用户名: 密码: 验证码:
船舶动力系统配置设计及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个复杂的机电设备工程系统,船舶动力系统的设计总是随着现代科学技术和现代设计方法的进步而发展。对新的设计理论和设计方法的不断探索创新,是推动船舶设计发展的强大动力。论文以船舶动力系统为研究对象,在较为全面的分析了配置设计理论和方法的基础上,对船舶动力系统配置知识表达、配置模型、配置优化和配置评价等问题进行了深入的研究。论文主要工作如下:
     (1)分析了配置设计的基本理论,结合船舶动力系统设计的主要内容和思路,提出了船舶动力系统配置设计的基本流程,构建了船舶动力系统配置设计体系架构,提出了船舶动力系统三层配置求解方案,并对船舶动力系统类型配置、能量配置和详细配置进行了详细研究。
     (2)总结了船舶动力系统配置设计过程中涉及的相关知识,重点研究了船舶动力系统用户需求知识和配置知识的表达,针对本体在知识表达领域中具有的良好的知识表达能力和明确的概念层次结构,以及可重用、可共享的优势,提出了基于本体的船舶动力系统配置知识表达,建立了基于Protege的船舶动力系统用户需求本体和配置本体,为船舶动力系统配置设计提供支持。
     (3)研究了约束满足问题与船舶动力系统配置设计之间的相互关系,针对船舶动力系统设计实际,建立了基于约束的船舶动力系统配置模型,并采用粒子群算法对船舶动力系统配置进行求解,以降低搜索空间,提高求解效率。
     (4)提出了以船舶动力系统整体性能和全寿命周期费用为优化目标,以购置费用和交货期为约束条件的船舶动力系统配置优化模型,采用多目标粒子群算法进行配置优化求解,得到尽可能满足配置约束和用户需求的产品配置优化实例。
     (5)从全寿命周期的角度出发,综合船舶动力系统技术性能、经济、环保等方面的因素,建立基于全寿命周期的船舶动力系统配置评价指标体系,并采用基于D-S证据理论的评价方法,对船舶动力系统配置实例进行评价和比较,为船舶动力系统配置方案的选择提供了依据。
     (6)分析船舶动力系统配置设计系统用户需求,进行了船舶动力系统配置设计系统设计,实现了船舶动力系统配置设计系统原型系统开发。
As a complex engineering system of mechanical and electrical equipment, the marine power system design always develops along not only with the progress of modern science and technology but also the modern design method. Continuous exploration and innovation to new ship design theory and method, is a strong driving force to promote the development of ship design. This paper applies configuration design theory and method to make a further research to marine power system design. Based on a more comprehensive analysis on the basis of the the configuration design theory and methods, this paper conducts a research on several key technologies of marine power configuration design, including configuration knowledge representation, the configuration model, configuration optimization and configuration evaluation. This paper mainly is as follows:
     (1)This paper has analysed the basic theory of configuration design. In view of the main content and means of the marine power system design, this paper puts forward the basic process of marine power system configuration design, builts a ship power system configuration design architecture, and establishes three layer configuration ship power system. In addition, configuration design of marine power system type, configuration design of energy and exhaustive configuration design have been studied in detail.
     (2) This paper sums up the ship power system configuration knowledge involved in the design process. It focuses on the user demand for ship-based power system and configuration knowledge representation. Given the advantages of ontology such as its good knowledge representation in the field of knowledge expression, its clear concept of hierarchy, and its good and shared availability, this paper puts forward that ontology should be applied to marine power system configuration knowledge expression. User requirement ontology of ship power system is established based on the Protege, providing support for marine power system configuration designing.
     (3) The relationship between constraint satisfaction problem and marine power system configuration design has been studied. In view of the actual marine power system design, it presents for ship power system the configuration design process based on the constraints. It has established model of configuration design based on constraint for marine power system. Particle swarm algorithm is used for marine power system configuration in order to reduce the search space and improve the solving efficiency.
     (4) This paper sets both overall performance and life-cycle cost of ship power system as its optimal objects. And purchase costs and delivery time are constraints in process. At the same time, multi-objective particle swarm algorithm is used to optimize configuration so that we can acquire the product configuration optimization examples for meeting configuration constraints and user needs.
     (5) From the viewpoint of total life cycle, this paper synthesizes ship power system factors such as technology, economy and environmental protection. It also sets up the evaluation index system of ship power system configuration based on total life cycle, and then adopts the evaluation method based on D-S evidence theory. These methods are used to evaluate and compare the ship power system configuration instance, providing the evidence for the selection of instances for the configuration.
     (6) The paper focuses on the user requirement analysis of ship power system configuration design system, and then offers configuration design of ship power system. This paper has not only realized prototype system development for ship power system configuration design system, but also verified the system with real examples.
引文
[1]中华人民共和国工信部,船舶工业“十二五”发展规划[EB/OL].[2012-03-12].http://www.gov.cn/gzdt/2012-03/12/content_2089877.htm.
    [2]陈晓川,方明伦,俞涛.先进设计技术在船舶设计中的应用策略[J].机械设计与制造,2003(3):115-117.
    [3]陈章兰,熊云峰.我国船舶设计建造技术现状及展望[J].江苏船舶,2007,24(1):36-38.
    [4]李建光.船舶及海洋工程动力装置设计指南[M].武汉:华中科技大学出版社,2010.
    [5]来可伟,殷国富.并行设计[M].北京:机械工业出版社,2003.
    [6]任东锋,方宗德.并行设计中任务调度问题的研究[J].计算机集成制造系统,2005,1:32-38.
    [7]张英杰,屈满仓,李俊民.大型零部件的复杂工艺并行设计方法的研究[J].计算机集成制造系统,2007,13(12):2339-2344.
    [8]李明,孙东生,陈慈慧,等.船舶并行协同设计管理研究[J].船舶工程,2005(6):84-86.
    [9]刘寅东,苏绍娟.船舶并行协同设计环境及关键技术[J].大连海事大学学报,2011,37:25-28.
    [10]Christopher G Hart, Nickolas Vlahopoulos. An integrated multidisciplinary particle swarm optimization approach to conceptual ship design[J].Structural and Multidisciplinary Optimization,2010,41(3):481-494.
    [11]Emilio Fortunato Campana,Giampaolo Liuzzi,Stefano Lucidi,et al. New global optimization methods for ship design problem s [J].Optimization and Engineering,2009,10(4):533-555.
    [12]Soo-Young Kim,Byung-Young Moon,Duk-Eun Kim.Optimum design of ship design system using neural network method in initial design of hull plate[J]. KSME International Journal,2004,18(11):1923-1931.
    [13]Marina Z. Solesvik,Tatiana Iakovleva,Sylvia Encheva. Simulation and Optimization in Collaborative Ship Design:Innovative Approach[J]. Computer Science,2012,7467: 151-154.
    [14]Hao Cui, Osman Turan, Philip Sayer.Learning-based ship design optimization approach[J]. Computer-Aided Design,2012,44(3):186-195.
    [15]侯远杭,胡玉龙,王文全,郭春雨,王超.船型方案优选的多目标群决策方法[J].上海交通大学学报,2012,46(3):385-389.
    [16]姜哲,崔维成.多学科设计优化算法比较及其在船舶和海洋平台设计上的应用[J].船舶力学,2009,13(1):150-159.
    [17]黄海燕,王德禹.船舶初步设计的多目标优化研究(英文)[J].船舶力学,2009,13(3):416-425.
    [18]冯佰威,刘祖源,常海超.多学科设计优化技术在船舶初步设计中的应用[J].中国造船,2009,50(4):109-116.
    [19]李冬琴,杨永祥,蒋志勇.一种多学科设计优化近似模型构建方法[J].中国造船,2011,52(3):59-66.
    [20]潘彬彬,崔维成.基于有限元的整船结构多学科设计优化[J].中国造船,2010,51(1):47-54.
    [21]肖艳秋,孙厚芳,薛庆,等.船舶模块化设计建造关键技术研究[C].先进制造技术高层论坛暨第六届制造业自动化与信息化技术研讨会论文集,2007:199-206.
    [22]李永旺,姚寿广,陈宁.船舶模块化设计与制造的现状及发展方向[J].江苏船舶,2005(3):5-13.
    [23]陈劲,桂彬旺.模块化创新:复杂产品系统创新机理与路径研究[M].北京:水利水电出版社,2005.
    [24]王能建,贺泽,邱长华.协同设计及其在船舶设计中的应用[J].船舶工程,2004(4):15-17.
    [25]Alexandrov N M, Lewis R M.Analytical and computational aspects of collaborative optimization for multidisciplinary design[J]. AIAA J.2002,40:301-309.
    [26]Robert G. Keane J R.,John Mcintire, Howard Fireman,et al.The LPD 17 Ship Design: Leading a Sea Change Toward Collaborative Product Development[J].Naval Engineers Journal.2009,121(2):15-61.
    [27]Marina Z Solesvik.The Use of 3D Optical Measurement Systems in Collaborative Ship Design [J].Computer Science.2011(6874):30-36.
    [28]刘杰,周以齐,曲海明.基于高层体系结构的复杂产品协同设计管理方法[J].机械工程学报,2010(13):165-171.
    [29]杜松,林焰,纪卓尚.船舶协同设计中图形信息动态发布系统研究[J].武汉理工大学学报:交通科学与工程版,2007(2):187-190.
    [30]张俊,余剑峰.船舶异地协同设计设备资源库设计[J].船舶工程,2006(1):50-53.
    [31]吴天宝.船舶设计协同工作流与文件管理系统研发[D].大连:大连理工大学硕士论文,2008.
    [32]贺泽.基于AHP的船舶协同设计团队模型及资源评价方法研究[J].船舶工程,2008(2):79-83.
    [33]F. Stern, R Wilson, J. Longo. Paradigm for development of simulation based design for ship hydrodynamics [C]. Proceedings of The 8th International Conference on Numerical Ship Hydrodynamics,2003:1201-1208.
    [34]Bertram V, Thiart G D.Simulation-based ship design[C].Proceedings of Oceans-Europe, 2005:107-112.
    [35]Shin Y J,Monti A,Ponci F. Virtual power quality analysis for ship power system design [C].Proceedings of Instrumentation and Measurement Technology Conference,2004:1758-1763.
    [36]Hugan J C.Using simulation to evaluate cargo ship design on the LPD17 program[C]. Proceedings of Simulation Conference Proceedings,2000,1408-1410.
    [37]刘金林,曾凡明,吴家明,等.舰船动力装置虚拟设计与仿真系统的研究与开发[J].武汉理工大学学报:交通科学与工程版,2009,33(1):149-152.
    [38]袁华,赵耀,严俊.船舶虚拟制造系统体系设计及关键技术[J].华中科技大学学报:自然科学版,2009,37(4):126-129.
    [39]Hao Cui,Osman Turan. Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design[J].Computer-Aided Design.2010,42(11): 1013-1027.
    [40]Agostino Bruzzone.Simulation and genetic algorithms for ship planning and shipyard layout[J].SIMULATION.2011(87):523-537.
    [41]Alkana A.D, Gulezb K,Yilmaza H.Design of a robust neural network structure for determining initial stability particulars of fishing vessels[J].Ocean Engineering.2004,31: 761-777.
    [42]覃峰,詹志刚,杨波,肖金生.基于遗传算法的船舶推进系统船、机、桨匹配优化设计[J].武汉理工大学学报:交通科学与工程版,2003(1):50-52.
    [43]毛为民,伍先俊,朱石坚.遗传算法在船舶动力机械混合隔振系统优化设计中的应用[J].中国造船,2005(4):19-25.
    [44]曾志波,丁恩宝,唐登海.基于BP人工神经网络和遗传算法的船舶螺旋桨优化设计[J].船舶力学,2010,14:20-27.
    [45]侯磊.基于多目标粒子群算法的船舶主尺度优化设计研究[J].船舶力学,2011,15(7):784-790.
    [46]陈金峰,杨和振,马宁,等.知识工程应用于船舶局部构件智能化设计研究[J].中国造船,2010,51(4):201-208.
    [47]柳卫东,陈兵.新造船能效设计指数及其对船舶设计的影响[J].船舶工程,2010,32(2):17-21.
    [48]周宏,蒋志勇,侯正友.数字化造船设计与建造标准体系先期研究[J].船舶工程,2012,34:26-28.
    [49]Calvano C N,Jons O,Keane R G.Systems engineering in naval ship design[J]. NAVAL ENGINEERS JOURNAL,2000,112:45-57.
    [50]SCHACHTER Richard David, FERNANDES Antonio Carlos, NETO Sdepan Boyosian. The solution-focused design process organization approach applied from ship design to offshore platforms design[J] Journal of offshore mechanics and Arctic engineering,2006,128: 294-303.
    [51]Sebnem Helvacioglu, Mustafa Insel.A reasoning method for a ship design expert system[J]. Expert Systems,2005 (22):72-77.
    [52]Delatte B, Butler A.An object-oriented model for conceptual ship design supporting case-based design[J].MARINE TECHNOLOGY AND SNAME NEWS,2003,40: 158-167.
    [53]Freeman P,Newell A.A Model for Functional Reasoning in Design[C].Proceedings of the Second IJCAI,London,1971:621-640.
    [54]Mittal S,Frayman F.Towards a generic model of configuration tasks[C].Proc.Eleventh International Joint Conference on Artificial Intelligence(IJCAI-89).California,1989: 1395-1401.
    [55]Gunter A,Kuhn C.Knowledge-based configuartion-suvrey and future dieretions[C].5th Binanual German Conefrence on Knowledge Based Systems,1999 Germany:Porceedings Springer,1999:47-66.
    [56]李伟.基于约束的产品配置方法和产品优化配置研究[D].合肥:合肥工业大学博士论文,2005.
    [57]E. Ostrosi, A.J. Fougeres,M. Ferney,et al.A fuzzy configuration multi-agent approach for product family modelling in conceptual design[J] Journal of Intelligent Manufacturing, 2012,23(6):2565-2586.
    [58]Egon Ostrosi,Salima Tie Bi,Lianda Haxhiaj. A grammar approach for combining product configuration modelling with behavioural aspects and simulations[J].The International Journal of Advanced Manufacturing Technology,2012,60(1):29-54.
    [59]Myeong-jo Son,Sang Chul Lee,Ki-chang Kwon,et al. Configuration estimation method for preliminary cost of ships based on engineering bills of materials[J].Journal of Marine Science and Technology.2011,16(4):367-378.
    [60]Michel Aldanondo,Elise Vareilles.Configuration for mass customization:how to extend product configuration towards requirements and process configuration[J] Journal of Intelligent Manufacturing,2008,19(5):521-535.
    [61]Egon Ostrosi,Salima Tie Bi. Generalised design for optimal product configuration[J].The International Journal of Advanced Manufacturing Technology,2010,49(l):13-25.
    [62]Jangyong Lee,Soonhung Han. Knowledge-based configuration design of a train bogie[J]. Journal of Mechanical Science and Technology,2010,24(12):2503-2510.
    [63]Ateekh Ur Rehman,Lateef Ur Rehman.Manufacturing configuration selection using multicriteria decision tool[J].Int J Adv Manuf Technol,2013,65:625-639.
    [64]D. D. Damayanti,I. S. Toha. Model of Spine Configuration Assembly Line Design for a Product Family[C].Industrial Engineering and Engineering Management (IEEM), Singapore,2011:763-767.
    [65]L. Hvam,M. Bonev,B. Denkena,et al.Optimizing the order processing of customized products using product configuration[J].Production Engineering,2011,5(6):595-604.
    [66]J. Badin,D. Monticolo,D. Chamoret.Using the knowledge configuration model to manage knowledge in configuration for upstream phases of the design process[J].International Journal on Interactive Design and Manufacturing (IJIDeM),2011,5(3):171-185.
    [67]刘琼.面向大批量定制的产品配置技术及系统研究[D].合肥:合肥工业大学博士论文,2008.
    [68]刘晓冰,袁长峰,邢英杰,等.基于类和特征的产品配置建模[J].计算机集成制造系统-CIMS,2005,8:1057-1063.
    [69]J.I.van Hemert.Constraint satisfaction problems and evolutionary algorithms:A reality check [C].The 12th Belgium/Netherlands Conf.Artificial Intelligence (BNAIC'00),De Efteling, Tilburg, Netherlands,2000:267-274.
    [70]邵伟平.基于知识的产品配置理论及其关键技术研究[D].沈阳:东北大学博士论文,2007.
    [71]王长青,李爱军,王伟,等.基于标准特征多项式的特征值配置设计方法[J].西北工业大学学报,2009,27(2):260-263.
    [72]张雷,刘光复,胡迪,等.基于约束满足问题的绿色产品配置设计[J].机械工程学报,2010,19:117-124.
    [73]艾辉,万立,熊体凡,等.大规模定制环境下的参数驱动产品配置设计方法研究[J].中国机械工程,2010,21(15):1820-1824.
    [74]张树有,王彦超,裘乐淼.面向订单产品配置设计的非标结构单元层次转化技术[J].计算机集成制造系统,2010,16(09):1809-1815.
    [75]张萌,李国喜,龚京忠,吴宝中.基于有序树的产品快速配置设计技术[J].计算机集成制造系统,2010,16(11):2333-2340.
    [76]任彬,张树有.复杂装备模糊配置的反馈式解耦设计[J].浙江大学学报(工学版),2011,45(09):1622-1629.
    [77]艾辉,陈立平,李玉梅,等.基于性能仿真的产品配置设计方法[J].中国机械工程,2011,22(07):853-859.
    [78]谭建荣,张树有,纪杨建,等.集成环境下大批量定制的产品配置设计技术及其应用[J].中国机械工程,2004,(19):1706-1708.
    [79]李斌,陈立平,钟毅芳.基于多目标遗传算法的产品优化配置研究[J].中国机械工程,2004(20):1819-1822.
    [80]郭传龙,裘乐淼,张树有,等.基于耦合强度设计结构矩阵的复杂产品配置模型优化及应用[J].计算机集成制造系统,2012,18(4):673-683.
    [81]吴庆鸣,赵华东,张志强.基于遗传算法的产品参数优化配置[J].武汉大学学报(工学版),2008,41(1):112-115.
    [82]雒兴刚,杨勇.基于联合分析的可配置产品优化选择方法[J].中国机械工程,2012,23(5):578-584.
    [83]刘琼,赵韩,郑彩霞,张明伟.模块化产品优化配置问题的混合PSO求解方法[J].农业机械学报,2008,11:117-121.
    [84]陈永亮,耿文轩,满佳,等.基于结构配置与性能改进综合评价的机床结构适应性设计[J].中国机械工程,2009,20(9):1029-1033.
    [85]徐剑,裘乐淼,张树有.知识反馈的递进式产品配置设计技术[J].计算机集成制造系统,2011,17(6):1135-1143.
    [86]郝佳,杨海成,阎艳,等.面向产品设计任务的可配置知识组件技术[J].计算机集成制造系统,2012,18(4):705-712.
    [87]曾富洪,周丹,郭刚.面向产品设计的BOM配置研究[J].中国机械工程,2010,21:2468-2474.
    [88]李玉梅,万立,熊体凡.基于智能化配置的产品方案设计方法[J].中国机械工程,2009,20(19):2274-2279.
    [89]Hemert J, Solnon C. A Study into ant colony optimisation, evolutionary computation and constraint programming on binary constraint satisfaction problems[C].Evolutionary Computation in Combinatorial Optimization (EvoCOP 2004), New York:Springer Press, 2004:114-123.
    [90]杨轻云.约束优化问题中离散粒子群算法研究[D].长春:吉林大学博士论文,2006.
    [91]H.S. Wang. Configuration change assessment:Genetic optimization approach with fuzzy multiple criteria for part supplier selection decisions[J].Expert Systems with Applications, 2008(34):1541-1555.
    [92]A. Rama Mohan Rao, K. Sivasubramanian.Multi-objective optimal design of fuzzy logic controller using a self configurable swarm intelligence algorithm[J].Computers and Structures,2008 (86):2141-2154.
    [93]Zhonghui Xu,Ming Liang. Concurrent Optimization of Product Module Selection and Assembly Line Configuration:A Multi-Objective Approach [C].ASME 2005:875-884
    [94]Yigit AS, Ulsoy A G, Allahverdi A. Optimizing modular production in a reconfigurable manufacturing system[J].Intell Manuf 2002(13):309-316.
    [95]Chunjing Zhou,Zhihang Lin,Chuntao Liu.Customer-driven product configuration optimization for assemble-to-order manufacturing enterprises[J].Int J Adv Manuf Technol,2008,38:185-194.
    [96]魏巍,谭建荣,冯毅雄,等.基于改进的非支配排序遗传算法的模块化产品多目标配置优化研究[J].计算机集成制造系统,2007(11):2092-2098
    [97]张利,尚守锋,张建军.产品配置方案优选模型研究[J].合肥工业大学学报(自然科学版),2008,31(9):1390-1394
    [98]魏晓鸣,刘晓冰,杨春立.产品配置设计评价模型研究[J].大连理工大学学报,2006,46(4):510-515.
    [99]高鹗,任文江.船舶动力装置设计[M].上海:上海交通大学出版社,1991.
    [100]Gruber T R.A Translation Approach to Portable Ontology Specifications[J].Knowledge Acquisition,1993(5):199-220.
    [101]高鹏,林兰芬.基于本体映射的产品配置模型自动获取[J].计算机集成制造系统-CIMS.2003,9(9):800-807
    [102]Kennedy, J.Eberhart.R.C. Particle swarm optimization[C]. Proc. of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ, Perth,Australia:IEEE service 1995:1942-1948
    [103]Shi, Y and Eberhart, R.C.Empirical study of particle swarm optimization[C]. Proceedings of the World Multi conference on Systemics[C].Cybernetics and Informatics, Orlando, FL, 2000:1945-1950.
    [104]J.Kennedy,R.C.Eberhart. A discrete binary version of the particle swarm algorithm[C]. International Conference on Systems, Man, and Cybernetics,1997:4104-4108.
    [105]Sharaf, Adel M. A discrete particle swarm optimization technique (DPSO) for power filter design[C]. Design and Test Workshop (IDT),2009 4th International, Riyadh,2009:1-6.
    [106]Laskari E C, Parsopoulos K E,Vrahatis M N.Particle swarm optimization for integer programming [C].Proc. of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA,2002:1582-1587.
    [107]肖晓伟,肖迪,林锦国等.多目标优化问题的研究概述[J].计算机应用研究,2011(3):805-808.
    [108]王小平,曹立明.遗传算法:理论、应用及软件实现[M].西安:西安交通大学出版社,2002.
    [109]Farmani R,Savic D A,Walters G A.Evolutionary multi-objective optimization in water distribution network design[J]. Eng Optim,2005,37(2):167-83.
    [110]钟掘.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社,2007.
    [111]闻邦椿,张国忠,柳洪义.面向产品广义质量的综合设计理论与方法[M].北京:科学出版社,2007.
    [112]邹劲.船舶设计集成化研究[D].哈尔滨:哈尔滨工程大学博士论文,2003.
    [113]战翌婷.船舶数字化设计软件平台关键技术研究[D].大连:大连理工大学博士论文,2008.
    [114]黎南.现代船舶企业CIMS关键技术研究[D].大连:大连理工大学博士论文,2009.
    [115]姚竞争.数字化造船一体化数据平台关键技术研究[D].哈尔滨:哈尔滨工程大学博士论文,2011.
    [116]金菊良,魏一鸣.复杂系统广义智能评价方法与应用[M].北京:科学出版社,2008.
    [117]刘兴堂.复杂系统建模理论、方法与技术[M].北京:科学出版社,2008.
    [118]L.Schoofs,B.Naudts.Swarm intelligence on the binary constraint satisfaction problem[C]. IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA.2002: 1444-1449.
    [119]Jano I.van Hemert, Christine Solnon.Astudy into ant colony optimisation, evolutionary computation and constraint programming on binary constraint satisfaction problems[J].In: Proc. EvoCOP Berlin:Springer,2004:114-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700