用户名: 密码: 验证码:
子域积分法及组合网格算法在无压渗流中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于只需要进行一次传导矩阵的集成与分解,流量法在稳定无压渗流分析中获得了广泛的应用。但由于渗透系数修正矩阵在自由面上、下的间断性质,导致初流量法中,与自由面相交的单元中结点初流量的被积函数是不连续的。采用传统的Gauss积分方式时,这些单元内数值积分的过程中可能出现单元部分区域的贡献被忽略、被夸大或自由面在数值积分点上、下的轻微移动导致结点初流量数值积分结果出现突变等问题,降低数值计算的收敛性与稳定性。
     初流量法在非稳定流中应用时,也存在着渗透系数修正矩阵和贮水率在自由面上、下的间断性质引起的非连续被积函数。这2项的数值积分计算可能出现较大误差,降低了数值计算的收敛性与稳定性。对这些非连续项的积分计算进行改进,对于提高数值计算的稳定性和收敛性,促进初流量法的进一步推广应用十分有意义。
     在无压稳定渗流分析过程中,常常会遇到某一方向尺寸与整体计算区域相比非常小的线形结构。当这些结构中的水流运动不能被忽略的时候,需要对这些结构需要进行精细离散,但这些结构的厚度可达厘米级甚至毫米级,为保持计算精度必然导致其它区域也需要精细的离散,一方面造成网格离散的工作量和计算量大幅增加,另一方面造成有限元求解精度降低、收敛精度较差。针对这些问题,提出一种合理可行的处理方法对于减小网格离散工作量和难度,获取线形结构中渗流场精细分布的同时提高计算的速度和精度有十分重要的意义。
     本文针对上述问题进行了研究,提出了子域积分理论、组合网格法在无压渗流中的应用。采用FORTRAN语言编制了相应的计算程序,并对程序及理论的可靠性进行了验证。
     本文的主要研究内容和创新性成果包括以下三个方面:
     (1)基于子域积分方法,对无压稳定渗流的初流量法进行了改进。将与自由面相交的单元分为自由面上、下两部分,再根据这两个区域的具体形状将其细化为标准形式的区域一子域,然后把每个子域看做一个常规的“单元”,在每个子域内按照标准Gauss积分方式布置数值积分点,从而保证每个数值积分点控制的区域内结点初流量的被积函数都是连续的。避免了结点初流量被夸大、忽略或者自由面在积分点上、下的微小移动导致的数值积分结果出现突变的情况,从而改善了数值计算的稳定性和收敛性。文中给出了与自由面相交的平面4边形和3维6面体单元的基本类型及其具体子域划分方式,同时给出了非基本类型单元和基本类型单元的变换关系。编制了基于子域积分的改进初流量法稳定无压渗流程序IIFM2DS(平面渗流)和IIFM3DS(三维渗流)。
     (2)借鉴饱和非饱和渗流理论以及Desai等人的研究,将适用于稳定渗流的初流量法推广到非稳定渗流,根据虚位移原理推导了有限元离散格式,并采用子域积分对其中的非连续项的数值积分进行改进,编制了相应的二维有限元程序IIFM2DT和三维有限元程序IIFM3DT。
     (3)将组合网格法应用于无压稳定渗流分析中。采用两套独立的网格进行模拟,对整体区域采用尺寸较大的粗网格进行模拟(不考虑线性结构的影响),对线形结构则采用尺寸比较小的细网格进行模拟。细网格通过流量修正对粗网格渗流场进行调整,计算在粗细两套网格之间迭代进行,直至达到收敛精度。组合网格法适应于非规则网格,并且粗细网格均可独立生成,彼此互不制约。组合网格法减小了网格离散工作量和难度,在获取线形结构中渗流场精细分布的同时提高了计算的速度和精度。根据上述理论编制了三维无压稳定渗流组合网格有限元计算程序IIFM3DS-CGM。
     最后,采用数值算例和工程实际应用对本文理论及程序的有效性和可靠性进行了验证。计算结果表明,本文的理论是合理可行,程序是可靠的。
Since the necessity for the assembly and decomposition of the conduction matrix is needed only one time, the Initial Flow Method has been widely used in steady unconfined seepage analysis. However, because of the "jump" of permeability between the upside and underside of the free surface, the integrand of nodal initial flow is discontinuous in elements that intersect with the free surface in this method. If traditional Gaussian integral method is adopted in numerical integration, the contribution of some domain in these elements to the nodal initial flow may be ignored, exaggerated or mutation of nodal initial flow might appear when slight movement of the free surface from the underside of the integration point to the upside, reducing the convergence and stability of numerical simulation.
     There are also discontinuous intgrands related to the "jump" of permeability and specific storage coefficient around the free surface in the Initial Flow Method when it is adopted in the unconfined transient seepage analysis. Once again, the existence of these two discontinuous terms greatly reduced the convergence rate and stability of numerical simulation as large integration error may be caused. Improvement for the integration of these discontinuous terms is of great value to improvement of the algorithom's stability and convergence and of great importance for the further application of Initial Flow Method.
     In unconfined steady seepage analysis,"line-style structure" that has a very small size in some direction compared with the whole domain is often encountered. When the flow in these structures can not be ignored, they have to be finely discreted. However, the thickness of these structures may be up to the centimeter or millimeter level, this inevitably leads to the fine discretization also in other regions so as to maintain accuracy, greatly increasing the difficulty and the workload of discretization as well as computation and degrading the precision and convergence of Finite Element simulation. To solve these problems, it is of great significance that a reasonable and feasible approach for reducing the discretization, deserving the seepage characteristics in these structures and improving the caculation speed and accuracy is presented.
     Theoretical study is carried out on the problems mentioned above in this paper. The application of the subdomain integration theory, the composite grid method in the unconfined seepage analysis and the extension of Initial Flow Method to unconfiend transient seepage analysis is presented., the initial flow method extended to the non-steady seepage calculation. Corresponding computer programs writen with FORTRAN language is coed accordingly to verify their validation.
     The main content and innovative achievements include the following three aspects:
     (1) The Initial Flow Method is improved based on the sub-domain integration method. The elements intersecting with the free surface are divided into two parts, one part is below the free surface while the other not. Then these two parts are refined to standard finer regions named sub-domains according to their specific shape. Thereafter, each sub-domain is treated as if it is a "conventional element" and Gaussian integration points are arranged in each sub-domain as in the standard Gaussian integration points sampling process. By this means, the integrand of nodal initial flow is continuous within the control volme/area of each integration points. Exaggeration/ignorance of some domain of the element's contribution to nodal initial flow and mutation of nodal initial flow that might appear when slight movement of the free surface from the underside of the integration point to its upside is avoided. Therefore, stability and convergence of the Initial Flow Method is improved. The basic types of quadrilateral and hexahedron that intersect with the free surface are given and their detailed modes of sub-domain subdivision is presented in the case of two-dimension and three-dimensional seepage analysis. The transformation between these basic types of elements and others is also listed in this paper. The programs IIFM2DS (Improved Initial Flow Method2D with sub-domain improvement, S stands for steady) and IIFM3DS are coded for two-dimensional and three-dimensional unconfined steady seepage analysis seperately.
     (2)Drawing lessons from saturated-unsaturated seepage theory and research of Desai et al., the Initial Flow Method is extended to unconfined transient seepage analysis from steady case. The Finite Element discretization scheme is derived base on virtual displacement principle and the discontinuous terms are still improved by sub-domain integration method as in the steady case. The2D program IIFM2DT and3D program IIFM3DT are developed independently.
     (3) Composite Grid Method is applied in unconfined steady seepage analysis. Two sets of grid are used in numerical simulation, with the coarse grid of larger size simulating the entire region without consideration of "line-style structure" while the fine grid of relatively small size simulating the "line-style structure". Solution in coarse grid is adjusted by the one from fine grid through discharge correction and iterations are carried out between the two sets of grids and until desired convergence precision is achieved. The Composite Grid Method can be adapted to non-regular grid. In other words, the coaser grid and fine grid can be generated independently without any restriction from each other. A three-dimensional unconfined steady seepage analysis program named IIFM3DS-CGM is developed accordingly.
     Finally, numerical examples and practical application in engineering are taken advantage to verify the validity and reliability of these theory and programs. The results show that the theory is reasonable and the programs are reliable.
引文
[1]Zienkiewicz OC, Mayer P, Cheung YK. Solution of anisotropic seepage by finite elements[J]. Journal of the Engineering Mechanics Division,, Feb.1966,92(1):111-120
    [2]Taylor RL, Brown CB. Darcy Flow Solutions with a Free Surface[J]. Journal of the Hydraulics Division, ASCE,, March 1967,93(HY2):25-33
    [3]Finn WDL. finite element analysis of seepage through dams[J]. Journal of Soil Mechanics & Foundations Division, ASCE, Nov.1967,93(SM6):41-48
    [4]Neuman SP, Witherspoon PA. FInite element method of analyzing steady seepage with a free surface[J]. Water Resources Research, June 1970,6(3):889-897
    [5]Desai CS. Seepage analysis of earth banks under drawdown[J]. Journal of the Soil Mechanics and Foundations Division,ASCE, Nov.1972,98(SM11):1143-1162
    [6]Oden JT, Kikuchi N. Theory of Variational Inequalities with Applications to Problems of Flow through Porous Media[M]. Texas Texas Institute for Computational Mechanics,1980.
    [7]Neuman SP. Saturated-unsaturated seepage[J]. J Hydraul Div, Am Soc Civ Eng,1973,99(12):2233-2250
    [8]Cooley RL. Some new procedures for numerical solution of variably satured flow problem[J]. Water Resources Research, Oct.1983,19(5):1271-1285
    [9]Freeze RA. Influence of the unsaturated flow domain on seepage through earth dams[J]. Water Resources Research,1971,7(4):929-941
    [10]Freeze RA. Three-Dimensional, Transient, Saturated-Unsaturated Flow in a Groundwater Basin[J]. Water Resources Research,1971,7(2):347-366
    [11]朱军,刘光廷,陆述远.饱和非饱和三维多孔介质非稳定渗流分析[J].武汉大学学报(工学版),2001,6(3):5-26
    [12]彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究与进展,2002,4(2):253-259
    [13]Richards LA. Capillary conduction of liquids through porous mediums[J]. Physics,1931,1:318-333
    [14]Mualem Y. A new model for predicting the conductivity of unsaturated porous media[J]. Wat Resour 1976,12:513-522
    [15]Genuchten V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898
    [16]吴梦喜.饱和-非饱和上中渗流Richards方程有限元算法[J].水利学报,2009,(10):
    [17]于玉贞,林鸿州,李荣建,等.非稳定渗流条件下非饱和上边坡稳定分析[J].岩土力学,2008,(11):
    [18]廖红建,姬建,曾静.考虑饱和-非饱和渗流作用的土质边坡稳定性分析[J].岩土力学,2008,(12):
    [19]卢刚,周志芳.降雨入渗下互层状裂隙岩体非饱和渗流分析[J].岩土工程学报,2008,(09):
    [20]刘小平,赵明华.降雨对非饱和土路基含水量的影响分析[J].湖南大学学报(自然科学版),2008,(08):
    [21]王环玲,徐卫亚,童富国.泄洪雾雨区裂隙岩质边坡饱和-非饱和渗流场与应力场耦合分析[J].岩土力学,2008,(09):
    [22]黄茂松,贾苍琴.考虑非饱和非稳定渗流的上坡稳定分析[J].岩土工程学报,2006,(02):
    [23]朱伟,程南军,陈学东,等.浅谈非饱和渗流的几个基本问题[J].岩土工程学报,2006,(02):
    [24]刘海宁.王俊梅,王思敬,等.黄河下游堤防非饱和上边坡渗流分析[J].岩土力学,2006,(10):
    [25]孙冬梅,朱岳明,许艳杰.基于水气二相流的稳定饱和-非饱和渗流模拟研究[J].大连理工大学学报,2006,(S1):
    [26]李传夫,李术才,李树忱.非饱和裂隙岩体渗流的统计模型研究方法[J].岩土力学,2006,(S1);
    [27]黄远智,王恩志,韩小妹.低渗透岩石非饱和非Darcy渗流机理[J].清华大学学报(zi 然科学版),2005,(09):
    [28]荣冠,张伟,周创兵.降雨入渗条件下边坡岩体饱和非饱和渗流计算[J].岩土力学,2005,(10):
    [29]金生,耿艳芬,王志力.利用饱和-非饱和渗流模型计算坝体自由面渗流[J].大连理工大学学报,2004,(01):
    [30]严飞,詹关礼,速宝玉.堤坝非饱和渗流模型实验[J].岩土工程学报,2004,(02):
    [31]陈建余.有密集排水孔的三维饱和-非饱和渗流场分析[J].岩石力学与工程学报,2004,(12):
    [32]刘建军,熊俊,何翔.降雨条件下岩土饱和非饱和渗流分析[J].岩土力学,2004,(S2):
    [33]朱岳明,龚道勇.三维饱和非饱和渗流场求解及其逸出面边界条件处理[J].水科学进展,2003,(01):
    [34]朱岳明,龚道勇,罗平平.三维饱和-非饱和降雨入渗渗流场分析[J].水利学报,2003,(12):
    [35]张培文,刘德富,黄达海,等.饱和-非饱和非稳定渗流的数值模拟[J].岩土力学,2003,(06):
    [36]汪金元,孙役,陈润发.降雨入渗下的三维正交裂隙网络饱和-非饱和渗流实验研究[J].岩石力学与工程学报,2001,(S1):
    [37]韩冰,叶自桐,周创兵.岩体裂隙饱和/非饱和渗流机理初步研究[J].水科学进展,1999,(04):
    [38]吴梦喜,高莲士.饱和非饱和土体非稳定渗流数值分析[J].水利学报,1999,(12):
    [39]张有天,刘中.降雨过程裂隙网络饱和/非饱和、非恒定渗流分析[J].岩石力学与工程学报,1997,(02):
    [40]黄俊,苏向明,汪炜平.土坝饱和-非饱和渗流数值分析方法研究[J].岩土工程学报,1990,(05):
    [41]高骥,雷光耀,张锁春.堤坝饱和-非饱和渗流的数值分析[J].岩土工程学报,1988,(06):
    [42]基于非饱和渗流应力耦合的河堤窝崩机理.pdf
    [43]Desai CS. Finite element residual schemes for unconfined flow[J]. International Journal for Numerical Methods in Engineering,1976,10(6):1415-1418
    [44]张有天,陈平,王镭.有自由面渗流分析的初流量法[J].水利学报,1988,(8):18-26
    [45]干媛.求解有自由面渗流问题的初流量法的改进[J].水利学报,1998,(3):68-74
    [46]李新强.无压渗流有限元分析的改进初流量法[J].水利学报,2007,38(8):961-965
    [47]潘树来,王全凤,缙俞.利用初流量法分析有自由面渗流问题之改进[J].岩土工程学报,2012,34(2):202-209
    [48]速宝玉,朱岳明.不变网格确定渗流自由面的节点虚流量法[J].河海大学学报,1991,(5):113-117
    [49]杨旭.节点虚流量法的渗流场数值计算与工程应用[D]:中山大学,2005.
    [50]崔皓东,朱岳明.有自由面渗流分析的改进节点虚流量全域迭代法[J].武汉理工大学学报:交通科学与工程版,2009,(2):238-241
    [51]Baiocchi C. Su un problema di frontiera libera connesso a questioni di idraulica[J]. Annali di matematica pura ed applicata,1972,92:107-127
    [52]Brezis H, Kinderlehrer D, Stampacchia G. Sur une nouvelle formulation du probleme de l'ecoulement a travers une digue. CR Acad Sci. Paris,287 (ser. A),711-714,1978.
    [53]Baiocchi C, Comincioli V, Magenes E,等. Free boundary problems in the theory of fluid flow through porous media:Existence and uniqueness theorems[J]. Annali di Matematica Pura ed Applicata,1973,97(1):1-82
    [54]Baiocchi C, Comincioli V, Magenes E,等. Free boundary problems in the theory of fluid flow through porous media:Existence and uniqueness theorems [J]. Annali di Matematica Pura ed Applicata 1973,97(1): 237-243
    [55]Baiocchi C. Problemes a frontiere libre en hydraulique[J]. C R Acad Sci Paris,1974,278,ser A:1201-1204
    [56]Baiocchi C, Friedman A. A filtration problem in a porous medium with variable permeability[J]. Annali di Matematica Pura ed Applicata,1977,114:377-393
    [57]Baiocchi C, Brezzi F, Comincioli V. Free boundary problems in fluid flow through porous media. ICAD, 2nd Int Symp on Finite Element Methods in Flow Problems. Italy, June 1976:14-18.
    [58]Oden JT, Kikuchi N. Recent advances:theory of variational inequalities with application to problems of flow through porous media[J]. International Journal of Engineering Science,1980,18(10):1173-1284
    [59]Bathe K-J, Khoshgoftaar MR. Finite element free surface seepage analysis without mesh iteration[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1979,3(1):13-22
    [60]李春华.稳定渗流有限元计算时采用固定网格法的初步研究[A].第三届全国渗流力学学术讨论会论文汇编(3)[C].武汉:长江科学院,1986.
    [61]王贤能,黄润秋.有自然面渗流分析的高斯点法[J].水文地质工程,1997,24(6):1-4
    [62]周创兵,熊文林,梁业国.求解无压渗流场的一种新方法[J].水动力学研究与进展,1996,11(5):528-534
    [63]介玉新.引用Monte Carlo法的自由面渗流分析[J].清华大学学报:自然科学版,2009,(12):1944-1947
    [64]邓建霞.有自由面渗流分析的加密高斯点单元传导矩阵调整法[D]:四川大学,2004.
    [65]凌道盛.有自由面渗流分析的虚节点法[J].浙江大学学报(工学版),2002,36(3):243-246
    [66]陈洪凯,唐红梅,肖盛燮.求解渗流自由面的复合单元全域迭代法[J].重庆交通学院学报,1999,20(10):1045-1050
    [67]速宝玉,沈振中,赵坚.用变分不等式理论求解渗流问题的截止负压法[J].水利学报,1996,(3):22-29
    [68]张乾飞,吴中如.有自由面非稳定渗流分析的改进截止负压法[J].岩土工程学报,2005,(1):48-54
    [69]吴梦喜,张学琴.有自由面渗流分析的虚单元法[J].水利学报,1994,25(8):67-71
    [70]彭华,曹定胜,王家荣,等.有自由面渗流分析的弃单元法及其应用[J].人民长江,1997,28(8):38-40
    [71]梁业国,熊文林.有自由面渗流分析的子单元法[J].水利学报,1997,(8):34-38
    [72]彭华,罗谷怀.有自由面渗流分析的子单元法及其应用[J].水电站设计,1996,12(4):24-27
    [73]舒仲英,邓建霞,李龙国.加密高斯点单元传导矩阵调整法在有自由面渗流分析中的应用[J].四川大学学报:工程科学版,2007,(1):48-52
    [74]黄蔚,刘迎曦,周承芳.三维无压渗流场的有限元算法研究[J].水利学报,2001,32(6):33-38
    [75]许桂生,陈胜宏.无压渗流分析的复合单元法[J].岩土力学,2005,26(5):745-750
    [76]朱伯芳.有限单元法原理及应用(第二版)[M].北京:中国水利水电出版社,1998.
    [77]Lacy SJ, Prevost JH. Flow through porous media:A procedure for locating the free surface [J]. International Journal for Numerical and Analytical Methods in Geomechanics 1987,11(6):585-601
    [78]裴利华.基于改进初流量法的非稳定渗流分析[J].岩土工程界,2007,(09):
    [79]Benci V. On a filtration problem througha porous medium [J]. Annali di Matematica Pura ed Applicata, 1973,100:191-209
    [80]Bruch. JC. A survey of free boundary value problems in the theory of fluid flow through porous media: variational inequality approach-Part Ⅰ[J]. Advances in Water Resources, June 1980,3(2):65-80
    [81]Bruch JC. A survey of free boundary value problems in the theory of fluid flow through porous media: variational inequality approach-Part Ⅱ [J]. Advances in Water Resources, September 1980,3(3):115-124
    [82]Friedman A. Variational pricples and free boundary problems[M]. New York:Weley,1982.
    [83]Westbrook DR, Gilmour GJ. A variational inequality approach to free surface porous media seepage in an inhomogeneous dam[J]. Int J Numer anal Mthods Geomech,1985,9:599-608
    [84]Alt HW. Numerical solution of steady state porous flow free boundary problems[J]. Numerische Mathematik,1980,36(1):73-96
    [85]Chipot M. Variational inequalities and flow in porous media[M]. New York:Springer-Verlag, Jan.1984.
    [86]Westbrook DR. Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage[J]. International Journal for Numerical Methods in Engineering, October 1985,21(10):1791-1802
    [87]Borja RI, Kishnani SS. On the solution of elliptic free-boundary problems via Newton's method[J]. Computer Methods in Applied Mechanics and Engineering, July 1991,88(3):341-361
    [88]佘颖禾,孙鹰,郭小明.具有自由边界的二维渗流问题[J].应用数学和力学,1996,17(6):523-527
    [89]郑宏,刘德富,李焯芬,等.一个新的有自由面渗流问题的变分不等式提法[J].应用数学和力学,2005,26(3):363-370
    [90]李连侠,廖华胜,刘达,等.渗流计算中求解浸润线的自由面适应网格方法[J].四川大学学报(工程科学版),2006,(05):
    [91]蒋胜银,李连侠,廖华胜,等.渗流自由面数值模拟方法比较[J].长江科学院院报,2011,(07):
    [92]吴世余.双层堤基的非稳定渗流[J].水利学报,2002,33(8):82-86
    [93]Desai CS, Li GC. A residual flow procedure and application for free surface flow in porous media[J]. Adv Water Res,1983,6:27-35
    [94]MoEs N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150
    [95]Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering 1999,45(5):601-620
    [96]Melenk JM, Babuska I. The partition of unity finite element method:Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1):289-314
    [97]Osher S, Sethian Ja. Fronts Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics,1988,79(1):12-49
    [98]Sukumar N, Chopp DL, Moes N,等. Modeling holes and inclusions by level sets in the extended finite element method[J]. Comp Methods Appl Mech Engrg,2001:
    [99]Song J-H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering,2006,67(6):868-893
    [100]Flanagan DP, Belytschko T. A uniform strain hexahedron and quadrilateral and orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering 1981,17:679-706
    [101]Daniel WJT, Belytschko T. Suppression of spurious intermediate frequency modes in under-integrated elements by combined stiffness/viscous stabilization[J]. International Journal for Numerical Methods in Engineering,2005,64:335-353
    [102]Natarajan S, Bordas SP, DR. M. Numerical integration over arbitrary polygonal domains based on schwarz-christoffel conformal mapping[J]. International Journal of Numerical Methods in Engineering, 2009,80(1):103-134
    [103]Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended Finite-Element Method[J]. International Journal for Numerical Methods in Engineering,2006,66(5):761-795
    [104]吕涛,石济民,林振宝.区域分解算法[M].北京:科学出版社,1992.
    [105]Bernardi C, Maday Y, Patera. A. Domain decomposition by the mortar finite element method. Asymptotic and Numerical Methods for PDEs with Critical Parameters,384.269-286,1993.
    [106]Braess D, Dryja M, Hackbusch W. Multigrid method for nonconforming finite element discretization with application to non-matching grids[J]. Comput,1999,63:1-25
    [107]Seshaiyer P, M. Suri.. hp convergence results for the mortar finite element method[J]. Uniform Math Comp,2000b,69:521-546
    [108]Seshaiyer P,. MS. hp submeshing via non-conforming finite element methods[J]. Comp Meth Appl Mech Engrg,2000a,189:1011-1030
    [109]Seshaiyer P,. MS. Convergence results for non-conforming hp methods[J]. Contemp Math,1998,218: 453-459
    [110]Braess WDD, Wieners C. A multigrid algorithm for the mortar finite element method.[J]. SIAM J Numer Anal,2000,37:48-69
    [111]Wohlmuth BI. A mortar finite elment method using dual spaces for the lagrange multiplier[J]. SIAM J Numer Anal,2000,38:989-1012
    [112]McGee W, Seshaiyer P. Domain Decomposition Methods in Science and Engineering,2005,40:327-334
    [113]Carstensen C, Hoppe RHW. Convergence analysis of an adaptive nonconforming finite element method[J]. Numer Math,2006,103(2):251-266
    [114]Carstensen C, Hoppe RHW. Error reduction and convergence for an adaptive mixed finite element method[J]. Math Comp,2006,75(255):1033-1042(electronic)
    [115]Chen H, Xu X, Hoppe RHW. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems[J]. Numerische Mathematik, September 2010,116(3): 383-419
    [116]Seshaiyer P. Stability and convergence of nonconforming hp finite-element methods[J]. Comp Math Appl, 2003,46:165-182
    [117]Ewing R, Lazarov R, Lin T,等. Mortar finite volume element methods of second order elliptic problems. [J]. East-West J Numer Math,2000,8:93-110
    [118]McCormick S, Thomas J. The fast adaptive composite grid (FAC) method for elliptic equations[J]. Mathematics of Computation,1986,46:439-456
    [119]McCormick S. Fast Adaptive Composite Grid (FAC) Methods:Theory for the Variational Case[J]. Defect Correction Methods Computing Supplementum 1984 5 115-121
    [120]江思珉,朱国荣,王浩然,等.FAC方法在地下水数值模拟中的应用[J].水利学报,2006,37(11):1389-1392
    [121]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001,263-294.
    [122]Mao KM, Sun CT. A refined global-local finite element analysis method[J]. International Journal for Numerical Methods in Engineering,1991,32(1):29-43
    [123]Whitcomb JD. Iterative global/local finite element analysis[J]. Computers and Structures,1991,40(4): 1027-1031
    [124]Xu J. Iterative Methods by Space Decomposition and Subspace Correction[J]. SIAM Review,1992,34(4): 581-613
    [125]Xu J. The Auxiliary Space Method And Optimal Multigrid Preconditioning Techniques For Unstructured Grids[J]. Computing,1996,56(3):215-236
    [126]唐菊珍,马昌凤.基于有限元自动生成系统(FEPG)的组合网格算法[J].广西科学院学报,2007,(01):
    [127]唐菊珍.基于FEPG的组合网格法与接触问题的Lagrange乘子法[D]:桂林电子科技大学,2006.
    [128]王德生.组合网格法和非结构化网格自动生成[D]:中国科学院数学所,2001.
    [129]郭胜山,李德玉,唐菊珍.水工结构动接触问题的组合网格算法[J].水力发电,2009,(5):24-26
    [130]韩修廷,梁国平,吴恩成,等.油田套管损坏数值模拟专用软件开发及应用[J].数字石油和化工2006,(4):33-36
    [131]王伯军,张十诚,张劲,等.考虑注采关系的三维地应力场数值模拟研究[J].西南石油大学学报(自然科学版),2006,(6):33-35
    [132]甘艳,阮江军,张宇,等.组合网格法及其在电磁问题中的应用[J].电工技术学报,2008,23(8):8-14
    [133]张宇,阮江军,刘兵,等.组合网格法在电磁-机械祸合问题中的应用[J].中国电机工程学报, 2007,27(37):4247
    [134]陈文平.组合网格法及其在焊接数值模拟中的应用[D]:福建师范大学,2009.
    [135]陈文平,马昌凤,蒋利华.组合网格法在搅拌摩擦焊接数值模拟中的应用[J].安徽理工大学学报(自然科学版)2009,(2):57-61
    [136]陈文平,马昌凤,蒋利华.激光焊接问题的组合网格法[J].福建师范大学学报(自然科学版),2009,(3):29-32
    [137]王洪涛.多孔介质污染物迁移动力学[M].北京:高等教育出版社,2008.
    [138]朱岳明,陈建余,龚道勇,等.拱坝坝基渗流场的有限单元法精细求解[J].岩土工程学报,2003,25(03):326-330
    [139][美]陈惠发,萨里普AF.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [140]刘昌军,丁留谦,张启义,等.三维渗流有限元分析软件GWSS开发与应用[J].计算机辅助工程,2012,21(4):6-11
    [141]张顺福,丁留谦,刘昌军,等.基于子域积分的初流量法改进[J].水电能源科学,2013,31(3):
    [142]李佩成.地下水非稳定渗流解析法[M].北京:科学技术出版社,1990,55-57.
    [143]李涛,邓铭江,王于宝,等.台兰河山前地下储水构造及地下水库可行性研究[J].水文地质工程,2011,(1):30-34
    [144]孙栋元,赵成义,魏恒,等.台兰河流域地下水系统数值模拟[J].自然资源学报,2010,25(04):636-645
    [145]刘昌军,赵华,张顺福,等.辐射井子结构法在台兰河地下水库非稳定渗流场分析中应用[J].吉林大学学报(地球科学版):(已录用)
    [146]朱岳明,张燎军.渗流场求解的改进排水子结构法[J].岩土工程学报,1997,19(2):69-76
    [147]刘昌军.虹吸井子结构法在尾矿坝复杂渗流场求解中应用[J].水利水电科技进展,2011,(3):81-85
    [148]王浩然,朱国荣.淄博市孝妇河源区地下水资源的开发利用研究[J].高校地质学报,2000,4(2):198-204
    [149]薛禹群,谢春红.水文地质学的数值法[M].北京:煤炭工业出版社,1980.143-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700