用户名: 密码: 验证码:
考虑徐变效应的FRP约束混凝土塑性模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土材料在持续荷载作用下将产生依时性变形,同时,混凝土本构也随着时间发生变化,这一变化不但受到周围环境的影响,还与应变(或应力)状态有直接的关系。本文建立一个Drucker-Prager型塑性模型,通过将徐变中不可恢复的变形分离出来作为塑性应变,进而对强化软化函数及膨胀率函数的形式进行修正,以考虑徐变对混凝土应力应变行为的影响。
     FRP约束混凝土柱在既有结构的修补加固及新建结构中的应用越来越广泛,研究其长期力学行为的重要性不言而喻,随着核心混凝土徐变不断改变FRP约束混凝土柱的应变状态,能够准确预测随之发生的应力应变行为依时性变化对既有混凝土结构分析有着重要意义。
     本文主要进行了以下研究:(1)首先进行了FRP约束混凝土柱单轴受压徐变的试验和理论研究。在试验中考虑了混凝土强度、试件截面、是否配有钢筋、FRP包裹方式等因素的影响。基于微预应力固结理论和B3模型,给出了FRP约束混凝土徐变预测模型。这一模型不仅能够预测FRP约束普通混凝土柱徐变,还适用于核心混凝土强度高、掺硅粉以及变应力的情况。(2)利用所给FRP约束混凝土柱徐变模型,对FRP种类和数量、FRP材料徐变、水灰比、骨料水泥比、硅粉含量、混凝土强度、加载水平以及截面尺寸等徐变影响因素进行了分析。(3)在312天徐变试验结束后,对其中12个徐变和收缩试件进行了单轴抗压试验以测定其应力应变关系曲线。试验结果表明承受持续荷载的徐变试件与相应的收缩对比试件相比,在受压测试中表现出较高的初始刚度,较低的极限强度,较小的峰值应变和极限应变;(4)建立单轴荷载作用下Drucker-Prager型非约束和约束混凝土的塑性模型,并结合FRP的本构及侧向应力应变关系,对FRP约束混凝土柱的行为进行合理的预测。为了考虑徐变效应,利用前面所建的FRP约束混凝土柱徐变模型,可以将徐变应变中的不可恢复的变形分离出来以考虑徐变效应。
     将建立的约束混凝土本构模型与前面的徐变模型结合,可以在实测数据缺乏的情况下对既有混凝土结构的力学行为进行预测,为结构加固设计提供依据。
The structural analysis under in-service conditions requires a reliable constitutive model which takes into account the effects of sustained service loading which results in creep deformations and processes ac-companying creep like hardening and damage. The research's purpose is to present a material model which can accurately predict the ultimate stress-strain response of confined concrete previously subjected to a sustained service load.
     An experimental program including two stages was conducted to examine the effects of sustained service loading on the axial behavior of FRP confined concrete. At the first stage, the creep strain of FRP confined concrete under uniaxial compression loading was examined. Then at the second stage, after the sustained load was removed, the specimens were loaded to failure to obtain the stress strain curves. The results of the experimental program indicate that the presence of a sustained service load changes the expected failure mode from FRP rupture to FRP de-lamination and the difference of the stress-strain response is approximately10%between the creep specimen and the companion one. Specially, the sustained loading increases the elastic modulus, slightly decreases the compressive strength, and degrades the deformation capability
     Based the microprestress solidification theory, a creep model for FRP confined concrete is developed, in which effects of fly ash and varying stress are taken into account. By treating an irrecoverable or residual strain as the initial value of the plastic strain parameter, a plasticitiry model is modified to reproduce the behavior of confined concrete after creep process. The proposed stress-strain model is shown to accurately describe the compressive behavior of confined concrete of this research and can improve the design and rehabilitation of structures so that they meet safety requirements in future service life.
引文
[1]ACI Committee 440 (ACI 440.2R-08). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. Farmington Hills, Michigan:ACI,2008: 76.
    [2]Teng JG, Chen JF, Smith ST, et al. FRP strengthened RC structures[M]. John Wiley& Sons, UK,2002.
    [3]Rubinsky IA, Rubinsky A. A preliminary investigation of the use of fibre-glass for prestressed concrete[J]. Magazine of Concrete Research,1954,6(17):71-78.
    [4]Wines JC, Hoff GC, Dietz RT, et al. Laboratory investigation of plastic-glass fiber reinforcement for reinforced and prestressed concrete[M]. Vicksburg, Mississippi:U.S. Army Engineer Waterways Experiment Station, Corps of Engineers,1966.
    [5]于清.FRP的特点及其在土木工程中的应用[J].哈尔滨建筑大学学报,2000,33(6):26-30.
    [6]Teng JG, Lam L. Behavior and modeling of FRP-confined concrete:a state-of-the-art review[C]. Proceedings of International Symposium on Confined Concrete,238, Changsha, China, June,2004. ACI Special Publication,2006:327-346.
    [7]Fardis MN, Khalili H. FRP-encased concrete as a structural material[J]. Magazine of Concrete Research,1982,34(121):191-202.
    [8]Karbhari VM, Gao YQ. Composite jacketed concrete under uniaxial compression Verification of simple design equations[J]. Journal of Materials in Civil Engineering,1997,9(4): 185-193.
    [9]Samaan M, Mirmiran A, Shahawy M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering,1998,124(9):1025-1031.
    [10]Saafi M, Toutanji HA, Li ZJ. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Materials Journal,1999,96(4):500-509.
    [11]Toutanji HA. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets[J]. ACI Materials Journal,1999,96(3):397-404.
    [12]Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering,2000,12(2):139-146.
    [13]Lam L, Teng JG. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6-7):471-489.
    [14]Wu G, Wu ZS, Lu ZT. Design-oriented stress-strain model for concrete prisms confined with FRP composites[J]. Construction and Building Materials,2007,21(5):1107-1121.
    [15]Mirmiran A, Shahawy M. A new concrete-filled hollow FRP composite column [J]. Composites Part B:Engineering,1996,27(3-4):263-268.
    [16]Spoelstra MR, Monti G. FRP-confined concrete model[J]. Journal of Composites for Construction,1999,3(3):143-150.
    [17]Fam AZ, Rizkalla SH. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(4):451-461.
    [18]Jiang X Teng JG. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures,2007,29(11):2968-2986.
    [19]Binici B. An analytical model for stress-strain behavior of confined concrete[J]. Engineering Structures,2005,27(7):1040-1051.
    [20]Teng JG, Huang YL, Lam L, et al. Theoretical model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction,2007,11(2):201-210.
    [21]Yu X Teng JG, Wong YL, et al. Finite element modeling of confined concrete-1: Drucker-Prager type plasticity model[J]. Engineering Structures,2010,32(3):665-679.
    [22]CEB-FIP. CEB-FIP Model Code 1990[S]. London:Thomas Telford Ltd,1993:437.
    [23]Findley WN, Lai JS, Onaran K. Creep and relaxation of nonlinear viscoelastic materials: with an introduction to linear viscoelasticity[M]. New York:Dover,1989.
    [24]Hatt WK. Notes on the effect of time element in loading reinforced concrete beams[C]. Proceedings of the Annual Meeting-American Society for Testing Materials,7. West Conshohocken, PA:ASTM International,1907:421-433.
    [25]Fuller AH, More CC. Time tests of concrete[J]. ACI Journal,1916,12(2):302-310.
    [26]Neville AM. Role of cement in creep of mortar[J]. ACI Journal,1959,55(3):963-984.
    [27]Neville AM, Dilger WH, Brooks JJ. Creep of plain and structural concrete[M]. London: Construction Press,1983.
    [28]ACI Committee 209 (ACI 209.1R-05). Report on factors affecting shrinkage and creep of hardened concrete[R]. Farmington Hills, Michigan:ACI,2005:1-12.
    [29]RILEM_TC_107-CSP. Measurement of time-dependent strains of concrete[J]. Materials and Structures,1998,31:507-512.
    [30]Carreira DJ, Burg RG. Testing for concrete creep and shrinkage[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects,194(12), Atlanta, Georgia, November,1997. Farmington Hills, Michigan:ACI,2000:381-420.
    [31]Tazawa E-i (ed.). Autogenous shrinkage of concrete:Proceedings of the International Workshop Organized by JCI, Hiroshima, Japan, June,13-14,1998[C]. London:Spon Press,1999.
    [32]Bazant ZP. Criteria for rational prediction of creep and shrinkage of concrete[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, Atlanta, Georgia, November,1997. Farmington Hills, Michigan:ACI,2000:215-236.
    [33]RILEM_TC_107. Guidelines for characterizing concrete creep and shrinkage in structural design codes or recommendations[J]. Materials and Structures,1995,28:52-55.
    [34]Kovler K. Why sealed concrete swells[J]. ACI Materials Journal,1996,93(4):334-340.
    [35]McDonald DB, Roper H. Prediction of drying shrinkage of concrete from internal humidities and finite element techniques[C]. Proceedings of the Fifth International RILEM Symposium on Creep and Shrinkage of Concrete (ConCreep5), Barcelona, Spain, September,6-9, 1993. London:E&FN Spon,1993:259-264.
    [36]Neville AM, Dilger WH. Creep of concrete:plain, reinforced, and prestressed[M]. Amsterdam:North-Holland Publishing Company,1970.
    [37]Bazant ZP. Theory of creep and shrinkage in concrete structures:a precis of recent developments. Chap.1 in "Mechanics Today"[M], Vol.2, Nemat-Nasser S (ed.), New York:Pergamon Press,1975:1-93.
    [38]Pickett G. The effect of change in moisture-content on the creep of concrete under a sustained load[J]. ACI Journal,1942,13(4):333-355.
    [39]Bazant ZP, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures-Model B3[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, Atlanta, Georgia, November,1997. Farmington Hills, Michigan: ACI,2000:1-83.
    [40]Gardner NJ. Design provisions for shrinkage and creep of concrete[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, Atlanta, Georgia, November,1997. Farmington Hills, Michigan:ACI,2000:101-134.
    [41]Scott ML, Lane DS, Weyers RE. Preliminary investigation of the relationship between capillary pore pressure and early shrinkage cracking of concrete[R]. VTRC 97-R12. Charlottesville, VA: Virginia Transportation Research Council,1997:1-20.
    [42]Neville AM. Properties of concrete,5th edition[M]. New Jersey:Prentice Hall,2012.
    [43]Bazant ZP. Prediction of concrete creep and shrinkage:past, present and future[J]. Nuclear Engineering and Design,2001,203(1):27-38.
    [44]ACI Committee 209 (ACI SP 27-1). Effects of concrete constituents, environment, and stress on creep and shrinkage of concrete[R]. Farmington Hills, Michigan:ACI,1971:1-43.
    [45]Jensen RS, Richart FE. Short-time creep test of concrete in compression[J]. Proceedings of the Annual Meeting-American Society for Testing Materials,38(2). West Conshohocken, PA: ASTM International,1938:410-417.
    [46]Vogt F. On the flow and extensibility of concrete[M]. Trondheim:Brun,1935.
    [47]Neville AM. Theories of creep in concrete[J]. ACI Journal,1955,52(9):47-60.
    [48]Ali I, Kesler CE. Mechanisms of creep in concrete[J]. ACI Special Publication,1964,9: 35-63.
    [49]Thomas FG. Conception of creep of unreinforced concrete and an estimation of the limiting values[J]. The Structural Engineering,1933,11(2):1-69.
    [50]Glanville WH, Thomas FG. Studies in reinforced concrete:Further investigations on the creep or flow of concrete under load[M]. London:Her Majesty's Stationery Office,1939:44.
    [51]Reiner M, Leaderman H. Deformation, strain and flow[J]. Physics today,1960,13(9):47.
    [52]Freudenthal AM. The inelastic behavior of engineering materials and structures[M]. New York:Wiley,1950.
    [53]Powers TC, Brownyard TL. Studies of the physical properties of hardened portland cement paste[J]. ACI Journal, Oct.1946 to Apr.1947,43(9).
    [54]Lea FM, Lee CR. Shrinkage and creep in concrete[C]. Proceedings of Symposium on Shrinkage and Cracking of Cementive Materials, London. The Society of Chemical Industry,1947: 17-22.
    [55]Lorman WR. The theory of concrete creep[C]. Proceedings of the Annual Meeting-American Society for Testing Materials,40. West Conshohocken, PA:ASTM International,1940: 1082-1102.
    [56]Lynam CG. Growth and movement in Portland cement concrete[M]. London:Oxford University Press,1934.
    [57]Seed HB. Creep and shrinkage in reinforced concrete structures[J]. The Reinforced Concrete Review,1948,1(8):253-267.
    [58]Davis RE, Davis HE, S. HJ. Plastic flow of concrete under sustained stress[C]. Proceedings of the Annual Meeting-American Society for Testing Materials,34(2). West Conshohocken, PA: ASTM International,1934:354-386.
    [59]Maney GA. Concrete under sustained working loads:evidence that shrinkage dominates time yield[C]. Proceedings of the Annual Meeting-American Society for Testing Materials,41. West Conshohocken, PA:ASTM International,1941.
    [60]Neville AM. Creep recovery of mortars made with different cements[J]. ACI Journal, 1959,56(8):167-174.
    [61]Hansen TC. Creep and stress relaxation in concrete-A theoretical and experimental investigation[R]. CBI Proceedings No.31. Stockholm:Swedish Cement and Concrete Research Institute,1960:112.
    [62]Hsu TTC, Slate FO, Sturman GM, et al. Microcracking of plain concrete and the shape of the stress-strain curve[J]. ACI Journal,1963,60(2):209-224.
    [63]Mehta PK, Monteiro PJM. Concrete:microstructure, properties, and materials.3rd Edition[M]. McGraw-Hill,2005:659.
    [64]Mindess S, Young JF, Darwin D. Concrete.2nd Edition[M]. New Jersey:Prentice Hall, Pearson Education, Inc.,2003:644.
    [65]Meyers BL. Time-dependent strains and microcracking of plain concrete[D]. Ithaca, NY: Cornell University,1967.
    [66]Kruml F. Short-and long-term deformation of structural lightweight-aggregate concrete[C]. Proceedings of The First International Congress on Lightweight Concrete, London, May, 1968. Paris:RILEM,1968:99-110.
    [67]Gvozdev AA. Creep of concrete[C]. Proceedings of the 2nd National Conference on Theoretical and Applied Mechanics, Moscow. Mechanics of Solids, Academy of Sciences USSR,1966: 137-152.
    [68]Bazant ZP. Material models for structural creep analysis. Chap.2 in "Mathematical modeling of creep and shrinkage of concrete"[M], Bazant ZP (ed.), John Wiley & Sons,1988:99-215.
    [69]Hanson JA. A ten-year study of creep properties of concrete[R]. Report No. SP-38. Concrete Lab, Denver, Colorado:US Dept. of the Interior, Bureau of Reclamation,1953.
    [70]Harboe EM. A comparison of the instantaneous and the sustained modulus of elasticity of concrete[R]. Report No. C-854. Concrete Lab, Denver, Colorado:US Dept. of the Interior, Bureau of Reclamation,1968.
    [71]L'Hermite RG, Mamillan M. Further results of shrinkage and creep tests[C]. Proceedings of International Conference on the Structure of Concrete:Structure of concrete and its behaviour under load, Imperial College, London, September 28-30,1965. London:Cement and Concrete Association,1968:423-433.
    [72]Troxell GE, Raphael JE, Davis RW. Long-time creep and shrinkage tests of plain and reinforced concrete[C]. Proceedings of the Annual Meeting-American Society for Testing Materials, 58. West Conshohocken, PA:ASTM International,1958:1101-1120.
    [73]Bazant ZP, Asghari AA, Schmidt J. Experimental study of creep of hardened Portland cement paste at variable water content[J]. Materials and Structures,1976,9(52):279-290.
    [74]Bazant ZP, Prasannan S. Solidification theory for aging creep[J]. Cement and Concrete Research,1988,18(6):923-932.
    [75]Ruetz W. A hypothesis for the creep of hardened cement paste and the influence of simultaneous shrinkage[C]. Proceedings of International Conference on the Structure of Concrete: Structure of concrete and its behaviour under load. Imperial College, London, September 28-30, 1965. London:Cement and Concrete Association,1968:365-387.
    [76]Wittmann FH. Interaction of hardened cement paste and water[J]. Journal of the American Ceramic Society,1973,56(8):409-415.
    [77]Hansen TC, Mattock AH. Influence of size and shape of member on the shrinkage and creep of concrete[J]. ACI Journal,1966,63(2):267-290.
    [78]Liu Y. Strength, modulus of elasticity, shrinkage and creep of concrete[D]. University of Florida,2007.
    [79]ACI Committee 209 (ACI 209-R92). Prediction of creep,shrinkage,and temperature effects in concrete structures[S]. Farmington Hills, Michigan:ACI,1992:47.
    [80]Bazant ZP. Creep and shrinkage prediction model for analysis and design of concrete structures:Model B3[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, Atlanta, Georgia, November,1997. Farmington Hills, Michigan:ACI,2000: 1-83.
    [81]Gardner NJ, Lockman MJ. Design provisions for drying shrinkage and creep of normal strength concrete[J]. ACI Materials Journal,2001,98(2):159-167.
    [82]中华人民共和国交通部(JTG D62-2004).公路钢筋混凝土及预应力混凝土桥涵设计规范[S].2004.
    [83]中华人民共和国铁道部(TB10002.3-2005).铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].2005.
    [84]CEB (Bulletin No.124/125). International system of unified standard codes of practice for structures, Volumn 2:CEB-FIP Model Code for Concrete Structures[R].1978.
    [85]Lam J-P. Evaluation of concrete shrinkage and creep prediction models[D]. San Jose, CA: San Jose State University,2002.
    [86]Bazant ZP, Hauggaard AB, Baweja S, et al. Microprestress-solidification theory for concrete creep. I:aging and drying effects[J]. Journal of Engineering Mechanics,1997,123(11): 1188-1194.
    [87]Bazant ZP, Hauggaard AB, Baweja S. Microprestress-solidification theory for concrete creep. II:algorithm and verification[J]. Journal of Engineering Mechanics,1997,123(11):1195-1201.
    [88]Dilger WH, Wang C. Creep and shrinkage of high-performance concrete[C]. Proceedings of the Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, Atlanta, Georgia, November,1997. Farmington Hills, Michigan:ACI,2000:361-380.
    [89]Ngab AS, Nilson AH, Slate FO. Shrinkage and creep of high strength concrete[J]. ACI Journal,1981,78(4):255-261.
    [90]Burg RG, Ost BW. Engineering properties of commercially available high strength concrete[R]. RD104T. Skokie, IL:Portland Cement Association,1994:58.
    [91]Wolsiefer J. Ultra high strength field placeable concrete with silica fume admixture[J]. Concrete International,1984,6(4):25-31.
    [92]Buil M, Acker P. Creep of a silica fume concrete [J]. Cement and Concrete Research, 1985,15(3):463-466.
    [93]Plevris N, Triantafillou TC. Time-dependent behavior of RC members strengthened with FRP laminates[J]. Journal of Structural Engineering,1994,120(3):1016-1042.
    [94]Findley WN. Mechanism and mechanics of creep of plastics and stress relaxation and combined stress creep of plastics[R]. Providence, Rl:Division of Engineering, Brown University,1960: 16.
    [95]Masia MJ, Shrive NG, Shrive PL. Creep behaviour of RC beams strengthened with externally bonded FRP strips[C]. Proceedings of the 18th Australasian Conference on the Mechanics of Structures and Materials:Developments in Mechanics of Structures & Materials,1, Perth, WA, 1-3 December,2004. Taylor & Francis,2004:139-144.
    [96]Tan KH, Saha MK. Long-term deflections of FRP-strengthened beams under sustained loads[C]. Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering, Adelaide, Australia. Taylor & Francis,2004:261-266.
    [97]Tan KH, Saha MK. Long-term deflections of reinforced concrete beams externally bonded with FRP system [J]. Journal of Composites for Construction,2006,10(6):474-482.
    [98]Holmes M, Just DJ. GRP in structural engineering[M]. London:Applied Science,1983: 298.
    [99]Kim S-H, Han K-B, Kim K-S, et al. Stress-strain and deflection relationships of RC beam bonded with FRPs under sustained load[J]. Composites Part B:Engineering,2009,40(4):292-304.
    [100]曹国辉,方志.CFRP片材加固混凝土梁收缩徐变效应研究[J].建筑结构学报,2007,28(3):91-97.
    [101]Branson DE. Deformation of concrete structures[M]. New York:McGraw-Hill,1977:546.
    [102]Muller M, Toussaint E, Destrebecq JF, et al. Investigation into the time-dependent behaviour of reinforced concrete specimens strengthened with externally bonded CFRP-plates[J]. Composites Part B:Engineering,2007,38(4):417-428.
    [103]Bazant ZP, Wu ST. Rate-type creep law of aging concrete based on Maxwell chain[J]. Materials and Structures,1974,7(1):45-60.
    [104]A1 Chami G, Theriault M, Neale KW. Creep behaviour of CFRP-strengthened reinforced concrete beams[J]. Construction and Building Materials,2009,23(4):1640-1652.
    [105]Benyoucef S, Tounsi A, Adda Bedia E, et al. Creep and shrinkage effect on adhesive stresses in RC beams strengthened with composite laminates[J]. Composites science and technology, 2007,67(6):933-942.
    [106]Benyoucef S, Tounsi A, Benrahou K, et al. Time-dependent behavior of RC beams strengthened with externally bonded FRP plates:interfacial stresses analysis[J]. Mechanics of Time-Dependent Materials,2007,11(3):231-248.
    [107]Hamed E, Rabinovitch O. Dynamic behavior of reinforced concrete beams strengthened with composite materials[J]. Journal of Composites for Construction,2005,9(9):429-440.
    [108]Hamed E, Bradford MA. Creep in concrete beams strengthened with composite materials[J]. European Journal of Mechanics-A/Solids,2010,29(6):951-965.
    [109]Wu ZS, Diab H. Constitutive model for time-dependent behavior of FRP-concrete interface[J]. Journal of Composites for Construction,2007,11(5):477-486.
    [110]Diab H, Wu ZS. Nonlinear constitutive model for time-dependent behavior of FRP-concrete interface[J]. Composites Science and Technology,2007,67(11-12):2323-2333.
    [111]Choi K-K, Meshgin P, Reda Taha MM. Shear creep of epoxy at the concrete-FRP interfaces[J]. Composites Part B:Engineering,2007,38(5-6):772-780.
    [112]Meshgin P, Choi K-K, Reda Taha MM. Experimental and analytical investigations of creep of epoxy adhesive at the concrete-FRP interfaces[J]. International Journal of Adhesion and Adhesives,2009,29(1):56-66.
    [113]Choi K-K, Reda Taha MM, Masia MJ, et al. Numerical investigation of creep effects on FRP-strengthened RC beams[J]. Journal of Composites for Construction,2010,14(6):812-822.
    [114]Savoia M, Ferracuti B, Mazzotti C. Creep deformation of FRP-plated R/C tensile elements using solidification theory[C]. Proceedings of the Euro-C Conference 2003:Computational Modelling of Concrete Structures, St. Johann im Pongau, Austria. Taylor & Francis,2003:501-511.
    [115]Savoia M, Ferracuti B, Mazzotti C. Creep deformation of fiber reinforced plastics-plated reinforced concrete tensile members[J]. Journal of Composites for Construction,2005,9(1):63-72.
    [116]Savoia M, Ferretti D, Mazzotti C. Creep behavior of RC tensile elements retrofitted by FRP plates[C]. Proceedings of the Third International Conference on Composites in Infrastructure, San Francisco, CA.2002:1-12.
    [117]Deskovic N, Meier U, Triantafillou TC. Innovative design of FRP combined with concrete: long-term behavior[J]. Journal of Structural Engineering,1995,121(7):1079-1089.
    [118]Man'AR, Oiler E, Bairan JM, et al. Simplified method for the calculation of long-term deflections in FRP-strengthened reinforced concrete beams[J]. Composites Part B:Engineering, 2013,45(1):1368-1376.
    [119]Naguib W. Long-term behavior of hybrid FRP-concrete beam-columns[D]. Cincinnat, Ohio: University of Cincinnati,2001.
    [120]Naguib W, Mirmiran A. Time-dependent behavior of concrete-filled FRP tubes under sustained loading[C]. Proceedings of the 2001 Structures Congress and Exposition,57(5), Washington, D.C. ASCE,2001:1-2.
    [121]Naguib W, Mirmiran A. Time-dependent behavior of fiber-reinforced polymer-confined concrete columns under axial loads[J]. ACI Structural Journal,2002,99(2):142-148.
    [122]Naguib W, Mirmiran A. Creep analysis of axially loaded fiber reinforced polymer-confined concrete columns[J]. Journal of Engineering Mechanics,2003,129(11):1308-1319.
    [123]于清,韩林海,张铮.长期荷载作用对FRP约束混凝土轴心受压构件力学性能的影响[J].中国公路学报,2003,16(3):58-63.
    [124]陶忠,于清.FRP约束混凝土柱徐变特性的理论分析[J].工业建筑,2001,31(4):12-16.
    [125]Al Chami G. Creep behaviour of CFRP strengthened concrete columns and beams[D]. Sherbrooke, Quebec, Canada:Universite of Sherbrooke,2006.
    [126]Sri Ravindrarajah R, Kaul R, Smith ST. Creep of FRP strengthened concrete columns under constant and incremental sustained loading[C]. Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), CD-ROM,6(29), July 16-18,2007. Patras:University of Patras,2007.
    [127]Kaul R, Sri Ravindrarajah R, Smith ST. Deformational behaviour of FRP confined concrete under sustained compression[C]. Proceedings of Third International Conference on FRP composites in Civil Engineering (CICE 2006), Miami, FL, December 13-152006. International Institute for FRP in Construction (IIFC),2006.
    [128]Berthet JF, Ferrier E, Hamelin P, et al. Modelling of the creep behavior of FRP-confined short concrete columns under compressive loading[J]. Materials and Structures,2006,39(1):53-62.
    [129]Wang YF, Ma YS, Zhou L Creep of FRP-wrapped concrete columns with or without fly ash under axial load[J]. Construction and Building Materials,2011,25(2):697-704.
    [130]Ma YS, Wang YF. Creep of AFRP Confined High-Strength Concrete Columns under Low-Level Stress[J]. Advances in Structural Engineering,2012,15(2):205-216.
    [131]Trapko X Kamihski M, Musiat M. Investigations on rheological strains of compressed concrete elements strengthened with external composite reinforcement CFRP[J]. Composites Part B: Engineering,2012,43(3):1417-1424.
    [132]Kaminski M, Trapko T, Musiat M. Rheological strains of the compressed concrete elements strengthened by CFRP materials[C]. Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), CD-ROM,6(28), July 16-18,2007. Patras:University of Patras,2007.
    [133]Coutinho AS. A contribution to the mechanism of concrete creep[J]. Materials and Structures,1977,10(1):3-16.
    [134]Tamtsia Tamboue B. The role of C-S-H microstructure and calcium hydroxide on creep and shrinkage of hardened portland cement paste[D]. Ottawa:University of Ottawa,2001.
    [135]Bisschop J. Does applied stress affect Portland cement hydration?[C]. Proceedings of 13th International Congress on the Chemistry of Cement, CD-ROM, Madrid, July 3-8,2011. CSIC,2011: 322.
    [136]Hughes BP, Ash JE. Some factors influencing the long term strength of concrete[J]. Materiaux et Construction,1970,3(2):81-84.
    [137]Shah SP, Chandra S. Fracture of concrete subjected to cyclic and sustained loading[J]. ACI Journal,1970,67(10):816-827.
    [138]Chaimoon K, Attard MM, Tin-Loi F. Crack propagation due to time-dependent creep in quasi-brittle materials under sustained loading[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(21-24):1938-1952.
    [139]Wittmann FH. Influence of time on crack formation and failure of concrete. Chap. VII in "Application of Fracture Mechanics to Cementitious Composites"[M], NATO ASI Series, Vol.94, Shah SP (ed.), Springer Netherlands,1985:593-615.
    [140]Smadi MM. Time-dependent behavior of high-strength concrete under high sustained compressivestresses[D]. Ithaca, NY:Cornell University,1983.
    [141]Gan D. Tensile and fracture properties of type 316 stainless steel after creep[J]. Metallurgical Transactions A,1982,13(12):2155-2163.
    [142]Morscher GN, Pujar W. Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society, 2006,89(5):1652-1658
    [143]Washa GW, Fluck PG. Effect of Sustained Loading on Compressive Strength and Modulus of Elasticity of Concrete[J]. ACI Journal,1950,46(5):693-700.
    [144]Washa GW, Saemann JC, Cramer SM.50 Year Properties of Concrete Made in 1937[J]. ACI Materials Journal,1989,86(4):367-371.
    [145]Freudenthal AM, Roll F. Creep and creep recovery of concrete under high compressive stress[J]. ACI Journal,1958,54(6):1111-1142.
    [146]Rodrigues FP. Contribution for knowing the influence of a plasticizing agent on the creep and shrinkage of concrete [J]. Rilem Bulletin,1960,No.6:39-46.
    [147]Stockl S. Strength of concrete under uniaxial sustained loading[J]. ACI Special Publication, 1972,34:313-326.
    [148]Wittmann FH, Zaitsev YB. Behavior of hardened cement paste and concrete under high sustained load[C]. Proceedings of the International Conference on Mechanical Behavior of Materials, 4, Kyoto, Japan,15-20 August,1971. The Society of Materials Science,1972:84-95.
    [149]Chindaprasirt P. Influence of load history on the properties of concrete[D]. Australia: University of New South Wales,1981.
    [150]Cook DJ, Chindaprasirt P. Influence of loading history upon the compressive properties of concrete[J]. Magazine of Concrete Research,1980,32(111):89-100.
    [151]Ozbolt J, Reinhardt H-W. Sustained loading strength of concrete modeled by creep-cracking interaction[J]. Otto-Graf-Journal,2001,12:9-19.
    [152]彭凯,黄志堂,肖盛燮,等.持续荷载下混凝土抗压强度的时效模型[J].重庆建筑大学学报, 2004,26(4):29-34.
    [153]Choo CC, Gesund H, Harik IE. Influence of long-term loads on concrete column strength[J]. Practice Periodical on Structural Design and Construction,2003,8(1):57-60.
    [154]谭素杰,齐加连.长期荷载对钢管混凝土受压构件强度影响的实验研究[J].哈尔滨建筑工程学院学报,1987(2):10-24.
    [155]钟善桐.长期荷载对钢管混凝土受压构件临界力的影响[J].哈尔滨建筑工程学院学报,1987(4):1-8.
    [156]于清,韩林海,张铮.长期荷载作用对FRP约束混凝土轴心受压构件力学性能的影响[J].中国公路学报,2003,16(3):59-64.
    [157]张铮.长期荷载作用对FRP约束混凝土柱力学性能的影响[D].福州大学,2002.
    [158]曹国辉,方志,饶欣频,等.CFRP片材约束混凝土短柱徐变性能及极限承载力试验[J].中国铁道科学,2007,28(2):55-60.
    [159]Han LH, Tao Z, Liu W. Effects of sustained load on concrete-filled hollow structural steel columns[J]. Journal of Structural Engineering,2004,130(9):1392-1404.
    [160]Wang YF, Zhang DJ. Creep-effect on mechanical behavior of concrete confined by FRP under axial compression[J]. Journal of Engineering Mechanics,2009,135(11):1315-1322.
    [161]Zhang DJ, Wang YF, Ma YS. Compressive behaviour of FRP-confined square concrete columns after creep[J]. Engineering Structures,2010,32(8):1957-1963.
    [162]Maalej M, Tanwongsval S, Paramasivam P. Modelling of rectangular RC columns strengthened with FRP[J]. Cement and Concrete Composites,2003,25(2):263-276.
    [163]Chen WF, Saleeb AF. Constitutive equations for engineering materials, Volumn 2: Plasticity and modeling[M]. Elsevier,1994.
    [164]Ahmad SH, Shah SP. Complete triaxial stress-strain curves for concrete[J]. Journal of the Structural Division,1982,108(4):728-742.
    [165]Candappa DC, Sanjayan JG, Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J]. Journal of Materials in Civil Engineering,2001,13(3):209-215.
    [166]Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined compressive stresses[R]. University of Illinois Bulletin,26(12), Bulletin No.185. Urbana, IL: University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, 1928.
    [167]Sfer D, Carol I, Gettu R, et al. Study of the behavior of concrete under triaxial compression[J]. Journal of Engineering Mechanics-Asce,2002,128(2):156-163.
    [168]Chen WF, Lan YM. Finite element study of confined concrete[C]. Proceedings of International Symposium on Confined Concrete,238, Changsha, China, June,2004. ACI,2006: 223-233.
    [169]Fam AZ, Rizkalla SH. Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(3):280-289.
    [170]Fardis MN, Khalili H. Concrete encased in fiberglass-reinforced plastic[J]. ACI Journal, 1981,78(6):440-446.
    [171]Lam L, Teng JG. A New stress-strain model for FRP-confined concrete[C]. Proceedings of the International Conference on FRP Composite in Civil Engineering, Hong Kong, China.2001: 283-292.
    [172]Li GQ. Experimental study of FRP confined concrete cylinders[J]. Engineering Structures, 2006,28(7):1001-1008.
    [173]Pessiki S, Harries KA, Kestner JT, et al. Axial behavior of reinforced concrete columns confined with FRP jackets[J]. Journal of Composites for Construction,2001,5(4):237-245.
    [174]Teng JG, Jiang T, Lam L, et al. Refinement of Lam and Teng's design-oriented stress strain model for FRP-confined concrete[C]. Proceedings of Third International Conference on Advanced Composites in Construction (ACIC 2007),2-4 April. Bath(UK):University of Bath,2007.
    [175]Teng JG, Lam L. Behavior and modeling of fiber reinforced polymer-confined concrete[J]. Journal of Structural Engineering-Asce,2004,130(11):1713-1723.
    [176]Teng JG, Yu T, Wong YL, et al. Hybrid FRP-concrete-steel tubular columns:Concept and behavior[J]. Construction and Building Materials,2007,21(4):846-854.
    [177]Wong YL, Yu T, Teng JG, et al. Behavior of FRP-confined concrete in annular section columns[J]. Composites Part B-Engineering,2008,39(3):451-466.
    [178]Popovics S. A numerical approach to the complete stress-strain curve of concrete[J]. Cement and Concrete Research,1973,3:583-599.
    [179]Mander JB. Seismic design of bridge piers[D]. Christchurch, New Zealand:University of Canterbury,1983.
    [180]Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering-Asce,1988,114(8):1804-1826.
    [181]Harries KA, Kharel G. Behavior and modeling of concrete subject to variable confining pressure[J]. ACI Materials Journal,2002,99(2):180-189.
    [182]Marques SPC, Marques DCSC, da Silva JL, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction,2004,8(4): 322-340.
    [183]Mirmiran A, Shahawy M. Behavior of concrete columns confined by fiber compositesp]. Journal of Structural Engineering,1997,123(5):583-590.
    [184]方俊华.FRP补强RC梁的有限元分析[D].台湾国立中央大学,1999.
    [185]Mahfouz I, Sarkani S, Rizk T. An innovative FRP confining system for repairing rectangular columns[C]. Proceedings of Construction Institute Sessions at ASCE Civil Engineering Conference 2001, Houston, Texas, USA. ASCE,2001:16-25.
    [186]Karabinis A1, Kiousis PD. Effects of confinement on concrete columns:plasticity approach[J]. Journal of Structural Engineering-Asce,1994,120(9):2747-2767.
    [187]Karabinis A1, Kiousis PD. Strength and ductility of rectangular concrete columns:A plasticity approach[J]. Journal of Structural Engineering-Asce,1996,122(3):267-274.
    [188]Karabinis Al, Rousakis TC. Concrete confined by FRP material:a plasticity approach[J]. Engineering Structures,2002,24(7):923-932.
    [189]Rousakis TC, Karabinis A1, Kiousis PD. FRP-confined concrete members:Axial compression experiments and plasticity modelling[J]. Engineering Structures,2007,29(7):1343-1353.
    [190]Karabinis A1, Rousakis TC, Manolitsi GE.3D finite-element analysis of substandard RC columns strengthened by fiber-reinforced polymer sheets[J]. Journal of Composites for Construction, 2008,12(5):531-540.
    [191]Rousakis TC, Karabinis A1. Substandard reinforced concrete members subjected to compression:FRP confining effects[J]. Materials and Structures,2008,41(9):1595-1611.
    [192]Rousakis TC, Karabinis A1, Kiousis PD, et al. Analytical modelling of plastic behaviour of uniformly FRP confined concrete members[J]. Composites Part B-Engineering,2008,39(7-8): 1104-1113.
    [193]Oh B. A plasticity model for confined concrete under uniaxial loading[D]. Lehigh University,2003.
    [194]Mirmiran A, Zagers K, Yuan WQ. Nonlinear finite element modeling of concrete confined by fiber composites[J]. Finite Elements in Analysis and Design,2000,35(1):79-96.
    [195]Shahawy M, Mirmiran A, Beitelman T. Tests and modeling of carbon-wrapped concrete columns[J]. Composites Part B-Engineering,2000,31(6-7):471-480.
    [196]Eid R, Paultre P. Plasticity-based model for circular concrete columns confined with fibre-composite sheets[J]. Engineering Structures,2007,29(12):3301-3311.
    [197]Hu HT, Schnobrich WC. Constitutive modeling of concrete by using nonassociated plasticity[J]. Journal of Materials in Civil Engineering,1989,1(4):199-216.
    [198]Lan YM. Finite element study of concrete columns with fiber composite jackets[D]. Purdue University,1998.
    [199]Malvar LJ, Morrill KB, Crawford JE. Numerical modeling of concrete confined by fiber-reinforced composites[J]. Journal of Composites for Construction,2004,8(4):315-322.
    [200]Papanikolaou VK, Kappos A1. Confinement-sensitive plasticity constitutive model for concrete in triaxial compression[J]. International Journal of Solids and Structures,2007,44(21): 7021-7048.
    [201]Parvin A, Jamwal AS. Performance of externally FRP reinforced columns for changes in angle and thickness of the wrap and concrete strength[J]. Composite Structures,2006,73(4): 451-457.
    [202]Tsionis G, Pinto A. Numerical analysis of RC bridge piers with rectangular hollow cross-section retrofitted with FRP jackets[J]. Journal of Earthquake Engineering,2007,11(4): 607-630.
    [203]Cervenka J, Papanikolaou VK. Three dimensional combined fracture-plastic material model for concrete[J]. International Journal of Plasticity,2008,24(12):2192-2220.
    [204]Luccioni BM, Rougier VC. A plastic damage approach for confined concrete[J]. Computers and Structures,2005,83(27):2238-2256.
    [205]Yan Z. Shape modification of rectangular columns confined with FRP composites[D]. Salt Lake City, Utah:University of Utah,2005.
    [206]Yan Z, Pantelides CP. Fiber-reinforced polymer jacketed and shape-modified compression members:II-Model[J]. ACI Structural Journal,2006,103(6):894-903.
    [207]Yu T, Teng JG, Wong YL, et al. Finite element modeling of confined concrete-11: Plastic-damage model[J]. Engineering Structures,2010,32(3):680-691.
    [208]黄羽立.FRP约束混凝土的分析与本构模型[D].清华大学,2005.
    [209]Chen WF. Plasticity in reinforced concrete[M]. McGraw-Hill, Inc. New York,1982.
    [210]Drucker DC, Prager W, Greenberg NJ. Extended limit design theorems for continuous media[J]. Quarterly Journal of Applied Mathematics,1952,9:381-389.
    [211]Li JY, Yao Y. A study on creep and drying shrinkage of high performance concrete[J]. Cement and Concrete Research,2001,31(8):1203-1206.
    [212]Mazloom M, Ramezanianpour A, Brooks J. Effect of silica fume on mechanical properties of high-strength concrete[J]. Cement and Concrete Composites,2004,26(4):347-357.
    [213]Persson B. Experimental studies on shrinkage of high-performance concrete[J]. Cement and concrete research,1998,28(7):1023-1036.
    [214]Bazant ZP, Prasannan S. Solidification theory for concrete creep Ⅰ. Formulation[J]. Journal of Engineering Mechanics,1989,115(8):1691-1703.
    [215]Bazant ZP, Prasannan S. Solidification theory for concrete creep Ⅱ. Verification and application[J]. Journal of Engineering Mechanics,1989,115(8):1704-1725.
    [216]Bazant ZP, Kim JK. Improved prediction model for time-dependent deformations of concrete:Part 2—Basic creep[J]. Materials and Structures,1991,24(6):409-421.
    [217]Bazant ZP, Osman E. Double power law for basic creep of concrete[J]. Materials and Structures,1976,9(1):3-11.
    [218]Bazant ZP, Cusatis G, Cedolin L. Temperature effect on concrete creep modeled by microprestress-solidification theory[J]. Journal of Engineering Mechanics,2004,130(6):691-699.
    [219]Bazant ZP, Panula L. Practical prediction of time-dependent deformations of concrete[J]. Materials and Structures,1978,11(5):317-328.
    [220]Gopalakrishnan KS, Neville AM, Ghali A. Creep Poisson's ratio of concrete under multiaxial compression[J]. ACI Journal,1969,66(12):1008-1019.
    [221]Hannant DJ. Creep and creep recovery of concrete subjected to multiaxial compressive stress[J]. ACI Journal,1969,66(5):391-394.
    [222]Duke CM, Davis HE. Some properties of concrete under sustained combined stresses[C]. Proceedings of the Annual Meeting-American Society for Testing Materials,44. West Conshohocken, PA:ASTM International,1944:888-896.
    [223]Chuang JW, Kennedy TW, Perry ES, et al. Prediction of multiaxial creep from uniaxial creep tests[J]. ACI Special Publication,1972,34:701-734.
    [224]Mazloom M. Estimating long-term creep and shrinkage of high-strength concrete[J]. Cement and Concrete Composites,2008,30(4):316-326.
    [225]Saadatmanesh H, Ehsani MR, Li MW. Strength and ductility of concrete columns externally reinforced with fiber composite straps[J]. ACI Structural Journal,1994,91(4):434-447.
    [226]Sheikh SA, Uzumeri SM. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division,1982,108(12):2703-2722.
    [227]Eid R, Dancygier AN. Confinement effectiveness in circular concrete columns[J]. Engineering structures,2006,28(13):1885-1896.
    [228]Campione G, Miraglia N. Strength and strain capacities of concrete compression members reinforced with FRP[J]. Cement and concrete composites,2003,25(1):31-41.
    [229]Chaallal O, Shahawy M, Hassan M. Performance of axially loaded short rectangular columns strengthened with carbon fiber-reinforced polymer wrapping[J]. Journal of composites for construction,2003,7(3):200-208.
    [230]Persson B. Quasi-instantaneous and long-term deformations of high performance concrete with sealed curing[J]. Advanced Cement Based Materials,1998,8(1):1-16.
    [231]Chen WF, Han DJ. Plasticity for structural engineers[M]. New York:Springer-Verlag,1988.
    [232]Blezacker RW. The concepts of rheology applied to portland-cement concrete[C]. Proceedings of ASTM,62.1962:996-1006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700