用户名: 密码: 验证码:
大厚度湿陷性黄土湿陷变形机理、地基处理及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以国家电网重大科技攻关项目为依托,通过大型现场浸水试验、地基处理试验、理论研究和多个工程地基处理的实例分析,对大厚度自重湿陷性黄土地基的湿陷变形规律、湿陷变形计算方法、地基处理方法、复合地基弹性塑性理论、石灰桩复合地基热固结及温度场-渗流场-应力场耦合分析、孔内深层强夯动力固结等问题进行了深入系统的研究。主要工作和创新成果如下:
     (1)对大厚度自重湿陷性黄土浸水试验的变形过程进行了理论分析,论述了黄土的成因、土层和分布,黄土湿陷的影响因素,研究了湿陷性黄土湿陷变形机理及计算方法,选取合理、简单、实用的本构模型,通过二次开发,用有限元软件ADINA计算了黄土湿陷变形,最后采用统计回归、试验和数值计算结果给出了一个简单实用的湿陷变形计算公式,结合现场试验验证了本文方法的正确性,这种计算方法给黄土的湿陷变形及评价提供了理论基础,是一种新的途径。
     (2)在兰州市和平镇湿陷性土层厚度达36m的场地,进行了大规模浸水试验,在确定试坑直径、深度和水头高度的基础上进行现场大面积浸水试验,并分别在坑内和坑外竖向埋设水分计和张力计,在坑内设置分层变形沉降观测点,地表设置地表沉降观测点,进一步分析场地在饱和、非饱和、非达西渗流浸水条件下的自重湿陷特征,研究湿陷量的区域分布规律。揭示出大厚度自重湿陷性黄土的湿陷变形具有与中小厚度(小于15m)自重湿陷性黄土的湿陷变形不同的3个显著特征:①湿陷量随浸水历时的发展过程包含5个阶段,即初期平缓段、浸水陡降段、中期平缓段、停水后的陡降段和后期平缓段;②湿陷速率在浸水期间呈显“小→大→小→稳定”的变化规律,在停水后则呈显“大→小→稳定”的变化规律;③湿陷量、试坑周边裂缝的宽度和裂缝两侧地面的高差远远大于既往同类研究记录;④大厚度黄土场地的不同深度土层均会出现多次湿陷,湿陷次数随着土层深度的增加将减少;⑤体积含水率在不同深度土层中呈现不同的变化规律;25m以上范围内水分入渗较为容易,该深度以下土层,由于上部土体发生湿陷压密以及空隙中的气体压力增大导致了水分入渗缓慢。
     (3)根据圆孔扩张理论,建立了石灰桩复合地基膨胀弹塑性计算模型,并进行了解析求解,获得了石灰桩挤密有效半径和桩壁膨胀压力增量的计算公式;建立了石灰桩复合地基热固结分析模型,利用Fourier变换、Laplace变换及其逆变换,给出了非等温条件下石灰挤密桩圆柱形热源周围饱和土体热固结问题的一个近似的解析求解方法;建立了石灰桩复合地基温度场-渗流场-应力场耦合控制方程,并用有限元法进行了数值求解,基于Prandtl-Reuss准则,进行了复合地基蠕变模拟;建立了孔内深层强夯动力简化计算模型,并进行了分析,获得了强夯夯锤质量与距离的函数关系,及强夯深度和桩周土体有效密度的关系;最后,采用地基处理技术对一实例设计及分析,通过理论分析与实测对比发现二者结果很接近,处理效果都达到了规范要求,而综合比较发现DDC优于石灰桩处理技术,结果说明这两种地基处理技术对大厚度湿陷性黄土是适用可靠的。
     (4)设计了灰土挤密桩和DDC两种地基处理技术的现场试验,并进行了现场实测及分析,获得了一些为工程设计提供主要参考的有益结论:①经DDC桩处理后的区域,水分很难从承台周边渗入。3个处理区域承台没有发生较大沉降,冻胀作用引起的地表膨胀甚至大于由于承台下降和土体湿陷引起地表沉降;②3个不同DDC桩长处理后的地基都能抵抗20t/m2的荷载,选用DDC桩长15m可以有效节约成本,降低工程造价;③桩间距1.0m-1.4m无论从挤密系数和湿陷系数都能满足规范要求。如果选用较大的桩间距,这可以有效降低工程地基处理费用30%左右:④在大厚度自重湿陷性黄土场地上,针对涉及面广的乙、丙类建筑,地基处理要求过严,将增加建设投资;灰土和素土在处理大厚度自重湿陷性黄土地基时,两者在承载力方面表现差异不大,可在以后工程建设中直接采用素土桩,可以降低工程造价;⑤在深层注水情况下,承台、深层以及地表沉降基本呈现三段式发展规律,先期稳定,中期缓降,后期突降;⑥桩长6m、10m和12m在深层注水情况下以及20t/m2荷载作用下,承台和场地周边发生沉降较大,而15m区域则沉降稍小,但其剩余湿陷量也未能满足要求。地基处理深度达到20m-25m时,剩余湿陷量能够满足要求,同时佐证了前文关于20m-25m深度难于发生湿陷的结论。
Supported by the key scientific and technical tackling researches of the State Grid and by ways of cases studies in fields of site submerging test, pile test, theoretical research and a lot of engineering foundation treatments, profound and systematic researches were carried out on problems including the soaking deformation rules and computing methods, foundation treatment methods of large-thickness self-weight collapsible loess foundation, the elasticity and plasticity theories of composite foundation, analysis on the thermal consolidation and temperature field-seepage field-stress field coupling of lime pile composite foundation and the dynamic consolidation of down-hole dynamic compactions. Main works and innovative results are as follows:
     (1)Theoretical analysis on the deformation process of the large-thickness self-weight collapsible loess submerging tests and discussed the causes, soil layers and distribution of the loess as well as the factors influencing the loess collapsibility were carried out. The mechanism and computing methods of the collapsible loess soaking deformation and selected rational, easy and practical constitutive model were studied. The loess collapsibility was calculated via the finite element method (FEM) software ADINA through the secondary development. Finally a simple and practical collapsibility calculating formula was given by using the statistical regression, test and the valued numerical calculated results and the method discussed in the paper was proven by taking reference from the on-site test. The method is a new approach and provides theoretical basis for the loess soaking deformation.
     (2) Large-scale submerging tests were carried out on the site with36m thickness of collapsible soil layer in Heping Town of Lanzhou City and large-area submerging test was carried out on the condition that the diameter, depth and water-head height of the test pits have been confirmed. The moisture meter and tensiometer were buried at the vertical directions outside and inside the pits respectively. Layering deformation and settlement observation points were set inside the pit and the surface settlement points were set on the earth surface to further analyze the self-weight collapsibility features and study on the regional distribution rules of the collapsibility amount of the site when the site been immersed in saturated, unsaturated and non-Darcy flows. It proves that the soaking deformation of large-thickness self-weight collapsible loess has three features which are significantly different with the collapsibility of moderate-and-small-gauge (less than15m) self-weight collapsible loess, including①The soaking settlement amount goes through five stages along with the progress of the submerging duration, including the gentle stage at the beginning, the submerging drop-off stage, the gentle stage at the medium term, the drop-off stage after the water flow stops and the gentle stage at the later stage;②The collapsibility rate changes following the rule of "gentle-rapid-gentle-stable" during the submerging duration and then "rapid-gentle-stable" rule after the water flow stops;③The collapsibility amount, the crack width around the test pits and the height difference of cracks are greatly higher than all those in the previous similar research records;④Large-thickness loess soil layer at different depth will all go through several times of collapsibility and this quantity will decrease along with the increase of soil layer thickness;⑤Volatile water consents of soil layer of different depth changes in different rules; moisture infiltration within a depth limit of25m is easy and will slow down outside this limit due to the collapsibility of the upper soil mass and the increased gas pressure in the gap.
     (3) A computation model was founded for the expansion, elasticity and plasticity of the lime pile composite foundation according to the cavity expansion theory and that model was analyzed and solved and thus computation formulas of the compaction effective radius of the lime pile and the expansion and pressure increment of pile lining were obtained; the analyzing model for the thermal consolidation of lime pile composite foundation was established and an approximate analyzing and solving method was given for the thermal consolidation of the saturated soil mass around the cylindrical heat source of the lime compaction piles; a governing equation for the temperature field-seepage field-stress field coupling of the lime pile composite foundation was established and was numerically solved by way of finite elements; the creep simulation of the composite foundation was carried out based on the Prandtl-Reuss code; the simplified dynamic computation model of down-hole dynamic compaction was founded and analyzed and the functional relationship between the mass and distance of the dynamic compaction pounder as well as the relationship between the dynamic compaction depth and the soil body around the pile were obtained; finally, design and analyze one case by using the foundation treatment technology and finally it proved that the theoretical analysis and the actual measurements were rather similar. It shows that the treatment results have met related regulations. Comprehensive comparison shows that DDC is better than the lime pile treatment technology and thus it is proved that these two foundation treatment skills are applicable and reliable for the large-thickness collapsible loess.
     (4) Field tests were designed for the lime-soil compaction pile and DDC foundation treatment skills and field measuring and analysis were carried out and some conclusions which may provide major reference for the engineering design were obtained:①For areas treated with DDC piles, the moisture can hardly seep in from the periphery of pile caps. No great settlement appeared in the pile caps at the three treatment areas and the surface settlement resulted by expansion was even greater than that caused by the pile caps settlement and the soil mass collapsibility;②All the three different pile-length treated foundations can resist the load of20t/m2; using the DDC pile with length of15m can effectively reduce the engineering cost;③Pile distance between1.0m to1.4m can meet related regulation requirements both from the compaction coeffecient and the collapsibility coefficient. Choosing bigger pile distance may reduce the foundation treatment cost by approximately30%;④Construction investment on buildings on the large-thickness self-weight collapsible loess field may go rising since the foundation treatment for Grade Ⅱ and Ⅲ buildings covering large area is too strict; Lime-soil and pure soil may differ slightly in regard of load capacity when treating the large-thickness self-weight collapsible loess site and thus the pure soil pile shall be preferred directly in the future engineering construction in order to cut down the engineering price;⑤When inject water into the deep layer, all the pile cap, deep layer and the surface settlements will also develop in a three-stage development rules:stable at the initial stage. Slow down in the middle stage and drop off in the later stage;⑥When the pile is6m,10m and12m in length and inject water into the deep layer and the load is20t/m2, great settlements appear around the pile caps and the site surroundings. In the contrast, the settlement at the15m area is slightly gentle but the residual collapse amount here failed the requirements. When the foundation treatment depth reached20m-25m, the residual collapse amount may meet requirements. It agrees with the foresaid conclusion that the collapsibility can hardly appear at the20m-25m depth area.
引文
[1]刘祖典,黄土力学与工程[M],西,陕西科学技术出版社,1997.
    [2]高国瑞,黄土显微结构分类与湿陷性[J],中国科学,1 980,15(12):1203-1208.
    [3]雷详义,中国黄土的孔隙类型与湿陷性[J],中国科学(B辑),1987,15(12):1309-1316.
    [4]GB50025-2004,湿陷性黄土地区建筑规范[S],中华人民共和国国家标准,北京,中国建筑工业出版社,2004.
    [5]谢定义,黄土力学特性与应用研究的过去、现在与未来.地下空间[J],1999,19(4),274-283.
    [6]刘东生等,黄土的物质成分与结构[M],科学出版社,1985.
    [7]王永焱,林在贯,黄土的结构与物理力学性质[M],科学出版社,1990.
    [8]林崇义.黄土的结构特性、黄土基本性质研究[M].科学出版社,1961.
    [9]高国瑞.中国黄土微结构[J].科学通报,1980,15(2):26-33.
    [10]陈正汉,许镇鸿,刘祖典.关于黄土湿陷的若干问题[J].土木工程学报,1986,19(3):86-94.
    [11]雷祥义.黄土显微结构类型与物理力学性质指标之间的关系[J].地质学报,1989,19(2):66-73.
    [12]米海珍,周凤玺,杨文侠.黄土湿陷系数的偏最小二乘回归分析与模型[J].兰州理工大学学报,2004(2),31-35.
    [13]刘忠玉.湿陷性黄土的变形机理与本构理论:[硕士学位论文].兰州:兰州大学,1993.
    [14]任九生.湿陷性黄土的力学特性与实验研究:[硕士学位论文].兰州:兰州大学,1995.
    [15]湿陷性黄土地区建筑规范(GB50025-2004).北京:中国建筑工业出版社,2004.
    [16]白凤龙,商日媛.兰州西津村黄土及其地球化学环境[C]//全国黄土学术会议论文集.乌鲁木齐:新疆科技卫生出版社,1994:96-102.
    [17]甘肃省有色冶金公司建筑研究所.预浸水处理湿陷性黄土地基的试验及应用[J].建筑技术通讯,1973,(1):48-58.
    [18]中华人民共和国行业标准.《岩土工程勘察规范》 (GB50021-2001)北京:中国建筑工业出版社,2001.
    [19]林宗元,岩土工程勘察设计手册[M].北京:中国建筑工业出版社,1996.
    [20]苗天德,王正贵.考虑微结构失稳的湿陷性黄土变形机理.中国科学(B辑),1990,20(1):86-96.
    [21]西北电力设计院.浦城电厂大面积试坑浸水试验报告[R].西安:西北电力设计院,1991.
    [22]Bray.Jjnathan.D.& Repetto.P.C, Seismic design consideration for lined solid waste lanfills[J]. Geotextiles and Geomembranes,1994.13(8): 497-451.
    [23]中华人民共和国国家标准,建筑地基处理技术规范(JGJ79-2012)[S].北京:中国建筑工业出版社,2012
    [24]张宗祜,张之一,王芸生著,中国黄土[M],地质出版社,1989.
    [25]谢定义,试论我国黄土力学研究中的若干新趋向[J],岩土工程报,2001,24(1):3-13.
    [26]阎明礼主编.地基处理技术[M].北京:中国环境科学出版社,1996.
    [27]Terzaghi K. Soil Moisture and Capillary Phenomena in Soils[M]. Physics of the Earth, McGrawHill,1942,15(3):186-187.
    [28]Dudley J.H. Review of Collapsing Soils[J]. J. Soil Mech. And Found. Div. ASCE, (96)SM3,1970:935-939.
    [30]Rao S M, Revanasiddappa K. Role of matric suction in collapse of compacted clays soil[J]. J. Geotech. Geoenvir. Eng,2000,126(1):85-90.
    [31]Lawton E C, Fragaszy R J, Hardcastle J H. Collapse of compacted clayey sand[J]. J. Geotech Eng,1989,115(9):1252-1267.
    [32]黄雪峰,陈正汉,哈双等.大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J].岩土工程学报,2006,28(3):382-389.
    [33]陈开圣,沙爱民.压实黄土湿陷变形影响因素分析[J].中外公路,2009,29(3): 24-27.
    [34]安俊鹏,袁慧黄.黄土湿陷性的微观试验研究[J].太原城市职业技术学院学报,2010,(7):165-166.
    [35]王常明,林容,陈多才等.辽西黄土湿陷变形特性及湿陷后微观结构变化[J].吉林大学学报(地球科学版),2011,41(2):471-477.
    [36]张广平,朱殿之,陈冰等.大厚度自重湿陷性黄土湿陷变形规律研究[J]. 建筑科学,2011,27(7):32-37.
    [37]郭庚寅,单维杰.素土(灰土)桩挤密处理湿陷性黄土地基的试验及应用[J].施工技术,1991,(2):12-14.
    [38]朱慕仁.黄土地区灰土挤密桩复合地基发计中的问题[J].西北建筑工程学院学报,1994,2(2):11-15.
    [39]刘三仓,韩思珍.灰土挤密桩地基的桩土应力比及承载力的探讨[J].岩土工程学报,1996,18(1):16-18.
    [40]黄雪峰,陈正汉,方祥位.关于大厚度自重湿陷性黄土地基处理的若干问题探讨[J].后勤工程学院学报,2007,23(4):39-44.
    [41]于清高,邵生俊,陶虎.湿陷性黄土地基综合处理新技术的现场试验与效果分析[J].岩土力学,2008,29:593-597.
    [42]邓德义.灰土挤密桩在湿陷性黄土地基处理中的应用[J].铁道建筑,2011, (1 0): 78-80.
    [43]胡燕妮,米海珍.兰州高坪湿陷性黄土地基处理方法分析[J].西北地震学报,2011,33:312-315.
    [44]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [45]湿陷性黄土地区建筑规范(BGJ20—66)[S].北京:中国计划出版社,1966.
    [46]湿陷性黄土地区建筑规范(TJ24-78)[S].北京:中国计划出版社,1978.
    [47]湿陷性黄土地区建筑规范(GBJ25-90)[S].北京:中国计划出版社,1990.
    [48]湿陷性黄土地区建筑规范(GB50025—2004)[S].北京:中国建筑工业出版社,2004.
    [49]陈正汉等,非饱和土与特殊土的测试技术及其新进展[J].岩土工程学报.2006.2.Vo1.28.(2).147-169.
    [50]张苏民,郑建国.湿陷性黄土(Q3)的增湿变形特征[J].岩土工程学报,1990,12(4):21-31.
    [51]张苏民,张炜.减湿和增湿时黄土的湿陷性[J].岩土工程学报,1992,14(1):57-61.
    [52]曾国红,裘以惠.含水量增加时湿陷性黄土变形特性研究[J].西部探矿工程,1996,8(增):4—6.
    [53]李大展,何颐华,隋国秀.Q2黄土大面积浸水试验研究[J].岩土工程学报,1993,15(2):1-11.
    [54]刘厚健.论关中原区Q2黄土建筑工程性能[J].西北地质,1994,15(3):47-53.
    [55]郭增玉,张朝鹏,夏旺民.高湿度Q2黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000,19(6):780-784.
    [56]郭增玉,刘守慧,张朝鹏.高湿度Q2黄土的非线性流变本构模型及参数[J].地下空间,2001,21(2):94—101.
    [57]郭增玉,冯同新.高湿度Q2黄土的试验流变特性[J].地下水,2004,26(1):70—73.
    [58]汪国烈等,自重湿陷性黄土土桩挤密地基的试验研究[R].1979.5
    [59]汪国烈等,自重湿陷性黄土挤密地基的试验研究[R].1982.1 0.
    [60]徐至均,司炳文等.地基处理新技术—孔内深层强夯[M].北京:中国建筑工业出版社,2011.
    [61]甘肃省建筑科学研究院.宁夏扶贫扬黄灌溉工程11泵站预浸水法处理地基施工、沉降观测及效果检验报告[R].兰州:甘肃省建筑科学研究院,2002.
    [62]廖盛修.湿陷性黄土地基预浸水[J].有色冶金建筑,1983,(2):1-13.
    [63]李保雄,李永进.兰州马兰黄土的工程地质特性[J].甘肃科学学报,2003,15(3):25-28.
    [64]李保雄,牛永红,苗天德.兰州马兰黄土的水敏感性特征[J].岩土工程学报,2007,29(2):294-298.
    [65]高国瑞,中国黄土微结构[J],科学通报.1980,15(2):78-85.
    [66]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990,12(4):58-64..
    [67]蒲毅彬.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):49-54.
    [68]雷胜友,唐文栋.黄土在受力和湿陷过程中微结构变化的CT扫描分析[J].岩石力学与工程学报,2004,23(24):4166-4169.
    [69]蒋希雁,陆培毅.黄土湿陷机理和影响因素分析[J].河北建筑工程学院学报,2004,22(1):25-27.
    [70]顾成权,方云.黄土湿陷性的微观结构研究[J].西部探矿工程,2003,(89): 1-3.
    [71]樊怀仁,郭奋.关中地区黄土湿陷性影响因素分析[J].西安科技学院学报,2003,23(2):160-163.
    [72]沙爱民,陈开圣.压实黄土的湿陷性与微观结构的关系[J].长安大学学报(自然科学版),2006,26(4):1-4.
    [73]胡瑞林,官国琳,李向全,张礼中.黄土湿陷性的微结构效应[J].工程地质学报,1999,7(2):161-167.
    [74]高凌霞,赵天雁.黄土湿陷系数与物性指标间的定量关系[J].大连民 族学院学报,2004,6(5):63-65.
    [75]王延涛.常规物理力学性质指标在湿陷机理上的体现[J].铁道工程学报,2007(3):1-5.
    [76]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11(1):30-35.
    [77]邢义川.非饱和土的有效应力与变形-强度特性规律的研究[D][博士学位论文].西安:西安理工大学,2001.
    [78]Bishop, R..F, Hill, R. and Mott, N.F.Thetheroy of indentation and hardness tests.Porc. Soc,1945.
    [79]Gibson, R.E.. Disussion to "The bearing capacity of screw Piles. and screwcrete cylinders. " by Wilson, G, JoumaloftheInstitutionofCivilEngineers,34,1950
    [80]Gibson, R.E. and Andesron, W.F..In-Situ Measurement of soil ProPerties with the Perssuermeter.Civil Engineering and Public Works Review,56,1961.
    [81]Chadwick, P.. The quasi-static expansion of a spherical cavity in metals and ideal soils.Quarterly Journal of Mechanics and Applied Mathematics,1959.
    [82]Butterfield, R. and Banerjee, P. K.. Application of electro-osmosisto soils, part 2, Civil Engineering Research Report.No.31, Department of Civil engineering, Southampton Univ., U. K.,1968
    [83]Butterfieid, R. and Banerjee, P K.. The effects of pore water pressure on the ultimate bearing capacity of driven piles. Proc.2nd South East Asian Regional conf. On Soil Mech. And Foung. Engrg., Singapore, 1970.
    [84]Palmer, A. C., Undrained plane-strain expansion of a cylindrical cavity in clay:a simple interpretation of the pressuremeter test, Geotechnique, 1972,22(3).
    [85]Zhang Chunhan, O. A. Pekau, Jin Feng, et al. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures [J]. Soil Dynamics and Earthquake Engineering,1997,16(6): 385-394.
    [86]Palmer,A.C.UndrainedP lane-Strain Expansiono fa Cylindrical Cavityi n Clay a simple Interpretation of the Pressuremeter Test. Geotechnique, 1972.
    [87]Vesic,A.S..Expansion of Cavity in Infinite Soil Mass, jour. Soil Mech. Found Di v., A.S. C. E.,1972,98
    [88]Carter, J.P..Booker, J.R.& Yeung, S.K, Cavity Expansion in Cohesive Frictional Soils, Geotechnique,1986,36(3)
    [89]Randolph, M.F., Carter,J.P.&Wroth, C.P., Driven piles in clay the effects of installation and subsequent consolidation, Geotechnique, 1979,29(4)
    [90]Baligh M M. Strain path method. Journal of geotechnical engineering, ASCE.1985,111(9).
    [91]Poulos H G. Effect of pile driving on adjacent piles in clay. Canadian geotechnical journal,1994.
    [92]Casagrande,A.,The structure of clay and its importance in foundation engineering[J].J Boston Soc. Civ.Engin.,1932,19,168-208.
    [93]Lambe,T.W.,The structure of compacted clay [J]. Journal of the Soil Mechanics and Foundations Division.Proc.ASCE.1958, Vol.84, SM2, paper 1654,1-34
    [94]Yong,R.N.,and Warkentin,B.P.,Soil properties and behavior[M].Megill University.Montreal, Canada,1975.
    [95]Smart,P.,and Tovey,N.K.,Electron microscopy of soils and sediments techniques[M],1982,Oxford University Press.
    [96]王永炎,腾志宏.黄土与第四纪地质[M].西安:陕西人民出版社,1982.
    [97]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987,20(12):1309-1316.
    [98]胡瑞林,官国琳,李向全等.黄土压缩变形的微结构效应[J].水文地质工程地质,1998,20(3):30-35.
    [99]谭罗荣.某些膨胀土的基本性质研究[J].岩土工程学报,1987,9(5):73-85.
    [100]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报,1988,10(6):80-87.
    [101]李向全,胡瑞林,张莉.黏性土固结过程中的微结构效应研究[J].岩土工程技术,1999,21(3):52-56.
    [102]张炜,张苏民.我国黄土工程性质研究的发展[J].岩土工程学报,1995,17(6):80-88.
    [103]郑俊杰,刘志刚.石灰桩与深层搅拌桩联合加固杂填土[J].施工技术.1997(9):23-24.
    [104]王丽娟.沉桩过程中挤土效应的二维有限元分析[D].天津大学硕士学位论,2003.
    [105]王臻.灰土挤密桩桩间土挤密效果的理论分析与试验研究[D].硕士学位论文,2004
    [106]龚晓南.土工计算机分析M].中国建筑工业出版社,2000.
    [107]刘永红.地基处理科学出版社.北京.2005.
    [108]黄润秋,许强,陶连金,等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [109]张学言.岩土塑性力学.人民交通出版社.北京.1992
    [110]施建勇.沉桩挤土效应分析[J].河海大学学报.2003,4(1):32-39.
    [111]李广信.高等土力学.清华大学出版社.北京.2004.
    [112]徐芝纶.弹性力学.高等教育出版社.第3版.北京.2004.
    [113]李月健.陈云敏等,土体内空穴球形扩张问题的一般解及应用[J].土木工程学报.2002,26(6):44-51.
    [114]韩晓雷.灰土挤密桩成孔过程中桩周土体的应力分析[J].西安建筑科技大学学报.1999.第三期.
    [115]汪国烈.浅谈自重湿陷性黄土场地上高层建筑物和主要建(构)筑物的地基处理[A]。全国湿陷性黄土地区建设工程标准技术委员会上的发言[C].兰州:甘肃省建筑科学研究所,1998.
    [116]龚晓南.土塑性力学(第2版)[M].杭州大学出版社,1999.
    [117]建筑地基处理技术规范(JGJ79-2012)[S].北京:中国建筑工业出版社出版,2012.
    [118]土工试验方法标准(GB/T50123-1999)[M].中国计划出版社.北京.1999.
    [119]刘平.膨胀灌注桩承载机理研究[J].地基处理,2002(3)
    [120]Lemaiture J.A. Course on Damage Mechanics[J]. Berlin Spring-Verlag,1992,26(6):265-282.
    [121]王臻.灰土挤密桩桩间土挤密效果的理论分析与试验研究[D].西安建筑科技大学硕士论文.2004.
    [122]王启铜,龚晓南,曾国熙.考虑拉、压模量不同时静压桩的沉桩过程[J].浙江大学学报,1992,26(6):185-191.
    [123]郅彬.灰土强度影响因素研究及灰土挤密桩桩周土体应力有限元分析.西安建筑科技大学硕士论文.2002.
    [124]王明明,李柏生,吴多明等.小口径挤密桩在危房地基基础加固中的应用[[J].建筑技术开发.2004,31(10):65-71.
    [125]谭利华,张超.钻孔夯扩挤密桩复合地基处理技术[J].建筑技术,2003,34(3).
    [126]石坚,湿陷性黄土地基挤密效果的试验研究[J].西北水资源与水工2000,11(1):28~30.
    [127]龚晓南.地基处理新技术[M],西安:陕西科学技术出版社,1997.
    [128]谢定义,张爱军.复合地基承载特性的计算机模拟分析[C].第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994,326-331.
    [129]杨涛,殷宗泽.复合地基沉降的复合本构有限元分析[J].岩土力学,1998,19(2):19~25.
    [130]张忠坤,殷宗泽,曹正康.复合地基临界桩长的研究[J].岩土工程学报,1999,21(2):184~188.
    [131]李宁,韩恒.单桩复合地基加固机理数值试验研究[J].岩土力学,1999,20(4):42-48.
    [132]邢仲星,陈晓平.复合地基力学特性研究及有限元分析[J].土工基础,2000,14(2):1-4.
    [133]温晓贵.复合地基三维性状数值分析.[博士学位论文].杭州:浙江大学,1999.
    [134]韩煊,李宁.复合地基中群桩相互作用机理的数值试验研究[J].土木工程学报,1999,32(4):75~80.
    [135]K. Yamamoto, J. Otani. Bearing Capacity Analysis of Reinforced Foundation Ground[C]. Proceedings of the ninth international conference on computer methods and advances in goemechanics Balkema,1997,Vol. (3):2339~2344.
    [136]J. B. Jung, T. Moriwaki, N. Sumioka, and O. Kusakabe. Numerical Analyses and Model Tests of Composite Ground Improved by Partly Penetrated Sand Compaction Piles. Proc. of 2nd international Conference on ground improvement techniques. Singapore,1998, 213~220.
    [137]何荣炳.灰土挤密桩复合地基有限元分析[[J].山西建筑,2006,32(5):76-83.
    [138]宋岳川,宋岳海.振动挤密桩群体效应及其地基处理[J].太原理工大学学报,1999,30(5).
    [139]周健.排土桩对周围土体挤密作用的动态模拟[D].河海大学硕士学位论文,1996.
    [140]徐建平,周健,许朝阳等.沉桩挤土效应的数值模拟[J].工业建筑,2000,30(7):85-91.
    [141]J.E.波勒斯编著,基础工程分析与设计[M].唐念慈等译,中国建筑工业出版社,1993.
    [142]王雪浪,朱彦鹏.石灰挤密桩处理湿陷性黄土地基理论分析及试验[J].西安建筑科技大学学报(自然科学版)2010,42(2):288-293.
    [143]A A Beles I I Stanculescu V R SchallyrPronettion of Loess-Soil Foundation for Hydraulic Structures,Proceeding of the Seventh International Conference on Soil Mechanics and Foundation Engineering[J].1969,2(1):239-251.
    [144]朱梅.山西河津黄土地基外荷湿陷的试验研究[D][硕士学位论文].西安:西安冶金建筑学院.1990.
    [145]ADINA Research and Development Inc., ADINA Theory and Modeling Guide. Report ARD 95-8, ADINA R&D Inc.,Watertown, MA,1995.
    [146]陈希哲.土力学基础工程[M].北京:清华大学出版社,1989
    [147]赵锡宏.损伤力学[M].上海:同济大学出版社,2001
    [148]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [149]龚晓南等.地基处理手册[M].中国建筑工业出版社.北京.2000.
    [150]Smith D W, Booker J R.Green's function for a fully coupled thermoporo elastic materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(2):139-163.
    [151]Seneviratne H N, Carter J P, Airey D W.A review of models forpredicting the thermomechanical behavior of soft clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(2):715-733.
    [152]司炳文.湿陷性黄土地基处理的新技术(DDC工法)[C].全国黄土学术会议论文集新疆科技卫生出版社.1994.11.
    [153]欧阳倩,王治坡,许峰农等.DDC灰土挤密桩复合地基施工中应注意的几个问题[J].工业建筑,2006,增(1):815-816.
    [154]杨桂通.土动力学[M],北京:中国建材工业出版社,2000.
    [155]谢定义.土动力学[M],西安:西安交通大学出版社,1998.
    [156]何永强.挤密桩复合地基在湿陷性黄土地区的应用研究[D][博士学位论文].兰州:兰州理工大学,2010.
    [157]黄雪峰.大厚度自重湿陷性黄土的湿陷变形特征、地基处理方法和桩基承载性状研究[D][博士学位论文].重庆:后勤工程学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700