用户名: 密码: 验证码:
飞机液压系统泵—管路振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压系统在飞机中广泛应用,其主要作用包括驱动舵面操纵与起落架收放等。飞机液压系统采用变量柱塞泵,脉动式流量输出产生的压力脉动常使系统管路遭受严重破坏,影响正常飞行。因此研究飞机液压系统泵-管路振动特性,降低系统流量、压力脉动和噪声,对提高国产大飞机液压系统性能具有重要意义。
     现有的对输流管路的理论分析末考虑管道弯曲造成的同一截面内应力不同,影响飞机液压系统中大量弯曲管路振动分析精度,论文建立了考虑管道弯曲和摩擦耦合的管路流固耦合模型,与传统模型相比,该模型在管壁和流体动力学方程中添加弯曲应力项和摩擦力项。针对一段特定的液压系统管段,在时域分析中,传统模型仅能得到截面内平均应力,误差高达73%,该模型得到的弯曲管道截面内应力分布与试验数据误差在10%以内,可以为飞机液压系统管路设计提供参考;在频域分析中,传统模型不能得到管道弯曲对应的共振频率,而该模型分析结果显示管道弯曲对管道应力的频域响应具有决定性的影响,会改变其响应峰值频率,随着弯曲半径的增加,由管道弯曲造成的共振频率逐渐降低。飞机液压系统的泵与管路振动之间存在强烈的振动传递,原有基于泵模型的分析中仅将管路作为简单的液阻与容腔处理,分析误差较大,本论文首次将复杂弯曲管路振动模型与恒压变量柱塞泵模型结合,建立了泵-管路振动系统综合分析模型。应用这一模型对某航空柱塞泵脉动特性进行分析计算,得到不同转速泵出口压力与试验数据误差在0.7%~1.1%之间,精度较未考虑管路影响时最高5.4%的误差有较大提高,可以很好的预测泵在不同工况下的输出特性。为减小航空柱塞泵流量脉动,常在泵出口附近安装缓冲瓶,占用很大空间,本文首次借鉴电学RC滤波器原理设计了压力脉动衰减器,利用泵本身液阻模拟电阻,体积随泵出口压力变化的活塞腔模拟电容,巧妙设计活塞和弹簧参数,满足减振所需的油液容积和频响要求。该衰减器内置安装时质量仅为46g,较常用的重250g的缓冲瓶减小82%。占用空间为31.4cm3,较体积为200cm3的缓冲瓶减小85%。试验测得流量为100L/min时,泵出口的压力脉动由3.9MPa减少到0.8MPa,减小幅度达80%。这种压力脉动衰减器适应飞机液压系统重量轻、体积小的需要,具有重要的应用价值。
     本论文主要研究内容如下:
     第一章,绪论。概述了飞机液压系统的组成及应用,阐述了飞机液压系统泵-管路振动控制技术国内外研究进展,分析了课题的研究背景及研究意义,并介绍了主要研究内容。
     第二章,航空柱塞泵动态特性分析。在分析航空柱塞泵工况、结构与工作原理的基础上,针对机械振动和流量脉动问题,建立其运动与动力学模型。讨论了斜盘、柱塞、缸体、壳体等柱塞泵重要部件的运动状况与受力状态。采用ANSYS进行了航空柱塞泵的模态仿真,得到了各运动组件动力学特性。
     第三章,航空柱塞泵流量脉动优化。分析了航空柱塞泵柱塞的排油过程,对主要的两种流量脉动来源:几何脉动与流量倒灌进行了重点讨论。采用FLUENT进行了流场仿真。优化了某航空柱塞泵配流盘预压缩结构参数。
     第四章,航空液压管路振动特性分析。在传统一维管道模型的基础上,考虑管道的弯曲和截面上的应力分布等因素,分别在时域和频域对某型飞机液压能源系统管路进行优化,开展仿真与试验研究。经分析与试验验证,飞机液压能源系统振动特性受管路摩擦耦合与联接耦合等复杂因素影响,优化管路布局可有效减小脉动峰值。
     第五章,航空柱塞泵-管路综合特性分析。在泵动力学和流场分析的基础上,探讨泵内滑靴副和配流副工作状态。讨论航空柱塞泵压力控制机构的特性,分析了管道和柱塞泵耦合振动特性。以某航空柱塞泵及其出口管路为对象,通过理论分析与试验研究相结合的方法分析压力脉动特性。
     第六章,液压能源系统振动控制研究。在航空液压能源系统振动分析的基础上,探讨各种减振设计方法。重点讨论了柱塞泵结构减振设计、脉动衰减器设计与分析及管路优化配置等。
     第七章,结论与展望。对本文的研究工作进行了概述,给出了研究结果和主要结论,指出了本文的创新点,并展望了进一步的研究方向和内容。
The hydraulic systems are wildly used in aircrafts as the power source for flight control and landing gear systems. Pressure compensated pumps are mainly used in aircraft hydraulic systems. The pump flow fluctuation is responsible for decreasing the reliability and lifecycle of the aircraft hydraulic systems. Therefore, it is important to study possibilities to reduce the influence of pressure pulsation on vibration and noise of the aircraft hydraulic systems.
     In this thesis, the pipeline model with consideration of the bending and friction coupling has been developed by employing the curved stress and friction in the kinetic equations in the traditional model based on the analysis of the one-dimensional long pipeline. In time domain analysis, the differences of the pipewall stress between the calculated and experiment results were within10%compared with73%in the traditional model for the pipe section. In frequency domain analysis, the effect of the pipe curvature on the resonant frequency was ignored in the traditional approach. It was shown from the calculated results using the model developed that the curvature was a determining factor of the pipe frequency response, and it could obviously change both the frequency and peak value. In fact, with the increase of the pipe curvature radius, the corresponding resonant frequency decreased. The interactions of flow rate, pressure and mechanical vibration between the pump and the connected pipeline were very complex, which had not been discussed in previous study. The vibration of the piston pump and connected pipeline in aircraft hydraulic system was also included in the model. The difference of the pipe wall stress between the calculated and experimental results were within0.7%~1.1%, as a comparison to5.4%of the model without connected pipeline. A new pulsation attenuator for aircraft piston pump based upon the RC (fluid resistance and fluid volume) principles was developed and tested. The piston and spring in the attenuator were designed to reduce the noise level with optimal volume and natural frequency. Hence, the mass of the pulsation attenuator was cut down to46g,82%less compared with the mass of the existing buffer bottle. The needed volume of the pulsation attenuator was reduced to31.4cm3, which was85%less than the volume of the buffer bottle. Remarkable reduction on the pressure fluctuation was obtained in the experiments. At the output flow rate of100L/min, the pressure fluctuation without the attenuator was3.9MPa and0.8MPa with the attenuator, reduction was more than79.5%.
     The main contents of the thesis are as follows:
     In chapter1, the application of the aircraft hydraulic power system was outlined. The development of the aircraft hydraulic power system vibration control both at home and abroad was summarized. The research background and the main contents of the degree project were introduced.
     In chapter2, the kinetic model of the aviation piston pump for vibration analysis was developed based on its working condition, principle and structure. The dynamic characteristic of swash plate, pistons, cylinder and the housing was analyzed in detail. The pump model was developed using the software AN SYS. The dynamic performance of the main components of piston pump was discussed.
     In chapter3, the flow model of the aviation piston pump was proposed, and two main parts of flow fluctuation in piston pump with the kinematic flow fluctuation and the compressible flow fluctuation were analyzed. Flow simulation of the aviation piston pump was carried using the software FLUENT. Pre-compression structure parameter of the aviation piston pump was optimized.
     In chapter4, the pipeline model composed of curved pipe section and tees was developed. The flow and pressure fluctuations were analyzed both in time and frequency domain. The vibration characteristics of two pipe sections in aircraft were discussed. It was shown in the simulation results that the vibration of the hydraulic power system was affected by the pipe friction coupling and the junction coupling, and the ripple peaks could be reduced by pipeline layout optimization.
     In chapter5, the oil film model between the slipper shoes, the swash plate and the oil film between the cylinder and the valve plate was developed. The pressure and velocity distributions were obtained. The relationship between the pump vibration and the oil film thickness was analyzed. The interaction between the pump and the pipeline was discussed. Theoretical analysis and experimental test were carried on the vibration characteristics of an aviation piston pump with the connected pipeline. Some suggestions were given on development of the aircraft hydraulic power system with low vibration.
     In chapter6, the optimizations of pump structure and pipeline arrangement were discussed. A new pulsation attenuator for aircraft piston pump based upon the RC (fluid resistance and fluid volume) principles was developed and tested. Remarkable reduction on the pressure fluctuation was obtained in the experiments.
     In chapter7, the main results and conclusions were summarized, the progress was concluded, and proposals were given for the future work.
引文
[1]温家宝.让中国的大飞机翱翔蓝天[J].国防科技工业.2008.5:6-9.
    [2]张庆伟.立志让中国的大型客机早日翱翔蓝天[J].求是,2008:9-16.
    [3]王占林.飞机高压液压能源系统[M].北京航空航天大学出版社,2004.
    [4]H.X. Chen, Patrick S.K. Chua, G.H. Lim. Dynamic vibration analysis of a swash-plate type water hydraulic motor[J]. Mechanism and Machine Theory,2006,41:487-504.
    [5]Manring ND. Designing the shaft diameter for acceptable levels of stress within an axial-piston swash-plate type hydrostatic pump[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2000,4:553-559.
    [6]Manring ND. Designing a control and containment device for cradle-mounted, transverse-actuated swash plates[J]. JOURNAL OF MECHANICAL DESIGN,2001,3:447-455.
    [7]Manring ND, Damtew FA. The control torque on the swash plate of an axial-piston pump utilizing piston-bore springs[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2001,3:471-478.
    [8]Manring ND. The control and containment forces on the swash plate of an axial piston pump utilizing a secondary swash-plate angle[J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE,2002:4837-4842.
    [9]Manring ND.Designing a control and containment device for cradle-mounted, axial-actuated swash plates[J]. JOURNAL OF MECHANICAL DESIGN,2002,3:456-464.
    [10]Zhang X, Nair SS, Manring ND. Robust Nonlinear control of a novel indexing valve plate pump: simulation studies[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2002,4:613-616.
    [11]Manring ND.Valve-plate design for an axial piston pump operating at low displacements[J]. JOURNAL OF MECHANICAL DESIGN,2003,1:200-205.
    [12]Manring ND, Dong ZL.The impact of using a secondary swash-plate angle within an axial piston pump[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2004,1:65-74.
    [13]Manring ND, Wray CL, Dong ZL.Experimental studies on the performance of slipper bearings within axial-piston pumps[J]. JOURNAL OF TRBOLOGY-TRANSACTIONS OF THE ASME,2004,3:511-518.
    [14]Mehta Viral S., Manring Noah D.Torque ripple attenuation of an axial piston pump by continuous swash plate adjustment[J]. Fluid Power Systems and Technology Division of the American Society of Mechanical Engineers,2005,12:147-155.
    [15]Manring Noah D., Mehta Viral S., Raab Frank J.The shaft torque of a tandem axial-piston pump[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2007,3:367-371.
    [16]Manring Noah D., Mehta Viral S. Physical Limitations for the Bandwidth Frequency of a Pressure Controlled, Axial-piston Pump[J], JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2011, Vol 133.
    [17]Mohammad Abuhaiba, Walter W. Olson. Geometric and Kinematic Modeling of a Variable Displacement Hydraulic Bent-Axis Piston Pump[J]. Journal of Computational and Nonlinear Dynamics, 2010, Vol.5,041010.
    [18]Amin Mohaghegh-Motlagha, Mohammad H. Elahiniaa. Dynamic force profile in hydraulic hybrid vehicles:a numerical investigation[J]. Vehicle System Dynamics,2010,48(4),405-428.
    [19]Andrea E. Catania, Alessandro Ferrari. Experimental Analysis, Modeling, and Control of Volumetric Radial-Piston Pumps[J]. Journal of Fluids Engineering,2011, Vol.133,081103.
    [20]Ivantysynova, M. and Baker, Power Loss in the Lubricating Gap Between CylinderBlock and Valve Plate of Swash Plate Type Axial Piston Machines[J]. International Journal of Fluid Power,2009,Vol.10, No.2:29-43.
    [21]Williamson, C. and Ivantysynova, M.,Active Vibration Damping for an Off-Road Vehicle with Displacement Controlled Actuators[J]. International Journal of Fluid Power,2009,Vol.10, No.3:5-16.
    [22]M. Z. Norhirni, M. Hamdi, S. Nurmaya Musa, L. H. Saw, N. A. Mardi, N. Hilman. Load and Stress Analysis for the Swash Plate of an Axial Piston Pump/Motor[J]. Journal of Dynamic Systems, Measurement, and Control,2011, Vol.133,064505.
    [23]宋德夫.四缸径向往复柱塞泵动力端部件的研究[D].武汉理工大学,2012.
    [24]娄磊.轴向柱塞泵动力特性及配流盘内流场特性研究[D].兰州理工大学,2010.
    [25]张斌.轴向柱塞泵的虚拟样机及油膜特性研究[D].浙江大学,2009.
    [26]张斌,徐兵,杨华勇,杨强,罗德刚.基于虚拟样机技术的数字式柱塞泵控制特性研究[J].浙江大学学 报(工学版),2010,01:1-7.
    [27]许书生,徐兵,李春光,张斌.基于SolidWorks二次开发的轴向柱塞泵参数化建模设计[J].机床与液压,2010,9:71-73,79.
    [28]徐兵,李春光,张斌,许书生.基于虚拟样机的轴向柱塞泵压力脉动特性研究[J].中国机械工程,2010,21(10):1203-1207.
    [29]徐兵,李春光,张军辉,张斌.基于虚拟样机的轴向柱塞泵柱塞有限元分析[J].机床与液压,2010,38(11):76-78,98.
    [30]徐兵,李迎兵,张斌,张军辉.轴向柱塞泵滑靴副倾覆现象数值分析[J].机械工程学报,2010,46(20):161-168.
    [31]徐兵,张军辉,杨华勇.基于虚拟样机的轴向柱塞泵柱塞副仿真分析[J].浙江大学学报(工学版),2010,36(3):31-37.
    [32]陈庆瑞.轴向柱塞泵柱塞副油膜特性测试系统研究[D].浙江大学,2008.
    [33]徐兵,张军辉,杨华勇,叶绍干.基于串联式轴向柱塞泵转位角降噪方法仿真[J].兰州理工大学学报,2013,47(1):94-101.
    [34]Bing Xu, Junhui Zhang, Huayong Yang. Simulation research on distribution method of axial piston pump utilizing pressure equalization mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2013,227(3):458-469.
    [35]童章谦,徐兵.轴向柱塞泵的模态分析及基于壳体的结构优化[J].机床与液压,2010(15):65-67.
    [36]N. D. Manring, Yihong Zhang. The improved volumetric-efficiency of an axial-piston pump utilizinga trapped-volume[J]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, 2001,23:479-487.
    [37]N. D. Manring. Tipping the cylinder block of an axial-piston swash-plate type hydrostatic machine[J]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, 2000,1221:216-221.
    [38]N. D. Manting, S. B. Kasaragadda. The theoretical flow ripple of an external gear pump. Journal of Dynamic Systems[J]. Measurement and Control, Transaction of the ASME, Sep.2003,125:396-404.
    [39]A.Johansson, J. O. Palmberg, K. E Rydberg. Cross angle-a design feature for reducing noise and vibrations in hydrostatic piston pumps[C]. The Fifth International Conference on Fluid Power Transmission and Control,2001.
    [40]A. M. Harrison. Reduction of axial piston pump pressure ripple. Proceedings of the institution of mechanical engineers[J], Pan I-Journal of system and control engineering,2000,214:53-63.
    [41]A. Johansson, L. D. Blackman. Prediction of pump dynamics utilizing computer simulation model-with special reference to noise reduction[C]. Proceeding at SAE International Off-Highway&Power plant, Milwaukee,11-13,2000.
    [42]A. Johansson. Noise reduction of piston pumps-a simulation approach[C]. Mechanical Engineering Systems. Linkoping University, Sweden,2000.
    [43]A. D. Potolea, L. Vaida, C. Vaida. Automated adaptive adjustment of the distribution ports for axial piston pumps[C]. IEEE International Conference on Automation, Quality and Testing, Robotics. 2006,1:288-291.
    [44]G. L. Berta, P. Casoli, A. Vacca. Simulation Model of an Axial Piston Pump Inclusive of Cavitation[C]. ASME International Mechanical Engineering Congress and Exposition.2002, New Orleans, Louisiana, USA, pp.29-37.
    [45]Paolo Casoli, Andrea Vacca, Germano Franzoni, Gian Luigi Berta. Modelling of fluid properties in hydraulic positive displacement machines[J]. Simulation Modelling Practice and Theory.2006,14:1059-1072
    [46]Alessandro Roccatello, Salvatore Manc o, Nicola Nervegna. Modelling a variable displacement axial piston pump in a multibody simulation environment[J]. Transactions of the ASME.2007,129:456-468.
    [47]M. Deeken. Simulation of the tribological contacts in an axial piston machine[J]. Olhydraulik und Pneumatik (O+P).2003,47:11-12
    [48]I. Monika, C. Huang. Thermal analysis in axial piston machines using CASPAR[C]. Proceedings of the Sixth International Conference on Fluid Power Transmission and Control. Hangzhou. China.2005.
    [49]U. Wieczorek, I. Monika. CASPAR-a computer aided design tool for axial piston machines[C]. Proceedings of the Bath Workshop on Power Transmission and Motion Control PTMC,2000.
    [50]C. Huang, I. Monika. A new approach to predict the load carrying ability of the gap between valveplate and cylinder block[C]. Proceedings of Bath Workshop on Power Transmission and Motion Control(PTMC),Bath,2003:225-239.
    [51]I. Monika, R. Lasaar. An investigation into micro and macro geometric design of piston cylinder assembly of swash plate machines[J]. International Journal of Fluid Power,2004:23-36.
    [52]R. Lasaar, I. Monika. Advanced gap design-basis for innovative displacement machines[C]. Proceedings of 3rd International Fluid technisches Kolloquium. Aachen. Germany,2002:215-230.
    [53]I. Monika, C. Huang. Investigation of the gap flow in displacement machines considering elasto hydro dynamic effect[C]. Fifth JHPS International Symposium on Fluid Power. Tokyo. Japan,2002:219-229.
    [54]K. A. Edge. Designing Quieter Hydraulic Systems-Some Recent Developments and Contributions[C]. Proceedings of the 4th JHPS International Symposium,1999.
    [55]Harrison, A.M., Edge, K.A.. Reduction of axial piston pump pressure ripple[J]. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering. 2000,214(1):53-63.
    [56]李鑫,王少萍,黄伯超.航空柱塞泵流量脉动仿真分析与结构优化[J].兰州理工大学学报.2010,36(3):60-64.
    [57]官长斌,焦宗夏.航空柱塞泵配流盘结构动态优化方法[J].北京航空航天大学学报.2011,37(3);274-278.
    [58]卢菊仙,周汝胜,焦宗夏.航空柱塞泵源脉动建模与仿真[J].流体传动与控制.2006,3:7-9.
    [59]马纪明,王法岩,詹晓燕AMESim与VB联合仿真在柱塞泵分析中的应用[J].机床与液压.2010,38(17):98-102.
    [60]黎文勇,王书翰,C.Obenaus基于SimuationX的斜盘柱塞泵的模拟仿真[C].液压气动与密封,2010,8:32-36..
    [61]黄伯超,王少萍.变压力柱塞泵配流盘的压力敏感减振机理[J].北京航空航天大学学报.2012,38(10):1336-1340.
    [62]安高成,王明亮,付永领,王明智.数字控制径向柱塞泵整体方案的研究[J].太原科技大学学报.2009,30(1):51-53.
    [63]胡骁,王少萍,韩磊.轴向柱塞泵配流副动态压力分布建模与仿真[J].液压气动与密封,2012,8:68-71.
    [64]安高成,陈双桥,付永领,王明智.基于排量控制的电液比例恒压变量数字控制径向柱塞泵的研究[J].太原科技大学学报.2008,5:24-26.
    [65]杜发荣,岳育元.柱塞油泵的流场数值研究[J].科学技术与工程,2011,11(3):595-597,608.
    [66]符江锋,李华聪,彭凯,韩小宝.航空发动机燃油柱塞泵计算机辅助设计方法[J].计算机仿真,2012,29(3):153-157.
    [67]符江锋,李华聪,郭春玲.航空柱塞泵液压关死与冲击仿真研究[J].机械设计与制造,2011,1:204-206.
    [68]陈焕明,刘卫国,习仁国,徐礼林,柳荫.高压大流量柱塞泵建模与仿真研究[J].机床与液压,2012,40(7):140-143.
    [69]苏三买,常博博,陈永琴.倾斜柱塞式轴向柱塞泵运动学参数计算方法[J].计算机仿真,2010,27(10):20-23.
    [70]陈焕明,刘卫国,习仁国,徐礼林,卢岳良.双压力柱塞泵建模与仿真研究[J].机床与液压,2012,40(8):71-74.
    [71]严杰.一种变量泵斜盘电液伺服控制系统研究[J].中国制造业信息化,2011,40(13):43-47.
    [72]刘明明.某型航空发动机柱塞式燃油泵特性分析与研究[D].沈阳航空航天大学,2012.
    [73]刘明明,石宏,黄笑飞.基于AMEsim的某型航空发动机轴向柱塞泵特性仿真[J].沈阳航空航天大学学报,2011,28(4):22-26.
    [74]刘明明,石宏,黄笑飞,李昂.柱塞倾角对航空柱塞泵性能的影响分析[J].沈阳航空航天大学学报,2011,28(5):18-22.
    [75]段飞蛟,曹克强,李永林.胡良谋.基于AMESim的恒压力轴向柱塞泵动态特性仿真[J].机床与液压,2008,36(11):160-166.
    [76]韩孟虎,曹克强,胡良谋,李永林.基于AMESim的柱塞泵热力学模型及仿真[J].机床与液压,2012,40(1):136-138.
    [77]李永林,徐浩军,曹克强,胡良谋.航空柱塞泵全工况效率分析及热力学建模[J].北京航空航天大学学报,2010,36(12):1469-1472.
    [78]孙毅,李阳,姜继海.柱塞泵滑靴卡盘与球碗的受力分析及试验研究[J].西安交通大学学报,2013,47(2):103-108.
    [79]孙毅,姜继海,刘军龙.柱塞泵滑靴卡盘与球头的相对位置及摩擦功耗[J].华南理工大学学报(自然科学版),2011,39(4):82-87.
    [80]高峰,孙毅.轴向柱塞泵中滑靴阻尼孔的结构对其性能的影响研究[J].组合机床与自动化加工技术,2011,7:35-37,47.
    [81]姜继海,王克龙,于彩新,李耀龙.双联轴向柱塞泵流量特性滞环现象的研究[J].液压与气动,2012,3:93-95.
    [82]孙毅,姜继海,刘成强.剩余压紧力条件下滑靴副的油膜特性及功耗[J].华南理工大学学报(自然科学版),2011,39(1):111-116.
    [83]郑波,施光林.超高压电动泵的流场分析[J].流体传动与控制,2013,1:30-33.
    [84]泮健,施光林.数字配流式液压马达配流特性研究[J].农业机械学报,2011,42(10):203-208.
    [85]赵弘,那成烈.遗传算法在轴向柱塞泵配流盘结构优化设计中的应用[J].机床与液压,2001(5):112-113,104.
    [86]那焱青,那成烈等.轴向柱塞泵配流盘液压支承力的计算[J].甘肃工业大学学报,2003.29(2):53-55.
    [87]那成烈,尹文波.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002.28(4):65-67.
    [88]孙明智,柯坚,邓斌,于兰英.轴向柱塞泵吸油腔的CFD解析[J].流体传动与控制,2007(2):16-19.
    [89]马吉恩.轴向柱塞泵流量脉动及配流副优化设计研究[D].浙江大学,2009.
    [90]马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模与试验分析[J].农业机械学报,2010,41(1),188-194.
    [91]杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状[J].机械工程学报,2009,45(8),71-79.
    [92]Ma Ji'en, Xu Bing, Zhang Bin, Yang Huayong. Flow ripple of axial piston pump with computational fluid dynamic simulation using compressible hydraulic oil. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2010,23(1),45-52.
    [93]杨华勇,宋月超,徐兵.复杂工况下柱塞泵流量脉动并行仿真与试验研究[J].中国科学:技术科学,2012,42(12),1463-1471.
    [94]徐兵,宋月超,杨华勇.复杂出口管道柱塞泵流量脉动测试原理[J].机械工程学报,2012,48(22),162-167,176.
    [95]Yue Chao Song, Bing Xu, Hua Yong Yang. Study on Effect of Relief Groove Angle Expressing the Position in Reducing Noise of Swash Plate Axial Piston Pump[J]. Advanced Materials Research,2011,311,2215-2224.
    [96]Bergant, A, Simpson, AR, Tijsseling, AS. Water hammer with column separation:A historical review[J]. Journal of Fluids and Structures,2006,22(2):135-171.
    [97]Mackerle, J. Finite elements in the analysis of pressure vessels and piping, an addendum:a bibliography (1998-2001) [J]. International Journal of Pressure Vessels and Piping,2002,79(1):1-26.
    [98]Wang, Z.-M, S.-K. Tan. Vibration and pressure fluctuation in a flexible hydraulic power system on an aircraft[J]. Computers & Fluids,2009,27(1):1-9.
    [99]肖文键,朱庆友,潘陆原.某型飞机液压能源系统频域特性分析[J].空军工程大学学报(自然科学版),2000,10:9-12.
    [100]陶瑜华,黄佑,邹涛.某型飞机液压系统流固耦合仿真与脉动应力分析[J].机床与液压,2008,10:161-162,167.
    [101]王世忠,于石声.载流管道固液耦合振动计算[J].哈尔滨工业大学学报,2001,12:816-818,841.
    [102]潘陆原,王占林,裘丽华.飞机液压能源系统管路振动特性分析[J].机床与液压,2000,6:20-21.
    [103]李秀莹,陈振中,肖文科.摩擦阻尼原理在飞机液压导管减振中的应用[J].沈阳航空工业学院学报,2008,4:14-16,20.
    [104]陈平.飞机液压能源管路系统振动主动控制[M].北京航空航天大学出版社,2001.
    [105]邹光胜,金基铎,尹峰.飞机输流管道振动的最优控制[J].飞机设计,2003,12:33-35.
    [106]SKALAK, R. An extension of the theory of water hammer[J]. Transactions of the ASME,1956,78: 105-116.
    [107]BUDNY D.D, WIGGERT. D.C, HATFIELD, F. J. The influence of structural damping on internal pressure during a transient flow[J]. ASME Journal of Fluids Engineering,1991,113:424-429.
    [108]Keramat, A, Tijsseling, AS, Hou Q, Ahmadi, A. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer[J]. Journal of Fluids and Structures,2012,28:434-455.
    [109]Pisarenco M, van der Linden B, Tijsseling A, Ory E, Dam J. Friction Factor Estimation for Turbulent Flows in Corrugated Pipes with Rough Walls[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,2011,133(1):011101.
    [110]Gu Jijun, An Chen, Duan Menglan. Integral transform solutions of dynamic response of a clamped-clamped pipe conveying fluid[J]. Nuclear Engineering and Design,2013,254:237-245.
    [111]You Jeong Ho, Inaba K. Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials[J]. Journal of Fluids and Structures,2013,36:162-173.
    [112]Jalali Hassan, Parvizi Fardin. Experimental and numerical investigation of modal properties for liquid-containing structures[J]. Journal of Mechanical Science and Technology,2012,26(5):1449-1454.
    [113]Giacobbi Dana B, Rinaldi Stephanie, Semler Christian. The dynamics of a cantilevered pipe aspirating fluid studied by experimental, numerical and analytical methods[J]. Journal of Fluids and Structures, 2012,30:73-96.
    [114]Nordhagen H.O, Kragset S, Berstad T, A new coupled fluid-structure modeling methodology for running ductile fracture[J]. Computers & Structures,2012,94-95:13-21.
    [115]Hachem Fadi E, Schleiss Anton J. Effect of drop in pipe wall stiffness on water-hammer speed and attenuation[J]. Journal of Hydraulic Research,2012,50(2):218-227.
    [116]Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser[J]. Applied Ocean Research,2012,34:52-67.
    [117]Eswaran, M., U. K. Saha, et al. Effect of baffles on a partially filled cubic tank:Numerical simulation and experimental validation[J]. Computers & Structures.2009:87(3-4):198-205.
    [118]Lin, W, N. Qiao. In-plane vibration analyses of curved pipes conveying fluid using the generalized differential quadrature rule[J]. Computers & Structures.2008:86(1-2):133-139.
    [119]Lin, W, N. Qiao. Nonlinear dynamics of a fluid-conveying curved pipe subjected to motion-limiting constraints and a harmonic excitation[J]. Journal of Fluids and Structures.2008:24(1):96-110.
    [120]Kuiper, G. L, A. V. Metrikine. Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid[J]. Journal of Fluids and Structures.2008:24(4):541-558.
    [121]Jung, D, J. Chung, et al. Dynamic stability of a semi-circular pipe conveying harmonically oscillating fluid[J]. Journal of Sound and Vibration.2008,315(1-2):100-117.
    [122]Kruisbrink ACH and Heinsbroek AGTJ. Fluid-structure interactionin non-rigid pipeline systems—large scale validation tests[C],Proc of Second National Mechanics Congress, Kerkrade, The Netherlands,1992:57-64.
    [123]Bergant Anton, Kruisbrink Arno, Arregui Francisco. Dynamic Behaviour of Air Valves in a Large-Scale Pipeline Apparatus[J], Strojniski Vestnik-Journal of Mechanical Engineering,2012,58(4):225-237.
    [124]Valencia, A, F. Baeza. Numerical simulation of fluid-structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model[C]. International Communications in Heat and Mass Transfer.2009,36(2):137-142.
    [125]Erath W, Nowotny B, and Maetz J, Simultaneous coupling of the calculation of pressure waves and pipe oscillations[C],3R International 37,1998:501-508 (in German).
    [126]Erath W, Nowotny B, and Maetz J, Modelling the fluid structure interaction produced by a waterhammer during shutdown of high-pressure pumps[J], Nucl. Eng. Des.193,1999:283-296.
    [127]De Jong CAF, Analysis of pulsations and vibrations in fluid-filled pipe systems[D], Eindhoven Univ of Technology,Dept of Mechanical Engineering, Eindhoven, The Netherlands Errata:2000.
    [128]Valentin RA, Phillips JW, and Walker JS. Reflection and transmission of fluid transients at an elbow[J]. Transactions of SMiRT5, Berlin,Germany, Paper B 1979:2/6.
    [129]Varelis George E, Karamanos Spyros A, Gresnigt Arnold M. Pipe Elbows Under Strong Cyclic Loading[J]. Journal of Pressure Vessel Technology-Transactions of the ASME,2013,135(1):011207.
    [130]Nagy Laszlo. Characterization of piping with grading entropy on the Surany example [J]. Periodica Polytechnica-Civil Engineering,2012,56(1):107-113.
    [131]Wilson Jordan M, Venayagamoorthy Subhas K. Evaluation of Hydraulic Efficiency of Disinfection Systems Based on Residence Time Distribution Curves[J]. Environmental Science & Technology, 2010,44(24):9377-9382.
    [132]Yildirim Guerol, Singh Vijay P. A MathCAD procedure for commercial pipeline hydraulic design considering local energy losses[J]. Advances in Engineering Software,2010,41(3):489-496.
    [133]Examining a coupled continuum pipe-flow model for groundwater flow and solute transport in a karst aquifer[J]. Acta Carsologica,2010,39(2):347-359.
    [134]Adamkowski Adam, Krzemianowski Zbigniew, Janicki Waldemar. Improved Discharge Measurement Using the Pressure-Time Method in a Hydropower Plant Curved Penstock[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2010,131(5):053003.
    [135]Brown FT and Tentarelli SC. Dynamic behavior of complex fluid-filled tubing systems—Part 1:Tubing analysis[J], J. Dyn. Syst., Meas., Control 123,2001:71-77.
    [136]Tentarelli SC and Brown FT. Dynamic behavior of complex fluid-filled tubing systems—Part 2:System analysis[J], J. Dyn. Syst.,Meas., Control 123,2001:78-84.
    [137]赵鹤翔.电厂主蒸汽管道振动分析的数值计算方法研究[D],华北电力大学,2001.
    [138]杜冬菊.潜艇水平舵液压管道减振降噪研究[D],中国海洋大学,2003.
    [139]中国航空学会.航空科学技术学科发展报告2006-2007.中国科学技术出版社,2007.
    [140]杨大伟,谢敬华,田科.流固耦合效应对输液管道的振动影响研究[J].现代制造工程,2010,8:144-148.
    [141]王艾伦,刘琳琳.层流流体管路的键合图模态分析法[J].振动、测试与诊断,2007,27(2):150-155,173.
    [142]唐省名,胡军科,王晶晶,南现伟.液压驱动往复泵高压管路冲击问题的研究[J].中南林业科技大学学报,2010,30(12):161-166.
    [143]Nigel Johnston, D. Efficient methods for numerical modeling of laminar friction in fluid lines. J. Dyn. Syst. Meas. Control,2006,128:829-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700