用户名: 密码: 验证码:
沥青路面抗车辙性能评价及结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辙是沥青路面的一种损坏形式,表观表现为沥青路面轮迹带范围内路面的下凹,有时伴随轮迹带边缘的隆起,这种现象主要是由于路面沥青混合料被压密和剪切变形所致,并且通常发生在面层。随着广东省高速公路建设的飞速发展,公路建设的重心正逐步从经济发达的珠三角等平原地区向山岭重丘地区转移,山区高速公路长陡坡上坡路段沥青路面车辙病害已成为一个不可回避的问题,并也将愈加突出。由于山区高速公路长陡坡路段的特殊性,其病害现象较普通路段更易出现且更为严重:山区高速公路沿线地形复杂,路线纵坡大,长陡坡路段多,受重载、超载及低速行车等诸多不利因素影响,车辙病害大量出现,特别在纵坡较大的上坡路段,当持续高温时,车辙形成和发展快,严重影响行车安全。
     专门针对陡坡路段的路面结构一直是各类路面结构设计和施工规范(指南)的空白,本研究的目的是进一步了解广东省沥青路面结构在现有气候和交通等条件下的车辙特性,丰富陡坡路段路面病害的知识积累,进而完善广东省路面典型结构设计指南。这些工作对于提高沥青路面整体质量,特别是待建山区高速公路的质量具有前瞻性和重要意义。基于上述背景,本文从沥青混合料设计理论出发,基于数字图像技术与散体力学理论,尝试将沥青混合料的宏观力学性能与细观结构特性联系起来。同时借助独创的评价平台,形成一套新的针对慢速重载交通的沥青混合料评价方法体系,为解决高速公路长陡坡路段的车辙损害问题提供了重要指导。论文的主要工作和创新成果如下:
     1.通过对现有混合料设计理论的总结与混合料体积设计法的研究,基于混合料颗粒干涉思想(细集料干涉与沥青胶浆干涉)与体积填充思想对分级掺配法进行了再优化,形成抗车辙功能型混合料的设计方法。
     2.通过对国内外小型车辙试验仪的总结与现有车辙试验方法优缺点的分析,认为现有的试验方法无法较好地模拟实际路面的受力状态。基于“主驱动轮式路面材料加速加载系统”设计开发了DWPA车辙试验系统,通过不同车辙试验结果的对比,结合灰色关联性分析得出适用于DWPA车辙试验的沥青混合料抗车辙性能评价指标,分析认为采用混合料蠕动变形阶段的变形斜率可较好的反映材料的高温稳定性。
     3.基于数字图像技术对混合料的粗集料接触特性进行分析,提出两种粗细集料划分方法:基于多点支撑理论的划分方法与基于散体力学理论的划分方法。通过集料接触特性影响因素的分析,发现试件成型方法影响了混合料粗集料倾角大小,粗集料含量大的级配在相同截面面积中形成更多的接触点与更大的集料倾角。由于混合料在相同成型方式下所受的压实功是近似的,因而粗集料倾角的大小反映了混合料在成型过程中所能达到的稳定状态。
     4.以初始接触点数量以及沥青性能指标为输入变量建立两种车辙试验的车辙深度预估模型。定义了最佳接触点数Nopt以及最低接触点数Nmin,试图将接触点数量指标引入混合料设计中,作为级配选择的参考。
     5.基于散体力学理论提出沥青混合料剪切模量预估模型,讨论了以接触点数作为材料高温稳定性评价指标的合理性,单轴贯入试验结果表明预估模型可较好的预测混合料抗剪模量。
     6.通过对高速公路长陡坡路段沥青路面车辙损害的文献调查,详细讨论分析了车辙损害的主要影响因素,指出行车速度缓慢是长陡坡路段交通流的重要特性。结合大量的室内车辙试验数据与实际路面调查数据,建立了沥青路面全结构的车辙深度预估模型,该模型能较好地预估沥青路面车辙深度,表明基于剪切模量与等效温度等因素所建立的预估模型基本正确。最后通过对28种路面结构组合的车辙深度预估,总结归纳出适用于广东省的不同交通等级、行车速度(纵坡坡度)的高速公路长陡坡路段路面结构组合方案。
Rutting is one of the damage forms of asphalt pavement, which appears as the concaveof the wheel tracks and some times accompanied by the bulge of the track edge. The cause ofrutting is the compaction and shear deformation of asphalt mixtures, and which mainlyappears in the surface layer of pavement. With the rapid development of expresswayconstruction in Guangdong Province, the trend of constructure is gradually being transferredfrom the Pearl River Delta to the mountainous and hilly areas. The aphalt pavement ruttingdamages in long-steep section of expressway in mountainous areas has become aunavoidableissues, and will also become more prominent. Due to the particularity of thelong-steep sections of expressway in mountainous areas, the pavement damage is moreserious than ordinary sections: the expressway has to take on the complex terraion of themountainous areas and to adopt long and steep slopes; overload and low-speed traffic areunfavor to asphalt pavements. As a result, the rutting damages appear in these sections underhigh temperature, which will be a serious impact on traffic safety.
     There has been being blank in the pavement design and construction specification (Guide)for pavement structure design in long-steep section. The aim of this study is to futherunderstand the rutting characteristics of asphalt pavement under the climate and trafficcondictions in Guangdong Province. By enriching the pavement diseases of the long-steepsections, the pavement structure design guide of Guangdong Province will be improved.These works is favor to improve the overall quality of asphalt pavement, and is of wellsignificance for to be built expressway in mountainous areas. Based on these backgrounds,this paper begins with the asphalt mixture design theory, and based on the digital imageprocessing technology and Granular Mechanics, tries to connect the macro-mechanicalproperties of asphalt mixtures to the microstructural characteristics. Based on a evaluationplatform, a new asphalt mixture evaluation method for heavy traffic is promoted to provideimportant guidance for solution to the rutting damage in long-steep section. The main workand innovations of this paper are as follows:
     1. By summarizing the existing mix design theories and volume design method, theMultilevel Mixing Method is optimizated based on particle interference ideological (fineaggregate interference and asphalt mastic interference) and volume filling ideological. At last,the design method for anti-rutting asphalt mixture is promoted.
     2. Through summarizing the specialtyies and advantages and disadvantages of rutting test devices at home and aborad, a fact is found that the existing rutting tests do not wellsimulate the stress state of pavement. The DWPA rutting test system is empoldered based on“Driving Wheel Pavement Analyzer”. The evaluation index for DWPA rutting test is set upaccording to the contrast of3different rutting test methods and Grey correlation analysis. Thedeformation slope in the creep deformation stage well reflects the high temperature stabilityof mixtures.
     3. The contact characteristic of coarse aggregates of mixtures is analyzed based onDigital Image Processing technology. Two kinds of fine to coarse aggregate divided methodsare promoted, one is based on Multi-point support theory and the other is Granular Mechanicstheory. The results of aggregate contact characteristics analysis show that, the mixturespecimen molding method affects the inclination of coarse aggregate. Gradations containedmore coarse aggregates form more contact points and large inclination in the same sectionarea. Considering that the compaction energy in the same the molding way is approximate,the inclination of coarse aggregate reflects the stable state in the molding process.
     4. Two rut depth prediction models is established adopting the initial amount of contactpoints and asphalt performance index as the input parameters. Indexes of optimal number ofcontact point Noptand minimum number of contact point Nminare defined, which are supposedto be applied into the mixture design as references for gradation selection.
     5. The shear modulus prediction models are established according to GranularMechanics theory. The reasonableness of amount of contact points as the evaluation index formaterial stability at high temperature is discussed. And the test results of uniaxial penetrationtests show that the models can well predict the shear modulus of asphalt mixtures.
     6. The main factors that influence the rutting damage is detailed discussed based on theliterature survey of the asphalt pavement rutting damage in long-steep section of expressway.Slow traffic speed is the important characteristics of the long-steep section traffic flow. A rutdepth prediction model for asphalt pavement is established based on large amount of indoorrutting tests and pavement survey data. The prediction model can well predict the rut depth,which indicates that the model is basically correct. Lastly,28pavement structures are taken inthe prediction model. According to the prediction results, pavement structure combinationssuitable for different traffic levels and speed are summaried.
引文
[1]沈金安,李福普,陈景.高速公路沥青路面早期损坏与防治对策[M].北京:人民交通出版社,2004.12:157-217.
    [2]梁毅,关宏信,张起森,等.高速公路大纵坡和连续上坡沥青路面车辙病害调查分析[J].中外公路,2008(05):68-70.
    [3]卢辉.长陡坡路段沥青路面抗车辙技术研究[D].华南理工大学,2007.4.
    [4]党国兴.陡长坡路段多尺度效应抗车辙沥青混合料研究[D].长安大学,2009.5.
    [5]陆兆峰,何兆益,秦旻.采用天然岩沥青改性的沥青混合料路用性能[J].中南大学学报(自然科学版),2010(12):2407-2411.
    [6] Karlm Chatt, HyUng B. Kim, Kyong KYun, Joe P. Mahoney, Carl L. Monismith. FieldInvestigation into Effeets of Vehiele Speed and Tlre Pressure on Asphalt Conerete PavementStrains Thursday,January18,2007.
    [7] Jorge B. Sousa, Joseph Craus, Carl L. Monismith. Summary Report on PermanentDeformation in Asphalt Concrete[R]. Washington: Nation Research Council,1991.
    [8]胡玲玲,卢辉,张肖宁.高温条件下长陡坡路段沥青混凝土路面结构分析[J].公路,2009(10):68-72.
    [9]邓学钧.路基路面工程[M].北京:人民交通出版社,2006:329-344.
    [10]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005.11:214-219.
    [11]关宏信,张起森,罗增杰.考虑温度梯度沥青路面面层全厚式车辙试验[J].土木工程学报,2011(6):143-147.
    [12] Sousa, J.B., and Weissman S.L. Modeling Permanent Deformation of Asphalt-AggregateMixes[J]. Journal of the Association of Asphalt Paving Technologists. Association of AsphaltPaving Technologists, St. Paul, Minnesota,1994,63:224–256.
    [13] Sousa, J.B., S.L. Weissman, J.L. Sackman, et al. Nonlinear Elastic Viscous with DamageModel to Predict Permanent Deformation of Asphalt Concrete Mixes[C]. TransportationResearch Record1384, Transportation Research Board, National Research Council,Washington, D.C.,1993.
    [14]林绣贤.沥青层永久变形计算中有关参数确定方法[J].中国公路学报,1989(2):8-13.
    [15] Karim Chatti, Hyung B. Kim, Kyong K. Yun, et al. Monismith Field InvestigationEffects of Vehicle Speed and Tire Pressure on Asphalt Concrete Pavement Strains Thursday,January18,2007.
    [16] De Beer, M., and Fisher, C. Contact Stress of Pneumatic Tires Measured with theVehicle-road Surface Pressure Transducer Array (VRSPTA) System for the University ofCalifornia at Berkeley (UCB) and the Nenada Automotive Test Center (NATC). CSIR ReportCR-97/053[R]. Council for Sc. and Ind. Res. Pretoria, South Africa.1997.
    [17] Weissman, S. L. Influence of Tire-pavement Contact Stress Distribution on Developmentof Distress Mechanisms in Pavement[J]. Trans. Res. Rec. Transportaion Research Borad,Washington, D.C.1999,1655:161-167.
    [18] Monismith, C. L., Harvey, J.T., Long, F., Weissman, S. Test to Evaluate the Stiffness andPermanent Deformation Characteristics of Asphalt/binder-aggregate Mixes-A Criticaldiscussion[C]. Technical Memorandum TU-UCB-PRC-2001-1, Pvement Research Center,CAL/APT Prog., Inst of Tran. Studies, Univ. of Calif., Berkeley.2000.
    [19] J. Hua and T. White. A Study of Nonlinear Tire Contact Pressure Effects on HMARutting[J]. The International Journal of Geomechanics.2002,2(3):353–376.
    [20] Jianfeng Hua. Finite Element Modeling and Analysis of Accelerated Pavement TestingDevices and Rutting Phenomenon[D]. PhD dissertation of Purdue University.2000,8.
    [21]李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报(自然科学版).2006(26),6:19-22.
    [22] Rashid K., Abu Al-Ruba, Masoud K., et al. Comparing finite element and constitutivemodeling techniques for predicting rutting of asphalt pavements[J]. International Journal ofPavement Engineering,2011(1):1-17.
    [23] K. Su, L.J. Sun and Y. Hachiya. Rut Prediction for Semi-rigid Asphalt Pavements[J].First International Symposium on Transportation and Development Innovative Best Practices,2008.
    [24] Yang H-Huang.Pavement Analysis and Design[M].Prentice-Hall Inc.1993.
    [25]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社.2001.
    [26] Thomas D. White, John E. Haddock, Adam J. T. Hand, et al. NCHRP Report468-Contribution of Pavement Structural Layers to Rutting of Hot mix Asphalt Pavement [R].National Academy Press, Washington, D.C.2002.
    [27]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京,人民交通出版社.200:173-186.
    [28]卢亮.功能型沥青混合料及其设计方法研究[D].华南理工大学,2009.6.
    [29] WIMPY S. Determination of Critical Asphalt Pavement Voids Through LaboratoryAging[D]. Civil Engineering, University of Connecticut,1992.
    [30] The Asphalt Institute. Mix Design Methods for Asphalt Concrete and Other Hot-mixTypes(MS-2)[M]. Asphalt Association of America,1997.
    [31] HARVEY J T, TSAI B W. Effects of Asphalt Content and Air Void Content on MixFatigue and Stiffness[J]. Transportation Research Record. Washington D.C: TRB,1996.38-45.
    [32]李好新,索智,王培铭.不同空隙率沥青混合料的形变及破坏[J].建筑材料学报.2008,11(3):306-310.
    [33]黄冲.半柔性路面材料的体积稳定性与抗裂性能研究[D].武汉理工大学,2010.5.
    [34]黄芳,吴国雄,王燕等.半柔性路面复合材料抗压回弹模量研究[J].重庆交通大学学报(自然科学版),2008(2):65-69.
    [35]吴国雄,张洋,王爱民等.半柔性路面高温稳定性试验研究[J].重庆交通学院学报,2007(2):52-55.
    [36]郝培文,程磊,林立.半柔性路面混合料路用性能[J].长安大学学报(自然科学版),2003(2):1-6.
    [37]张荣鹍.高性能灌注式半柔性路面材料的研究与应用[D].武汉理工大学,2009.6.
    [38]凌天清,周杰,赵之杰等.灌入式半柔性路面用聚合物改性水泥砂浆的优选研究[J].公路交通科技,2009(6):24-28.
    [39]陈凯.我国车辙试验与汉堡车辙试验对比研究[D].长安大学,2008.6.
    [40] Nam Tran, Randy West, Buzz Powell, et al. Evaluation of AASHTO Rut Test ProcedureUsing the Asphalt Pavement Analyzer[R].2006NCAT Pavement Test Track pooled fundstudy.
    [41] André de Fortier Smit, Fred Hugo, Yetkin Yildirim, et al. A DISCUSSION OF MMLS3PERFORMANCE TESTING OF LABORATORY PREPARED HMA SLABS ANDBRIQUETTES COMPARED WITH HAMBURG AND APA WHEEL TRACKING TESTS.
    [42]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社.2001.
    [43]徐东,基于ALF加速加载试验的沥青路面车辙有限元模拟[D].长安大学.2001.
    [44] De Beer M., Sadzik E.M., Fisher C., et al. Tyre-pavement Contact Stress Patterns Fromthe Test Tyres of The Gautrans Heavy Vehicle Simulator (HVS) MKIV+[C].24th AnnualSouthern African Transport Conference, SATC2005: Transport Challenges for2010. Pretoria,South Africa.2005.
    [45] Kumara M.W., Tia M., Bergin Michael, et al. Evaluation of Early Strength Requirementof Concrete for Slab Replacement Using Accelerated Pavement Testing[J]. Journal ofTransportation Engineering.2006,132(10):781-789.
    [46] Korkiala-Tanttu L., Dawson A. Relating Full-scale Pavement Rutting to LaboratoryPermanent Deformation Testing[J]. International Journal of Pavement Engineering.2007,8(3):19-28.
    [47] Kruger J., Horak E. The Appropriateness of Accelerated Pavement Testing to Assess theRut Prediction Capability of Laboratory Asphalt Tests[C].24th Annual Southern AfricanTransport Conference, SATC2005: Transport Challenges for2010. Pretoria, South Africa.2005:380-390.
    [48] Lily D. Poulikakos, Gerald C. J. Morgan, Rico Muff, et al. Interpretation of AcceleratedLaboratory Testing of the Prototype Modulas Stress in Motion Sensor with the MMLS3LoadSimulator[J]. JOURNAL OF TRANSPORTATION ENGINEERING.2008,10:414-422.
    [49] Hitch L.S., Russell R.B.C. Sand-bitumen for road bases: an examination of five methodsof measuring stability[R]. Transport&Road Research Laboratory (Great Britain), TRRLReport,1976.
    [50] Meier Jr. W.R., Elnicky Edward J. Laboratory evaluation of shape and surface texture offine aggregate for asphalt concrete[J]. Transportation Research Record,1989,1250:25-34.
    [51] Oduroh Paul K., Mahboub Kamyar C., Anderson P.E, et al. Flat and elongatedaggregates in superpave regime[J]. Journal of Materials in Civil Engineering,2000,12(2):124-130.
    [52] Barksdale Richard D. Performance of asphalt concrete pavements[J]. American Societyof Civil Engineers, Transportation Engineering Journal,1977,103(1):55-73.
    [53] Deatherage J. Harold, Chew Chong Key, Burdette Edwin G. Behavior of prestressedAASHTO girders under static loading[J]. Transportation Research Record,1993,1393:146-153.
    [54] Van de Loo P.J. Practical approach to the prediction of rutting in asphalt pavements: theShell method[J]. Transportation Research Record,1976,616:15-21.
    [55] Monismith Carl L., Finn Fred N. Flexible pavement design: State-of-the-art[J]. AmericanSociety of Civil Engineers, Transportation Engineering Journal,1977,103(1):1-53.
    [56] Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATEDPAVEMENT STRUCTURES, National Cooperative Highway Research Program.
    [57] Sousa Jorge B., Way George, Harvey John T., et al. Comparison of mix designconcepts[J]. Transportation Research Record,1995,1492:151-160.
    [58] He Zhi-wei. OPAC2000: A new pavement design system[D]. University of Waterloo.1997.
    [59]黄卫,顾维平,方福森.沥青路面设计方法的发展[J].公路,1996,3:21-28.
    [60] WB Fuller, SE Thompson. The laws of proportioning concrete[J]. Transactions AmericanSociety of Civil Engineers,1907,59:67-143.
    [61] Yaghoubi Ehsan, Mansourkhaki Ali. Effect of "n" exponent in fuller equation ofgradation on hot mix asphalt resistance to permanent deformation[J]. International Journal ofPavement Research and Technology,2010,3(6):336-342.
    [62]朱照宏,许志鸿.柔性路面设计理论和方法[M].上海:同济大学出版社.1987:211-256.
    [63]王立久,刘慧.矿料级配设计理论的研究现状与发展趋势[J].公路,2008,1:170-174.
    [64]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,1:82-84.
    [65] C.A.G. Weymouth. A study of fine aggregate in freshly mixed mortars and concretes[C].Proceedings of American Society for Testing and Materials Part II.1938,354-357.
    [66]张肖宁.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36.
    [67]邹桂莲,张肖宁,王绍怀等.富沥青混合料的CAVF法设计[J].公路,2002,(3):76-79.
    [68] William R.Vavrik, Samuel H.Carpenter and Robert Bailey et al. The Bailey Method ofgradation evaluation: the influence of aggregate gradation and packing characteristics onvoids in the mineral aggregate[J]. Journal of the Association of Asphalt Paving Technologists,2001,70:1-5.
    [69]池漪,尹健.再生粗骨料级配的分形特征[J].建筑材料学报,2009,12(2):177-180.
    [70]罗立红.高性能沥青混合料设计与路用性能研究[D].天津:河北工业大学,2006.
    [71]张肖宁,王绍怀,吴旷怀,等.沥青混合料组成设计的CAVF法[J].公路,2001,12:17-21.
    [72]尹剑辉.富沥青混合料的体积设计方法研究[J].中外公路,2007,27(1):183-187.
    [73]葛折圣,张肖宁,高俊合.富沥青混合料设计方法的改进[J].公路交通科技,2007,24(11):48-50.
    [74] William R V, William J P, Samuel H C. Bailey method for gradation selection in HMAmixture design[R]. Transportation Research Circular Number E-C044,2002.
    [75] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman.1983.
    [76]夏春,刘浩吾.混凝土细骨料级配的分形特征研究[J].西安交通大学学报,2002,37(25):186-189.
    [77]姜晓伟,必永宁,高跃.不同分维骨料级配对混凝土性能影响的研究[J].房材与应用,2006,34(2):5-7.
    [78]池漪,尹健.再生粗骨料级配的分形特征[J].建筑材料学报,2009,12(2):177-180.
    [79]王谦源,胡京爽.混凝土集料级配与分形[J].岩土力学,1997,18(3):93-99.
    [80]李国强,邓学钧.集料的分形级配研究[J].重庆交通学院学报,1995,14(2):38-43.
    [81]松野三朗.道路铺装的设计[M].東京:朝倉書店,1974.
    [82]林绣贤. CBR设计法的由来与发展[J].国外公路,1981,5:11-18.
    [83]贾致荣.基于CBR法的矿山道路路面设计[J].金属矿山,2008,9(387):35-37.
    [84] Washington State Department Design. WSDOT Pavement Guide[M]. Washington StateDepartment of Transportation,1995.
    [85]王端宜.设计沥青路面及其方法的研究[D].广州:华南理工大学,2003.
    [86] C.P. Valkering, F.D.R. Stapel, J Lijzenga. The SHELL Pavement Design Method on aPersonal Computer[J].7th International Conference on Asphalt Pavements, Nottingham.1992:351-374.
    [87]朱照宏,许志鸿.柔性路面设计的解析法[M].上海:同济大学出版社.
    [88] Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures,Appendix BB: Design Reliability[M], National Cooperative Highway Research Program,2002.
    [89] Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures,Appendix II-1: Calibration of Fatigue Cracking Models for Flexible Pavements[M], NationalCooperative Highway Research Program,2002.
    [90]贾渝.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2004.
    [91]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2005.
    [92]许志鸿,陈兴伟,刘红,等. Superpave级配范围[J].交通运输工程学报,2003,3(3):1-5.
    [93] He Zhiwei. OPAC2000: A New Pavement Design System[D]. Waterloo, Ontario,Canada: University of Waterloo,1997.
    [94] Lees G. The rational design of aggregate gradings for dense asphaltic compositions[C].Proceedings of Asphalt Paving Technologies. Kansas City, USA1970:60-90.
    [95] Yahia A. Abdel-Jawad. Abdullah, et al. Design of maximum density aggregate grading[J]. Construction and Building Materials,2002,16(8):495-508.
    [96]潘艳珠,王端宜,张肖宁.开级配混合料设计方法研究[J].公路交通科技,2007,8:67-71.
    [97]虞将苗,詹小丽,卢亮,等.沥青混合料抗车辙能力优化设计[J].公路交通科技,2009,26(9):1-5.
    [98] JTG E42-2005,公路工程集料试验规程[S].北京:人民交通出版社,2005.
    [99]郝培文,徐金枝,周怀治.应用贝雷法进行级配组成设计的关键技术[J].长安大学学报(自然科学版),2004,24(6):1-6.
    [100]雷静芸.中面层沥青混合料级配参数优化研究[D].西安:长安大学,2008.
    [101]张争奇,张卫平,李平.沥青混合料粉胶比[J].长安大学学报(自然科学版),2004,24(5):7-10.
    [102]王鸿博,钱春香,王修田.粉胶比与集料级配对开级配沥青混凝土性能的影响[J].公路,2006,2:153-156.
    [103]黄晓军,刘建,田斌,等.粉胶比对沥青混合料路用性能影响的试验研究[J].公路,2011,12:172-176.
    [104] JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2004.
    [105] Lai J.S. Evaluation of Rutting Characteristics of Asphalt Mixes Using Loaded WheelTester[R]. Georgia: Georgia Department of Transport,1986.
    [106] Tram Nam, West Randy C, Powell Buzz, et al. Evaluation of AASHTO Rut TestProcedure Using the Asphalt Pavement Analyzer[J]. Journal of the Association of AsphaltPaving Technologists,2009(78):1-24.
    [107] Aschenbrener, T. Evaluation of Hamburg Wheel-Tracking Device to Predict MoistureDamage in Hot Mix Asphalt [J]. Transportation Research Record,1995:193-201.
    [108] Messersmith P., Jones C., Wells C. A Contractor’s Experience with Polymer ModifiedAsphalt in Alabama[C]//78thAnnual Meeting of the Transportation Research Board.Washington, D.C.: Transportation Research Board,1999.
    [109] Aschenbrener T. Comparison of Results Obtained from the French Rutting Tester WithPavement of Know Field Performance[R].[S.I.]: Colorado Department of Transportation,1992.
    [110] Williams R Christopher, Prowell Brian D. Comparison of Laboratory Wheel-trackingTest Results with WesTrack Performance[J]. Transportation Research Record,1999:121-128.
    [111] Pan C., T.D. White., T.R. West. Effect of fine aggregate Angularity on Asphalt MixturePerformance[R]. West Lafayette: Purdue University,1999.
    [112] Stiady James1, Hand Adam, White Thomas. Quantifying contributions of aggregatecharacteristics to HMA performance using PURWheel laboratory tracking device[C]//ASTMSpecial Technical Publication. Orlando, FL, United states: American Society for Testing andMaterials,2001:1-15.
    [113] Epps A., Ahmed T., Little D. C., et al. Performance Assessment with the MMLS3atWesTrack[J]. Asphalt Paving Technology: Association of Asphalt Paving TechnologistsProceedings of the Technical Sessions,2002,70:509-542.
    [114] R.B. Mallick, J.A. Bergendahl. An Evaluation of Rutting and Shoving Potential of, andChloride diffusion Through Hot Mix Asphalt (HMA) with Rosphalt[R]. WorcesterPolytechnic Institute: Civil and Environmental Engineering Department,2004.
    [115] Smit A. de F., Hugo F., Yeldirim Y., et al. A Discussion of MMLS3Performance Testingof Laboratory Prepared HMA Slabs and Briquettes Compared with Hamburg and APA WheelTracking Tests[C]. CD-ROM Proceedings Second International APT Conference, Seattle,USA.
    [116] Powell R B. Laboratory Performance Testing for The NCAT Pavement Test Track[J].Washington, D.C.: In Transportation Research Record2003-002331, TRB, NationalResearch Council,2003(10).
    [117]徐伟,韩大建,张肖宁.应用RLWT车辙仪评价沥青路面抗车辙性能[J].公路交通科技,2005,22(1):5-8.
    [118]张俊标,徐科,张肖宁. RLWT与APA车辙试验加载模式比较分析[J].公路,2006,7:331-335.
    [119] JTG E-20-2011,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011.
    [120]雷超旭.路面表面功能加速加载系统研究[D].广州:华南理工大学,2010.
    [121]王端宜,雷超旭.一种主驱动轮式路面材料加速加载测试方法及装置:中国,200910038827.0[P].2009-09-16.
    [122]王端宜,雷超旭,蔡旭,区仕权.沥青路面的逆向设计及其试验研究[J].华南理工大学学报(自然科学版),2010,38(10):84-88.
    [123]蔡旭,王端宜,张吉庆,张顺先.微表处混合料室内加速加载试验[J].浙江大学学报(工学版),2012,46(5):791-797.
    [124]孙晓立,张肖宁,蔡旭.基于加速加载试验的微表处长期路用性能[J].同济大学学报(自然科学版),2012,40(5):691-695.
    [125]李一鸣.沥青混合料车辙试验探索[J].中国公路学报,1992,15(3):56-60.
    [126]王随原,熊峰,谭巍.车辙仪技术发展水平综述[J].公路交通技术,2007(3):32-35.
    [127] American Association of State Highway and Transportation Officials.(AASHTO) TP63-07, Determining Rutting Susceptibility of Hot Mix Asphalt (HMA) Using the AsphaltPavement Analyzer (APA)[S]. AASHTO Provincial Standards,2007Edition, Washington,D.C.,2007.
    [128]曹林涛,李立寒,孙大权,等.沥青混合料车辙试验评价指标研究[J].武汉理工大学学报,2007,29(11):14-17.
    [129]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [130]朱宝璋.关于灰色系统基本方法的研究和评论[J].系统工程理论与实践,1994,4:53-59.
    [131]方涛.基于灰色系统理论和数学形态学的图像处理[D].吉林:吉林大学,2007.
    [132] P. Serfass, P. Bense, P. Pellevoisin. Properties and New Developments of High ModulusAsphalt Concrete[C]//The Eighth International Conference on Asphalt Pavement, Universityof Washington, Seattle,1997.
    [133] Okan Sirin, Hong-Joong Kim, Mang Tia, et al. Comparison of Rutting Resistance ofUnmodified and SBS-modified Superpave Mixtures by Accelerated Pavement testing[J].Construction and Building Materials,2006,08:1-9.
    [134] Brown E.R., S.A. Cross. A National Study of Rutting in Hot Mix Asphalt (HMA)Pavements[R]. National Center for Asphalt Technology, Auburn, Alabama,1992.
    [135]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社.2006.
    [136]舒翔,刘立新.沥青改性与掺加矿物纤维的差别与比较[J].公路,2005,9.
    [137]仲玉侠,杨锡武,徐基立. AC纤维沥青混合料性能试验研究[J].重庆交通学院学报,2006,6:63-67.
    [138]刘铁山,延西利,韩森.外掺纤维沥青混合料的高温稳定性研究[J].公路,2006,7:140-142.
    [139]董营营.高性能半柔性路面设计参数及施工工艺研究[D].重庆:重庆交通大学,2008.
    [140]仵卫东,刘铁山.国内外沥青路面设计方法浅析[J].山西建筑,2005,31(9):205-206.
    [141]谢梦来,赖爱平.路面结构设计的关键因素分析[J].公路与运输,2005,3(2):95-96.
    [142]何凤玲.抗车辙沥青混合料的应用研究[J].南京:东南大学,2006.
    [143]陆兆峰,何兆益,秦旻.采用天然岩沥青改性的沥青混合料路用性能[J].中南大学学报(自然科学版),2010,41(6):2407-2411.
    [144]半柔性路面应用技术指南[S].北京:人民交通出版社,2009.
    [145]郝培文,程磊,林立.半柔性路面混合料路用性能[J].长安大学学报(自然科学版),2003,23(2):1-5.
    [146] Canadian Strategic Highway Research Program. Superpave Binder Specification andTest Methods[S],1995.
    [147]胡迟春,王端宜, Senthilmurugan Thyagarajan.基于CT技术的沥青混合料动态压实均匀性评价[J].长安大学学报(自然科学版),2010,30(6):24-28.
    [148]徐科,张肖宁,王端宜.基于数字图像处理技术的VCAmix量测方法[J].公路,2005(11):151-154.
    [149] MASAD E, SAADEH S, AL-ROUSAN T, et al. Computations of Particle SurfaceCharacteristics using Optical and X-ray CT Images[J]. Computational Materials Science,2005,34(4):406-424.
    [150] KUTAY M, HANDE I, OZTURK, R, et al. Comparison of2D and3D Image-BasedAggregate Morphological Indices[J]. International Journal of Pavement Engineering,2011,12(4):421-431.
    [151]王端宜,张肖宁,王绍怀.用虚拟试验方法评价沥青混合料的级配类型[J].华南理工大学学报(自然科学版),2003,31(2):48-51.
    [152]吴文亮,张肖宁,李智.沥青混合料车辙试验中粗颗粒运动轨迹的分析[J].华南理工大学学报(自然科学版),2009,37(11):27-30.
    [153]段跃华,张肖宁,李智,等.基于工业CT的混凝土集料二维及三维轮廓表征方法[J].中国公路学报,2011,24(6):9-15.
    [154] Coenen, Kutay, Sefidmazgi, et al. Aggregate structure characterization of asphaltmixtures using2-Dimensional image analysis[J]. Road Materials and Pavement Design,2012,13(3):433-454.
    [155]英红,王锦河,张宏,等.基于图像的AC20型混合料集料接触分布变异性[J].同济大学学报(自然科学版),2011,39(3):359-364.
    [156]魏鸿,英红,凌天清.沥青混合料集料接触特性切片图像评价方法[J].土木建筑与环境工程,2010,32(3):69-74.
    [157]万成.基于X-ray和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学,2010.
    [158]刘生浩,曾立波,刘斌,等.重叠颗粒图象的分离[J].计算机工程,2002(2):198-210.
    [159]赵永利,黄晓明.矿料级配基本性能的试验研究[J].公路交通科技,2004,21(6):1-3.
    [160]王真,黄晓明,赵永利.集料衰变规律及机理[J].东南大学学报(自然科学版),2011,41(5):1092-1097.
    [161]段跃华.基于X-ray CT的沥青混合料粗集料基础特性研究[D].广州:华南理工大学,2011.
    [162] Elseifi M.A., Al-Qadi LL., Yang S.H., and Carpenter S.H.. Validity of Asphalt BinderFilm Thickness Concept in Hot-Mix Asphalt[C]. Transportation Research Board:2008, PaperNo:08-0603.
    [163] Masad Eyad, Somadevan Niranjanan. Microstructural finite-element analysisofinfluence of localized strain distribution on asphalt mix properties[J]. Journal ofEngineering Mechanics,2002,128(10):1106-1115.
    [164] E. Masad, B. Muhunthan, N. Shashidhar, et al. Internal structure characterization ofasphalt concrete using image analysis[J]. Journal of Computing in Civil Engineering,1999,13(2): P88-95.
    [165] Masad E., Tashman L., Somedavan N., et al. Micromechanics-based analysis ofstiffness anisotropy in asphalt mixtures[J]. Journal of Materials in Civil Engineering,2002,14(5):374-383.
    [166]汪海年,郝培文,庞立果,等.基于数字图像处理技术的粗集料级配特征[J].华南理工大学学报(自然科学版),2007,35(11):54-58.
    [167]孙立民,杨阳,梁江涛.散体力学研究的现状及其发展[J].开封大学学报,2011,25(2):74-77.
    [168]陆永青,计三有,戴诗亮,等.散体材料弹性参数的估计[J].武汉交通科技大学学报,1997,21(2):178-185.
    [169]杜顺成,戴经梁.基于散体力学理论的多级抗剪密级配设计方法[J].中国公路学报,2008,21(1):35-39.
    [170]杜顺成,刘丽萍,戴经梁.高抗剪能力粗集料级配设计方法[J].中国公路学报,2010,23(4):27-32.
    [171]孙立军,毕玉峰,张宏超,等.一种确定沥青混合料抗剪参数C、φ值的方法.中国, CN200510026479.7[P].2006,12,06.
    [172]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8):1036-1040.
    [173]黄松元.散体力学[M].北京,机械工业出版社,1993:20-23.
    [174]彭勇,孙立军,石永久,等.沥青混合料抗剪强度的影响因素[J].东南大学学报(自然科学版),2007,37(2):330-333.
    [175]邵磊,迟世春,贾宇峰.堆石料大三轴试验的细观模拟[J].岩土力学,2009,30(S1):239-243.
    [176]邵显智,邵敏华,毕玉峰,等.沥青混合料泊松比的测试方法[J].同济大学学报(自然科学版),2006,34(11):1470-1474.
    [177]陈勇.长大纵坡路段沥青路面车辙形成机理与防治对策研究[D].西安:长安大学,2009.
    [178]高立波.沥青路面结构抗车辙的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [179]蔡慧悦.陡坡沥青混凝土路面车辙成因及对策研究[D].西安:长安大学,2010.
    [180]张肖宁.沥青与沥青混合料粘弹性力学原理及应用[M].北京:人民交通出版社,2006.
    [181]苏凯,武建民,陈忠达,等.山区公路沥青路面基面层滑移破坏研究[J].中国公路学报,2005,18(3):22-26.
    [182]张争奇,梁晓莉,李平.沥青老化性能评价方法[J].交通运输工程学报,2004,4(1):1-5.
    [183] Yang H. Huang. Pavement Analysis and Design[M]. NewJersey: Pearson Education Inc.2004
    [184] SHAMI H I, LAI J S, D'ANGELO J A, et al. Development of temperature-effect modelfor predicting rutting of asphalt mix-tures using georgia loaded wheel tester[J]. Journal of theTransportation Research Board,1997,1590:17-22.
    [185] National Cooperative Highway Research Program (NCHRP). Guide formechanistic-empirical design of new and rehabilitated pavement structures[R]. Washington DC:Transportation Research Board,2004.
    [186] HUA Jian-feng. Finite element modeling and analysis of accelerated pavement testingdevices and rutting phenomenon[D]. West Lafayette: Purdue University,2000.
    [187]彭妙娟,薛继盛,许志鸿.一种新的沥青路面车辙预估方法[J].中外公路,2008,28(2):28-32.
    [188] Paterson W D O. Road deterioration and maitenance effect: models for planning andmanagement, the highway design and maintenance standard series[M].[s.l.]: the JohnHopkins University Press,1987.
    [189] Monismith C L. Rutting prediction in asphalt concrete pavement, transportationresearch616[R]. Washington D.C.: Transportation Research Board, National Academy ofScience,1976.
    [190] Wang Hui. Defleetion Equivalent Conversion of Overioad Axle for AsphaltPavement[C]//2008Intemational Conferenee of Chinese Logisties and TransportationProfessionals, Chengdu,2008.7.
    [191]广东广韶高速公路有限公司路面工程扩建管理处,长沙理工大学公路工程学院.重载和高温作用下沥青路面罩面结构和材料研究[R].广东广州:广东省交通厅,2007.
    [192] Archilla A R, Medanat S. Development of asphalt pavement rutting mold fromexperimental data[A].79thAnnual TBR Meeting[C].Washington D C: National ResearchCouncil,2000.
    [193] T F Fwa, S A Tan, L Y Zhu. Rutting Prediction of Asphalt Pavement Layer Using c-Model[J]. Journal of Transportation Engineering, ASCE,2004,230(5).130(5).
    [194]彭妙娟,许志鸿.沥青路面车辙预估方法[J].同济大学学报(自然科学版),2004,32(11).
    [195] Kenis W J. Predictive design procedures, VESYS users manual[R].1977.
    [196] Sousa J B, et a1. Permanent pavement deformation response of asphalt aggregatemixes[R]. Washington D C: SHRP, National Research Council,1994.
    [197]苏凯,孙立军.高等级沥青混凝土路面车辙预估方法研究综述[J].公路,2006,7:18-24.
    [198]鲁正兰,孙立军.沥青路面车辙预估方法的研究[J].同济大学学报(自然科学版),2007,35(11):1476-1480.
    [199]郑南翔,牛思胜,许新权.重载沥青路面车辙预估的温度-轴载-轴次模型[J].中国公路学报,2009,22(3):7-13.
    [200]曹林涛,李立寒,孙大权.基于车辙试验的沥青层永久变形预估[J].建筑材料学报,2009,12(5):554-557.
    [201]中国天气网[OL]. http://www.weather.com.cn/cityintro/101280101.shtml
    [202] JTG D50-2006,公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [203]杨军,崔娟,万军,等.基于结构层贡献率的沥青路面抗车辙措施[J].东南大学学报:自然科学版,2007,37(2):350-354.
    [204] JTJ073.2-2001,公路沥青路面养护技术规范[S].北京:人民交通出版社,2001.
    [205]广东省交通厅.广东省公路路面典型结构应用技术指南(试用)[M].广州,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700