一次年会论文集.1987:1-11.
    [64]屠永清.钢管混凝土压弯构件恢复力特性的研究.哈尔滨:哈尔滨建筑大学学位博士论文.1994.
    [65]阎维波.钢管高强混凝土压弯构件滞回性能的理论计算与实验研究.哈尔滨:哈尔滨建筑大学硕士学位论文,1999.
    [66]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究建筑结构学报,2000,21(2):2-11.
    [67]张春梅,阴毅,周云.钢管高强混凝土柱抗震性能的试验研究.地震工程与仁程振动,2004,24(4):86-89.
    [68]Lie T T. Fire resistance of circular steel columns filled with bar-reinforced concrete. Journal of Structural Engineering,1997,120(5):1489-1509
    [69]Kodur V K R. Design equations for evaluating fire resisance of SFRC-filled HSS columns. Journal of Structural of Civil Engineering,1998,124(6):671-677
    [70]Kodur V K R. Performance-based fire resistance esign of concrete-filled steel columns. Journal of Constructional Steel Research,1999,51(1):21-26
    [71]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究.工程力学,2001,18(6):100-109
    [72]韩林海,徐蕾,冯九斌等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-13
    [73]韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究.土木工程学报,2002,35(4):25-35
    [74]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究.铁道学报,2003,25(4):71-79
    [75]Wang Y C. Some considerations in the design of unprotected concrete-filled steel tubular columns under fire conditions. Journal of Constructional Steel Research,1997,44(3): 203-223
    [76]Wang Y C. The effects of structural continuity on the fire resistance of concrete filled columns in nonsway frames. Journal of Constructional Steel Research,1999,50(2):177-197
    [77]Hajjar J F,Fourley B C.Olson M C.A cyclic nonlinear model for concrete-filled tubes Cross-section strength. Journal of Structural Engineering,ASCE,1996,123(6):745-754.
    [78]B.Uy.Loeal and Post-local buckling of concrete filled steel welded box columns.Journal of Construction Steel Research,1998,47:47-72
    [79]Q.Q.Liang,B.Uy.The oretical Study on the post-local Concrete-Filled Box Columns[J].Computers and Structures,2000, (75):479-490.
    [80]Susantha K A S,Ge H B.Usami T.Confinement evaluation of concrete-filled box-shaped steel columns.Steel and Composite Structures,2001,1(3):313-328.
    [81]Lakshmi B, Shanmugam N E. Nonlinear analysis of infilled steel-concrete composite columns. J. Struct. Eng.,2002,128(7):922-933.
    [82]Aval S B B.Saadeghvaziri M A.Golafshani A A.Comprehensive composite fiber element for cyclic analysis of concrete-filled steel tube columns.Journal of Engineering Mechanics,ASCE,2002,128(4):428-437.
    [83]N.E Shanmugam, B.Lakslnni, B.Uy. An analytical model for thin-walled steel box columns with concrete in-fill [J].Engineering Structure,2002.24(6):825-838.
    [84]Sakino K, Nakahara H, Morino S, Nishiyama I. Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng.,2004,130(2):180-188.
    [85]Choi K K, Xiao Y. Analytical model of circular CFRP confined concrete-filled steel tubular columns under axial compression. American Society of Civil Engineers:ASCE Journal of Composite for Construction,2010a,14(1):125-133
    [86]潘友关.钢管混凝土受弯构件承载力研究.哈尔滨建筑工程学院,1990,(2):41-49.
    [87]李四平、王警,方钢管混凝土偏压柱极限承载力计算的简化数值法.[J].华中理工大学学报,1997,25(4)93-94
    [88]韩林海,钟善桐.钢管混凝土力学.大连:大连理工大学出版社,1996
    [89]余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:Ⅰ试验.建筑结构,1999.10
    [90]余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:n分析.建筑结构,2000.2
    [91]任志刚,胡曙光.轴对称变温下钢管混凝土平面应变问题解析解[J].华中科技大学学报(自然科学版),2012,40(8):34-38.
    [92]Rangan B V, Joyce M. Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete. ACI Structural Journal,1991,89(6):676-681
    [93]H.D.Wright.Buckling of plates in contact with a rigid medium.The struetural Engineer, 1993,71(12):209-215
    [94]H.D.Wright.Local stability of filled and encased steelseetions.Journal of Ructural Engineering,1995,121(10):1382-1388
    [95]Grauers M,Composite columns of hollow steel sections filled with high strength concrete.Division of Concrete Structures,Chalmers University of Technology,Goteborg, Sweden,1993,140.
    [96]O'Shea, M.D., Bridge, R.Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. University of Sydney, Sydney, Australia.1997a
    [97]O'Shea, M.D., Bridge, R.Q. Tests on circular thin-walled steel tubes filled with very high strength concrete. Department of Civil Engineering Research Report No. R754, the University of Sydney, Sydney, Australia.1997b
    [98]O'Shea, M.D., Bridge, R.Q. Local buckling of thin-walled circular steel sections with or without internal restraint. Res. Rep. R740, Dept. of Civ.Engrg.,University of Sydney, Sydney, Australia.1997c
    [99]B.Uy.Loeal and Post-local buckling of concrete filled steel welded box columns.Journal of Constructional Steel Research,1998,47:47-72
    [100]O'Shea M. D., and Bridge R. Q. Design of circular thin-walled concrete filled steel tubes. 2000 Journal of Structural Engineering,126(11),1295-1303
    [101]M. A. Bradford, H. Y. Lob, B. Uy. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research.2002,58 (2):243-252
    [102]Uy B, Patil SB. Concrete-filled high strength steel box columns for tall buildings:behaviour and design. The Structural Design of Tall Buildings,1996,5:75-93
    [103]Rangan B V, Joyce M.Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete. ACI Structural Journal,1991,89(6):676-681.
    [104]O'Brien AD, Rangan BV. Tests on slender tubular steel columns filled with high-strength concrete. Australian Civil Engineering Transactions,1993,35(4):287-92.
    [105]Naguib W, Mirmiran A.2003. Creep modeling for concrete-filled steel tubes.Journal of Constructional Steel Research,59(11):1327-1344
    [106]Marson J, Bruneau M. Seismic design of concrete-filled circular steel bridge piers. Journal of Bridge Engineering, ASCE,2004,9(1):24-34.
    [107]Kurt CE. Concrete filled structural plastic columns [J]. Journal of structural Dvision, ASCE, 104(l),55-63.
    [108]Saafi, Mohamed, A Toutanji, Houssan, Li.zongjin. Behavior of Concrete Columns Confined with Fiber Reinforced Polymer Tubes [J].ACI Materials Journal,1999,96(4):500-508.
    [109]何保康,周天华.矩形钢管截面b/t、h/t的限值确定.钢结构,2001年第2期第16卷总第52期
    [110]王清湘,赵大洲,关萍.轴心受压钢骨—钢管高强混凝土组合柱力学性能的研究[J].东南大学学报(自然科学版),2002,32(5):710-714.
    [111]王清湘,赵大洲,关萍.钢骨-钢管高强混凝土轴心组合柱力学性能的试验研究[J].建筑结构学报,2003,24(6):44-50
    [112]王清湘,赵大洲,.轴心受压钢骨—钢管高强混凝土组合柱承载力的研究[J].工程力学,2003,20(6):195-201.
    [113]赵同峰,王连广,吴少敏.方钢管-钢骨混凝土偏压柱正截面承载力分析[J].建筑科学与工程学报,2008.25(3):77-78.
    [114]Lin-Hai Han,Guo-Huang Yao.Experimental behavior of thin-walled hollow structural steel(HSS) columns filled with self-consolidating concrete(SCC).Thin-Walled Structures. 2004:1357-1377
    [115]王秋萍.薄壁钢管混凝土轴压短柱力学性能的试验研究[D].哈尔滨:哈尔滨工业大学,2002.
    [116]曹宝珠,张耀春.方形薄壁钢管混凝土柱管壁的临界宽厚比[J].哈尔滨工业大学学报,2004,36(12):1713-1716.
    [117]董志君,张耀勇,陈勇.设肋方形薄壁钢管混凝土短柱试验研究[J].低温建筑技术,2005,(6):61-62.
    [118]李艳,占美森,熊进刚.薄壁钢管混凝土柱轴心受压承载力的试验研究[J].理论研究,2008,(11):4749.
    [119]滕锦光,余涛,黄玉龙,董石麟,杨有福.FRP管-混凝土-钢管组合柱力学性能的试验研究和理论分析[J].建筑钢结构,2006,8(5):1-7.
    [120]王志滨,陶忠.FRP-混凝土-钢管组合受弯构件力学性能试验研究[J].工业建筑,2009,39(4):5-9.
    [121]AIJ,1997.Reeonunendations for design and constuction of concrete filled steel tubular structures[S].Architectural Institute of Japan(AIJ)Tokyo, Japan.
    [122]European Committee for Standardization.Euro code4(draft):Design of Composite Steel and Concrete Structures[S],1992
    [123]British Standards Institutions. BS5400, Part 5, Concrete and composite bridges. London. U. K.2005:1-11
    [124]DIN 18806.Berlin:Beuth Verlag Gmbh,1997:.
    [125]CEB-FIP.Model Code for concrete Structures.Paris,1978
    [126]AISC-LRFD. Load and resistance factor design specification for structural steel buildings,2nd ed. American Institute of Steel Construction (AISC). Chicago. U. S. A. 1999:5-20
    [127]ACI Committee209.Predietion of Creep,shinkage and Temperature Effects in Concrete Structures(ACI 209-82).ACI,1982
    [128]ACI Committee 209(1992).Prediction of Creep.shinkage and Temperature Effects in Concrete Structure(209R-92),Manual of concrete practice,Partl.American Concrete Institute,1992
    [129]中国工程建设标准化协会标准.CECS28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [130]中国工程建设标准化协会标准,CECS 159:2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [131]中国工程建设标准化协会标准.CECS 104:99,高强混凝土结构技术规程[S].北京:中国计划出版社,1999.
    [132]国家建材局.JCJ01-89.钢管混凝土结构设计与施工规程[S].北京:建筑工业出版社,1989.
    [133]能源部.火力发电厂主厂房钢—混凝土组合结构设计暂行规定(DLGJ99-91).北京:1991年.
    [134]中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南[M].北京:中国建筑工业出版社,2001.
    [135]中华人民共和国电力行业标准DL/T5085-1999.钢—混凝土组合结构设计规程[S].北京:中国电力出版社,1999
    [136]中华人民共和国国家军用标准GJB4142-2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2000
    [137]天津市工程建设标准DB29-57-2003.天津市钢结构住宅设计规程[S].天津,2003
    [138]福建省工程建设标准DBJ13-51-2003,钢管混凝土结构技术规程[S].福州,2003
    [139]吴中伟,张鸿直.膨胀混凝土.北京:中国铁道出版社,1990年10月:
    [140]冯乃谦.高性能混凝土.北京:中国建筑工业出版社,1996.
    [141]赵国藩.高性能混凝土发展简介,施工技术,2002,31(4):1-2
    [142]陈剑雄,张旭,刘巧玲.自密实混凝土的研究进展.建筑技术开发,2003年12月第30卷第12期:92-94.
    [143]李乃珍.自应力硫铝酸盐水泥的制管适用性.混凝土与水泥制品,1993年10月第5期:31-37
    [144]文华元.自应力硫铝酸盐水泥开裂问题的探讨.水泥工程,1999年第2期:29-30.
    [145]杨静,覃维祖,吕剑峰.关于高性能混凝土工作性评价方法的研究.工业建筑,1998年第28卷第4期:5-9
    [146]尚建丽.高性能混凝土微观结构特征及开发应用.西安建筑科技大学学报(自然科学版).1999,31(1):84-86
    [147]叶梅新,唐习龙,肖佳.自密实钢管混凝土的设计与应用研究.混凝土与水泥制品.2006年第2期:18-20.
    [148]田姜峰,黄承逢,戴建国.自应力混凝土结构限制膨胀过程有限元分析.大连理工大学学报,2001年9月第46卷第5期:607-611.
    [149]姚武,钟文慧,自密实自应力钢管混凝土计算分析.建筑材料学报,2003年12月第6卷第4期:369-373.
    [150]文华元.影响自应力硫铝酸盐水泥自应力增进率的几个因素.水泥工程.1998年第3期:34-37.
    [151]李乃珍,彭建中,肖山虎,刘兰计.自应力硫铝酸盐水泥及其混凝土的碱害.混凝土与水泥制品,1998年第2期:26-29.
    [152]张长清.免振捣自密实混凝土与振捣混凝土的对比.施工技术,1999年9月,第16卷第3期:5-8.
    [153]刘江宁.不同限制条件下膨胀混凝土变形行为力学特性以及微观结构研究(博士学位论文).北京:中国建筑科学材料研究院.1991年.
    [154]李帼昌,冯国会,徐术陇等.自应力钢管轻骨料砼的应力应变曲线分析[J].沈阳建筑工程学院学报土.1997.13(3).247-251
    [155]王方立,汪嘉栓,徐贺文,李建志.自应力钢管混凝土研究.北京:北京工业大学学报,1998年6月.第24卷第2期.
    [156]李悦,胡曙光,丁庆军.钢管膨胀混凝土的研究及其应用.山东建材学院学报,2000年9月,第14卷第3期
    [157]李悦,金彩云.钢管高强膨胀混凝土的力学性能研究.施工技术,2005年第34卷增刊:47-50.
    [158]王湛.高强钢管膨胀混凝土纤维结构分析.工业建筑,2001年第38卷第1期:57-59
    [159]卢哲安,舒贤成,卢卫东,任志刚.钢管高强低热微膨胀混凝土自应力试验研究[J].中国公路学报,2002,(1)
    [160]余志武,潘志宏,谢友均,刘宝举.浅谈高性能自密实混凝土配合比的计算方法.混凝土,2004年第1期(总第171期):54-57.
    [161]池建军.钢管混凝土界面抗剪性能的实验研究与有限元分析(硕士学位论文).长沙:长沙理工大学,2004年4月.
    [162]刘玉茜.钢管混凝土粘结滑移性能的理论分析及ANSYS程序验证(硕士学位论文).西安:西安建筑科技大学,2006年4月.
    [163]徐磊.钢管自应力免振混凝土轴压柱设计理论研究(博士学位论文).大连:大连理工大学,2005年.
    [164]杨有福,韩林海.矩形钢管自密实混凝土的钢管—混凝土界面粘结性能研究.工业建筑2006年第36卷第11期:32-36
    [165]胡曙光,何永佳,吕林女.调节混凝土内部相对湿度的释水因子技术及其应用[J].铁道科学与工程学报,2006,(2):11-14.
    [166]黄承选,徐磊,刘毅.钢管自密实自应力混凝土短柱轴压力学性能试验研究.大连理工大学学报,2006年9月,第46卷第5期
    [167]尚作庆.钢管自应力自密实混凝土柱力学性能研究(博士学位论文).大连:大连理工大学.2007年.
    [168]卢哲安、陈猛、任志刚,桥墩承台大体积混凝土的温度控制[J].混凝土,2008,(4)
    [169]任志刚.钢管混凝土结构温度效应分析及其膨胀性能设计的力学方法[R].武汉理工大学博士后研究工作报告,2008.
    [170]任志刚,胡曙光,丁庆军.钢管膨胀混凝土墩柱日照温度场分析[J].武汉理工大学学报。2008,(11):99-102.
    [171]任志刚,胡曙光,丁庆军,吕林女,何永佳.季节温差作用下钢管膨胀混凝土热应力分析[J].武汉理工大学学报,2008,(7):43-45.
    [172]任志刚、胡曙光、卢哲安、丁庆军,双肢圆端形钢管混凝土塔柱日照温度场分析,中国公路学报,2009
    [173]刘兴法.混凝土结构的温度应力分析.北京:人民交通出版社,1991:1-16.
    [174]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社,1998年
    [175]金成棣.预应力混凝土梁拱组合桥梁设计研究与实践[M].北京:人民交通出版社,2001年.
    [176]Bruce Hunt and Nigel Cooke. Thermal Calculations for Bridge Design. Journal of the Structural division,1975:1763-1781
    [177](德)F凯尔别克.太阳辐射对桥梁结构的影响.刘兴法译.北京:中国铁道出版社,1981
    [178]Femando A,Branco and Pedro A.Mendes.Thermal actions for concrete bridge design. Journal of Structural Engineering,1993 119(8):2313-2331
    [179]赵毓成.钢管混凝土拱桥温度应力分析[D].东北大学,2005,12.
    [180]陈可.钢管混凝土拱桥温度场及徐变效应研究[D].西南交通大学,2010,6.
    [181]彭有松.混凝土桥梁结构日照温度效应理论及应用研究.西南交通大学博士学位论文,2007
    [182]刘振宇.钢管混凝土拱肋温度场研究.福州大学硕士学位论文,2006
    [183]管敏鑫.混凝土箱梁温度场、温度应力和温度位移的计算方法.桥梁建设,1980(1):40-49
    [184]李毅,唐习龙,钢管自密实混凝土柱轴心受压承载力试验[J]建筑科学与工程学报,2008,9
    [185]Xiong Rui, Lu Zhean, Ren Zhigang, He Chunguang. Experimental Research on the Performance of Micro-expansion and Self-compacting Concrete-Filled Steel Tubular Short Column under Axial Compression[J]. Procedia:Earth and Planetary Science,v 5,2012,p 19-24, ISSN:1878-5220
    [186]张素梅,刘界鹏,马乐等.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报.2007,40(3):24-30.
    [187]BAI Wei-feng.CHEN Jian-yun, FAN Shu-li, LIN Gao. Statistical damage constitutive model for concrete materials under uniaxial compression[J].Journal of Harbin Institute of Technology(New Series).2010,17(3):338-345.
    [188]李杰.混凝土随机损伤力学的初步研究[J].同济大学学报(自然科学版).2004,32(10):1271-1276.
    [189]张丁非,戴庆伟,胡耀波等.塑性损伤的发展与应用[J].材料工程.2011(1):92-97.
    [190]Gupta,P.K.,Sarda,S.M.,Kumar M. S..Experimental and Computational Study of Concrete-filled Steel Tubular Columns under Axial Loads [J]. Journal of Constructional Steel Research,2007,63(2):182-193.
    [191]Varma,A.H..Seismic Behavior and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns [J].Journal of Structural Engineering,2004,130(2):169-179.
    [192]Neogi P K;San H K,Chapman J C Concrete filled tubular steel columns under eccentrical loading 1969(05)
    [193]黄政宇.钢管混凝土拱桥设计、施工、与养护技术研究专题三之子课题三管内高性能混凝土的研究技术研究报告[R].湖南大学,2006.
    [194]杜冰,王春潮,唐小阳.钢管混凝土质量分步超声波检测技术的研究及应用[J].施工技术,2008.12,37(增):50-53.
    [195]梁富会.钢管混凝土拱桥拱肋缺陷超声波定量检测技术初步研究[D].重庆:重庆交通大学,2007.
    [196]刘清元.基于超声波法的拱桥钢管混凝土拱肋密实性检测[J].无损探伤,2004,28(2):13-15.
    [197]刘清元.两种测试钢管混凝土内部缺陷的判别方法[J].武汉理工大学学报,2005,27(6):38-40.
    [198]童寿兴,商涛平.拱桥拱肋钢管混凝土质量的超声波检测[J].无损检测,2002,22(11):464..466.
    [199]于天来,肖生智,等.钢管混凝土超声波检测试验[J].东北林业大学学报,2007.5,25(3):56-59.
    [200]凌立,张学生,等.钢管高性能混凝土配制与超声波检测技术[J].低温建筑技术,2009(12):80-82.
    [201]刘立鹏.用超声波定量探测钢管混凝土缺陷的研究[J].科技向导,2011(12):227-228,207.
    [202]张高其.超声波对测法检测钢管混凝土[J].高新技术,2007(29):14.
    [203]阎鸣.钢管混凝土超声波检测[J].水文地质工程地质,2001(3):23-27.
    [204]张大煦,王春潮,马伟阳,唐小阳,何晶.超声波检测中小直径钢管混凝土的方法及分析[J].第四届全国现代结构工程学术研讨会.工业建筑[J]2004,增刊
    [205]肖云风,周先燕.基于神经网络的钢管混凝土超声检测技术研究[J].《工程技术》2009年12月(上):151-152
    [206]丁睿,刘浩吾,侯静,沈国青.拱桥钢管混凝土无损检测技术研究[J].《压电与声光》2004年12月第26卷第6期:
    [207]林维正,秦效启,陈之毅,洪有根.方形钢管混凝土超声波检测技术Ultrasonic Testing for Square Steel-pipe Concrete建筑材料学报2003年6月第6卷第2期:190-193
    [208]曹现强,郭洁.自密实微膨胀钢管混凝土的配制应用及其超声检测[J].混凝土.2011(6):105-107.
    [209]Xiong Rui,Lu Zhean, Ren Zhigang, Xu Changwu. Experimental research on small diameter concrete-filled steel tubular by ultrasonic detection[J].Applied Mechanics and Materials, v 226-228, p 1760-1765,2012, Vibration, Structural Engineering and Measurement II
    [210]徐长武,霍凯成,任志刚,熊锐.小管径钢管混凝土密实度的超声波检测试验研究[J]武汉理工大学学报,(已收录)
    [211]中国工程建设标准化协会.超声波检测混凝土缺陷技术规程(CECS21:2000) [S].北京:中国计划出版社,2000.
    [212]Xiong Rui,Lu Zhean, Ren Zhigang, Xu Changwu. Experimental study of self-stressing of self-compacting concrete filled steel tubular short columns[J]. Advances in Information Sciences and Service Sciences, v 5, n 2, p 623-631, January 2013
    [213]王琳.自应力钢管轻混凝土组合材料的优越性能[J].混凝土,2002,3,58-59.
    [214]姜德成.钢管自应力免振混凝土力学性能研究[D].大连理工大学,2007
    [215]尚作庆.钢管自应力自密实混凝土柱力学性能研究[D]大连理工大学,2007
    [216]徐秉业.弹性与塑性力学[M].机械工业出版社,1990
    [217]文捷.钢筋混凝土及钢管混凝土材料阻尼研究[M].北京交通大学,2006.9
    [218]肖显强,邱卫民,张海林.钢管混凝土结构的特点及其应用研究[J].安徽建筑,2010,(03)
    [219]孙建安,朱晓忠.浅谈钢管混凝土工程特点及施工技术的应用[J]陕西建筑,2009,(11)
    [220]李帼昌,曲赜胜,杨华.自应力钢管轻砼组合材料力学性能的试验研究[J].南京建筑工程学院学报,2001,3,20-25.
    [221]卢方伟.新型钢管混凝土构件的理论和试验研究[M].上海交通大学,2007.7
    [222]黄承逵,徐磊,刘毅.钢管自密实自应力混凝土短柱轴压力学性能试验研究[J].大连理工大学学报,2006年9月,第46卷第5期,696-701.
    [223]常旭,黄承逵.钢管自应力混凝土短柱长期荷载作用下变形性能研究[J].大连理工大学学报,2011年,第51卷,第3期,400-405.
    [224]常旭,蔺海晓,黄成逵.自应力钢管混凝土轴压短柱力学性能研究[J].河南理工大学学报(自然科学版),2009,Vol.28,No.4,496-501.
    [225]Changwu XU, Kaicheng HUO, Zhigang REN, Rui XIONG,Tao YANG. Application of Stress Box in Self-stressing Test of Expansion Concrete Filled Steel Tube[J]. Avanced Materials Research (Accepted)
    [226]苏州混凝土水泥制品研究院,自应力混凝土中自应力的研究,国外专题情报资料,1979:87-98.
    [227]沈文伟大,招炳泉,蒋家奋.钢管约束下自应力混凝土性能的研究[J].上海建材学院院报,1991年12月,第4卷第4期,380-385.
    [228]李庚英,王湛.膨胀混凝土在钢管约束下的力学性能以及微观特征[J].四川建筑科学研究,2002,(3):59-61.
    [229]覃亚伟,李惠强.钢管砼轴心受压柱的可靠性研究[J].华中科技大学学报,2003,20(1):62-64
    [230]聂建国,柏宇等.钢管混凝土核心柱轴压组合性能分析[J].土木工程学报,2005,38(9):9-13.
    [231]陈钦宗,郝付军.自应力钢管混凝土极限承载力研究[J].四川建材,2011年第6期,第37卷总第164期,29--30
    [232]吴大群,李明,葛鹏.钢管混凝土的动力性能研究进展[J].山西建筑,2008(12).
    [233]Schneider S P. Axially loaded concrete filled steel tubes[J].Journal of Structural Engineering,ASCE,1998,124(10):1125-138.
    [234]GB50010-2002《混凝土结构设计规范》
    [235]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [236]ANSYS Element Reference. Electronic Release, SAS IP, INC,1998.
    [237]陈宝春,刘振宇.日照作用下钢管混凝土构件温度场实测分析[J].公路交通科技,2008.12,25(12):117-122.
    [238]刘振宇,陈宝春.日照作用下钢管混凝土构件截面温度场有限元分析[J].公路交通科技,2008.7,25(7):49-53.
    [239]彭友松,强士中,李松.哑铃形钢管混凝土拱日照温度分布研究[J].中国铁道科学,2006.9,27(5):71-75.
    [240]彭友松,强士中,刘悦臣.钢管混凝土圆管拱肋日照温度分布研究[J].桥梁建设,2006,(6):18-21.
    [241]柯婷娴,陈宝春,刘振宇.日照下钢管混凝土哑铃形拱肋截面的温度场有限元计算[J].长沙交通学院学报,2008.12,24(4):12-17.
    [242]陈宝春,刘振宇.钢管混凝土脱粘构件温度场研究.[J].中国公路学报,2009,(11):82-89..
    [243]徐蕾,韩林海.方形截面钢管混凝土温度场的非线性有限元分析[J].哈尔滨建筑大学学报,1999.10,32(5):34-38.
    [244]张江彬,徐赵东,韩金生,等.接触热阻及热湿耦合作用对火灾下钢管混凝土柱温度场影响的研究[J].工程力学,2010.9,27(9):133-138,174.
    [245]刘振宇、陈宝春.火灾作用下钢管混凝土柱截面温度变化与脱黏关系研究[J].建筑结构学报,2012.9,33(9):104-111.
    [246]Saetta A, Seotta R, Vitaliani R. Stress Analysis of Concrete Structures Subjected to Variable Thermal Loads[J]. Journal of Structural Engineering,1995,121(3):446-457.
    [247]Clark J H. Evaluation of Thermal Stresses in a Concrete Box Girder Bridge [J]. Proe. Instn. Civ. Engrs, part2,1989,87(9):415-428.
    [248]Mirambell E, Costa J. Thermal Stresses in Composite Bridges According to BS5400 and ECI [J]. Proceedings of the Institution of Civil Engineers:Structural & Buildings,1997, 122(8):281-292.
    [249]Elbadry M, Ghali A. Control of Thermal Creaking of Concrete Structures [J]. ACI Journal, 1995(7):435-450.
    [250]姜绍飞,韩林海,乔景川.钢管混凝土中钢与混凝土的粘结问题初探[J].哈尔滨建筑科学学报,2000,33(2):24-28.
    [251]肖敦壁.用泵升法浇灌钢管混凝土柱的工艺研究[J].工业建筑,1988,(10):8-16.
    [252]薛立红.钢管混凝土柱组合界面抗剪连接的试验研究[D].北京:中国建筑科学研究院,1994.
    [253]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度:上[J].建筑科学,1996,12(3):22-28.
    [254]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度:下[J].建筑科学,1996,12(4):19-23.
    [255]薛立红,蔡绍怀.荷载偏心率对钢管混凝土柱组合界面粘结强度的影响[J].建筑科学,1997,13(2):22-25.
    [256]林春姣,郑皆连,秦荣.钢管混凝土拱肋混凝土脱空研究综述.中外公路,2004,24(6):54-58
    [257]童林,夏桂云,吴美君等.钢管混凝土脱空的探讨.公路,2003,48(5):16-19.
    [258]饶德军,张玉红,王忠建.钢管混凝土拱肋泵送混凝土脱空成因分析与试验观察.铁道建筑,2005,45(3):14-16.
    [259]饶德军,黎海宁,张玉红等.解决钢管混凝土拱肋泵注混凝土脱空问题的设计方案.铁道建筑,2005,45(4):25-27.
    [260]钟善桐.钢管混凝土中钢管与混凝土的共同工作.哈尔滨建筑大学学报,2001,34(1):6-10.
    [261]叶跃忠,文志红,潘邵伟,钢管混凝土脱粘及灌浆补救效果试验研究[J].西南交通大学学报,2004(3):381-384.
    [262]杨世铭,陶文锉.传热学(第四版)[M].北京:高等教育出版社,2006:33-45.
    [263]朱伯芳.有限元法原理与应用[M].北京:中国水利水电出版社,1998.
    [264]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [265]孙国富.大跨度钢管混凝土拱桥日照温度效应理论及应用研究[D].山东大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700