用户名: 密码: 验证码:
反射式宽视场高分辨率成像光谱仪光学系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱仪将成像技术和光谱技术相结合,在获得目标影像的同时获得其光谱特征,从而达到利用光谱识别地球表面物质的目的。成像光谱仪由最初的折射式发展到折反射式,再到反射式,实现了口径增大、体积减小、重量减轻、谱段增宽、成本降低等方面的进步。全反射式宽视场高分辨率成像光谱仪是成像光谱技术发展的前沿。为了将反射式光学系统更好的应用于成像光谱仪,本文对其系统分类、结构特点和设计方法进行了研究。其中,离轴三反系统由于其无中心遮拦、体积小、结构紧凑,易实现宽视场、高质量成像等特点被关注。
     针对研制的全反射式棱镜色散宽视场高分辨率成像光谱仪光学系统的特点和应用需求,重点研究了宽视场、大相对口径、远心离轴三反系统的设计问题。以共轴三反系统成像理论为基础,分别对孔径光阑位于次镜和孔径光阑位于主镜前两种情况下,三反系统实现远心的条件、初始结构尺寸参数计算式、三级像差表达式及其消像差解法进行了理论分析和推导,并给出了具体的设计实例。结合光纤视场折叠高分辨率超光谱成像仪原理样机的工程实际,采用文中远心离轴三反系统的设计方法,设计出全反射式远心前置望远成像系统和后置光谱分光系统,并进行系统像质评价,得到了满足性能要求的全反射式光纤视场折叠高分辨率超光谱成像仪的光学系统,推进了宽视场高分辨率成像光谱仪在空间光学领域的工程应用。
Imaging Spectrometer, which combines imaging technique with spectrumtechnique, is a kind of apparatus utilized for recognizing the matters on the ground bythe spectrum while obtaining the image of the object as well as its spectrumcharacteristics. Imaging Spectrometry experiences three stages: initially refractivestyle, then refra-reflective style and reflective style till now; correspondingly, itsaperture increases, volume shrinks, weight decreases, spectral range broadens and thecost reduces. All-reflective broad-view high-resolution imaging spectrometer is thefrontier of the development of imaging spectrum technology. In order to applyreflective optical system to the imaging spectrometer, the system classification,structural features and design methods have been researched in this paper, in whichoff-axis three-reflective system is highly focused because of its excellentcharacteristics such as center obscure, small volume, tight structure, easily-realizedbroad-view as well as high-quality imaging.
     Aiming to the characteristics and application requirements of the researchedall-reflective prism dispersion broad-view high-resolution imaging spectrometer, themain work is focused on the design issues for this broad-view, large F#and eccentricoff-axis three-reflective optical system. Based on the imaging theory of on-axisthree-reflective system, two cases when stop on the secondary mirror and in front of the primary mirror are taken respectively, in which the conditions for realizingeccentric, initial structure design parameter formulas and third-order aberrationexpressions as well as its aberration-free solution methods are analyzed and derivedtheoretically; furthermore, several specific design examples are listed. Combined withthe engineering situation of the fiber folded FOV high-resolution hyperspectralimager prototype, the design method of eccentric off-axis three-reflective in this paperis employed to design an all-reflective eccentric pre telescope imaging system as wellas a post spectrum beam-split system. After evaluating the image quality of thedesigned system, an all-reflective fiber folded FOV high-resolution hyperspectralimager optical system which satisfies the performance requirements is achieved, andthe engineering application of the broad-view high-resolution imaging spectrometer inspace optics is improved.
引文
[1] F. H. Alexander Goetz, E. Gregg Vane Jerry Solomon, N. Barrett Rock. Imagingspectrometry for earth remote sensing [J]. Science,1985,228:1147-1153
    [2] J.Ronald Birk, B. Thomas McCord. Airborne Hyperspectral Sensor Systems [J].IEEE.AES Systems Magzine.1994:26-33
    [3] J. E. Conel. AIS radiometry and the problem ofcontamination from mixedspectralorders. RemoteSensingofEnvironment.1988,24:179-200
    [4] B. James Breckinridge. Evolution of imaging spectrometry:past, present andfuture [C].SPIE1996.2819:2-6
    [5] J. Jeffery Puschell. Hyperspectral Imagers for Current and Future Missions [C].Proceedings of SPIE,2000,4041:121-124
    [6] PantazisMouroulis, M. Michael McKerns. Pushbroom imaging spectrometer withhigh spectroscopic data fidelity: experimental demonstration [J]. Opt. Eng.,39:808-816
    [7] E. Donald Rockey. High Resolution Imaging Spectrometer (HIRIS)-A majoradvance in imaging spectrometry [C]. SPIE,1990,1298:93-104
    [8] J. Nieke, H. Schwarzer, A. Neumann, et al. Imaging Spaceborne and AirborneSensor Systems in the Beginning of the Next Century [C]. SPIE,1997,3221:581-592
    [9] W. Lee Schumann, S. Terrence Lomheim. Infrared hyperspectral imaging Fouriertransform and dispersive spectrometers: comparison of signal-to-noise basedperformance [C]. SPIE,2002,4480:1-14
    [10]C. T.Willoughby, J. M. Armo, M. A.Folkman. Hyperspectral imaging payload forthe NASA small satellite technology initiative program [J]. IEEE.1996,2:67-76
    [11]C. O. Davis. A spaceborne imaging spectrometer for environmental assessment ofthe coastal ocean [J]. SPIE,1996,2817:224-230
    [12]M.Folkman, J.Peariman. EO-1/Hyperion hyperspectral imager design,development, characterization, and calibration [J]. SPIE,2001,4151:40-50
    [13]J.Marja-Leena. Stationary Fourier-transform spectrometer [J]. Applied Optics,1992,31(21):4106-4112
    [14]Bliss Mary, A. Craig Richard, C. Anheier Norman. Demonstration of a staticFourier transform spectrometer [C]. SPIE,1999,3541:103-109
    [15]Takayuki Okamoto, Satoshi Kawata, Shigeo Minami. Fourier transformspectrometer with a self-scanning photodiode array [J]. Applied Optics,1984,23(2):269-273
    [16]Mamoru Hashimoto, Satoshi Kawata. Multichannel Fourier-transform infraredspectrometer [J]. Applied Optics,1992,31(28):6096-6101
    [17]B. A. Patterson, M. Antoni, et al. An ultra-compact static Fourier-transformspectrometer based on a single birefringent component [C]. OpticsCommunications,1996,130:1-6
    [18]D. Steers, B. A. Patterson, et al. Wide field of view, ultracompact staticFourier-transform spectrometer [J]. Review of Scientific Instruments,1997,68(1):30-33
    [19]M. J. Padgett, A. R. Harvey. A static Fourier-transform spectrometer based onWollaston prisms [J]. Review of Scientific Instruments,1995,66(4):2807-2811
    [20]母国光.干涉调频光谱学[J].物理通报,1963,11:488-494
    [21]虞宝珠.傅里叶变换光谱术及其应用[J].物理,1984,9:545-556
    [22]吕乃光.傅里叶光学[M].北京:机械工业出版社,2006.195-195
    [23]王文桂.干涉光谱仪[M].北京:宇航出版社,1988.169-227
    [24]A. H. Vaughan. Imaging Michelson Spectrometer for Hubble Space Telescope [C].SPIE,1988,1036:2
    [25]H. Norman Macoy. Fourier transform spectrometer optimal design considerations[C]. SPIE,1999,3756:47-64
    [26]Leonard John Otten III, D. Andrew Meigs, et al. The engineering model for theMightySat II.1hyperspectral imager [C]. SPIE,1997,3221:412-420
    [27]L. J. Otten, A. D. Meigs, et al. MightySat II.1: An optical design and performanceupdate [C]. SPIE,1996,2957:390-398
    [28]L. J. Otten, R. G. Sellar, J. B. Rafert. MightySat II.1Fourier transformhyperspectral imager payload performance [C]. SPIE,1995,2583:566-575
    [29]F. Blechinger, B. Harnisch, B. Kunke. Optical Concepts for High ResolutionImaging Spectrometers [C]. SPIE,1995,2480:165-178
    [30]Peter Silverglate, Ker Li Shu, Dennis Preston. Concepts for spacebornehyperspectral imagery using prism spectrometers [C]. SPIE,1994,2267:112-120
    [31]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999.21-22,158-160,267-272
    [32]S. JayPearlman. Hyperion, a Space-Based Imaging Spectrometer [J], IEEE,2003,41:1160-1173
    [33]Michael Griffin, Hsiao-hua Burke, Dan Mandl. Cloud Cover Detection Algorithmfor EO-1Hyperion Imagery [J]. IEEE,2003,86-89
    [34]A. Fred Kruse, W. Joseph Boardman,F. JonathanHuntington. Comparison ofAirborne Hyperspectral Data and EO-1Hyperion for Mineral Mapping [J]. IEEE,2003,41:1388-1400
    [35]S. JayPearlman, S. Pamela Barry, C. Carol Segal. Hyperion, a Space-BacedImaging Spectrometer [J]. IEEE,2003,41:1160-1173
    [36]R. Jerrell Ballard, A. Jr. JamesSmith. Hyperspectral Canopy ReflectanceModeling and EO-1Hyperion [C]. SPIE,2002,4725:515-520
    [37]G. Stephen Ungar, S. Jay Pearlman, A. Jeffrey Mendenhall. Overview of the EarthObserving One (EO-1) Mission [J]. IEEE,2003,41:1149-1159
    [38]BisunDatt, R. TimMc Vicar, G. TomVan Niel. Preprocessing EO-1HyperionHyperspectral Data to Support the Application of Agricultural Indexes [J]. IEEE,2003,41:1246-1259
    [39]Peter Jarecke, Karen Yokoyama. Radiometric Calibration Transfer Chain fromPrimary Standards to the End-to-End Hyperion Sensor [C]. SPIE,2004,4135:254-263
    [40]F. A. Harrison, The High-Resolution Spectroscopic Imaging (HSI) Mission [J].SPIE,2003,4851:345-352
    [41]G. Ronald Resmini. The categorization of hyperspectral information (HSI) basedon the distribution of spectra in hyperspace [C]. SPIE,2003,5093:581-590
    [42]B. C. Gao, O. Curtiss Davis. Development of an operational algorithm forremoving atmospheric effects from HYDICE and HSI data [C]. SPIE,1996,2819:45-55
    [43]Kenneth Ranney. Landmine-Detection Prescreeners Based on Feature-LevelFusion of SAR and HSI Data [C]. SPIE,2007,6553:65531Z
    [44]A. Rovert Keller, S. Sylvia Shen, A. T. Pritt Jr. Sensor Design Considerations forHSI Remote Sensing [J]. SPIE,1998,3438:2-12
    [45]O. Curtiss Davis, M. Donald Horan, R. Michael corson. On-orbit Calibration ofthe Naval EarthMap Observer (NEMO) Coastal Ocean Imaging Spectrometer(COIS)[J]. SPIE,2000,4132:250
    [46]Thomas Wilson, Curtiss Davis. Naval EarthMap Observer (NEMO) Satellite [J].SPIE,1999,3753:2-11
    [47]Jeffrey Bowles, John Antoniades, Jeff Skibo. On-board hyperspectralcompression and analysis system for the NEMO satellite [J].1998,3437:20-28
    [48]Thomas Wilson, Curtiss Davis. Hyperspectral Remote Sensing Technology(HRST) program and the Naval EarthMap Observer (NEMO) satellite [J]. SPIE,1998,3437:2-10
    [49]O. Curtiss Davis, Mary Kappus, Bo-Cai. The Naval EarthMap Observer (NEMO)Science and Naval Products [J]. SPIE,1998,3437:11-19
    [50]Bo-CaiGao, Marcos J. Montes, Ziauddin Ahmad. An atmospheric correctionalgorithm based on vector radiative transfer modelling for hyperspectral remotesensing of ocean color [J]. SPIE,1998,3437:11-19
    [51]Bo-CaiGao, Marcos J. Montes, Curtiss O. Davis. Removal of atmospheric effectsfrom hyperspectral imaging data for remote sensing of coastal waters [J]. SPIE,2000,4154:31-40
    [52]吴国安.光谱仪器设计[M].北京:科学出版社,1978.69-77
    [53]S. Terrence Lomheim, A. Eric Nussbaumer, A. Jeffrey Lang, etal. Parametricmethodologies and tools for first-order hyperspectral imaging sensor systemdesign [C]. SPIE,2004,5546:1-2
    [54]D. R. Lobb, Sira Ltd. Imaging spectrometers using concentric optics [C]. SPIE,1997,3118:342-347
    [55]F. H. Alexander Goetz, Mark Herring. The High Resolution ImagingSpectrometer (HIRIS) for Eos [J]. IEEE,1989,27:136-144
    [56]A.Mike Cutter, Sira Technology Ltd, South Hill. Compact high-resolutionimaging spectrometer (CHRIS) design and performance [C]. SPIE.2004,5546:126-131
    [57]M. A. Cutter, L. S. Johns, D. R. Lobb. Flight Experience of the Compact HighResolution Imaging Spectrometer (CHRIS)[C]. SPIE.2003,5159:392-405
    [58]M. A. Cutter, D. R. Lobb, T. L. Williams. Intergration&Testing of the CompactHigh-Resolution Imaging Spectrometer (CHRIS)[C]. SPIE,1999,3753:180-191
    [59]Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni. Methodology forat-surface BRDF retrieval from CHRIS-PROBA observations of the San Rossore(Italy) forestry [C]. SPIE,2004,5546:213-222
    [60]Suhyb Salama, Jaak Monbaliu. Atmospheric Correction Algorithm for CHRISImages Application to CASI [C]. SPIE,2002,4816:120-131
    [61]A. Peter Fletcher. Image acquisition planning for the CHRIS sensoronboardPROBA [C]. SPIE,2004,5546:141-148
    [62]U. Dek Bello, P. Kealy, R. Meynart. PRISM: a hyperspectral imager for a futureESA land observation mission [C]. SPIE,1995,2585:233-240
    [63]Yves Delclaud, Jean Yves Labandibar, Umberto Del Bello. PRISM: HyperspectralSpaceborne Imager for Land Processes Research [C]. SPIE,1997,2957:144-153
    [64]Jean Yves Labandibar, Yves Delcland, Umberto Del Bello. PRISM: ProcessesResearch by Imaging Space Mission [C]. SPIE,1996,2817:14-23
    [65]E. Michael Schaepman, Lieve de Vos, I. Klaus Itten. APEX-Airborne PRISMExperiment: hyperspectral radiometric performance analysis for the simulation ofthe future ESA land surface processes earth explorer mission [C]. SPIE,1998,3438:253-262
    [66]GerdUlbrich, Roland Meynart, Jens Nieke. APEX-Airborne Prism Experiment:The Realization Phase of an Airborne Hyperspectral Imager [C]. SPIE,2004,5570:453-459
    [67]D. Lobb, N. Fox, M. Rast. Strategies for calibration of high-resolution imagingspectrometer data [C]. SPIE,1997,2957:287-298
    [68]Pantazis Mouroulis. Pushbroom imaging spectrometer with high spectroscopicdata fidelity: experimental demonstration [J]. Opt. Eng.,2000,39(3):808
    [69]F. Blechinger, D. E. Charlton, R. Davancens, et al. High Resolution ImagingSpectrometer "HRIS" Optics, Focal Plane and Calibration [C]. SPIE,1993,1937:210-211
    [70]F. Blechinger, D. E. Charlton, R. Davancens. High Resolution ImagingSpectrometer "HRIS" Optics, Focal Plane and Calibration [C]. SPIE,1993,1937:207-224
    [71]B. Harnisch, M. Fabbricotti, R. Meynart. HRIS Technology Development Resultsand their Implementation in Future Hyperspectral Imagers [C]. SPIE,1997,3221:396-411
    [72]Bruce Preiss, Lloyd Greene, Jamie Kriebel. Air Force Research Laboratory spacetechnology strategic investment model-analysis and outcomes for warfightercapabilities [C]. SPIE,2006,6228:622802
    [73]Thomas Wilson, Curtiss Davis. Hyperspectral Remote Sensing Technology(HRST) program and the Naval EarthMap Observer (NEMO) satellite [C]. SPIE,1998,3437:2-10
    [74]Thomas Wilson, Curtiss Davis. Naval EarthMap Observer (NEMO) Satellite [C].SPIE,1999,3753:2-11
    [75]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-80
    [76]郑玉权,王慧,王一凡.星载高光谱成像仪光学系统的选择与设计[J].光学精密工程,2009,17(11):2629-2637
    [77]姜景山,王文魁,都亨.空间科学与应用[M].科学出版社,2001
    [78]刘德森,殷宗敏,祝颂来,张林潘.纤维光学[M].北京:科学出版社,1987
    [79]Q. H. Hong,A. H. Lettington, J. Macdonald. Measuring the MTF for focal planearrays using random noise targets [J]. Meas. Sci. Technol.,1996,7:1087-1091
    [80]赵仲刚,逄永秀,宋金声,李华生.光纤通讯与光纤传感[M].上海:上海科学技术文献出版社,1993
    [81]H. Lamm. Z. Instrumentenk,1930,50:579.
    [82]刘德明,向清,黄德修.光纤技术及其应用[M].第一版.成都:电子科技大学出版社,1991
    [83]李泽民.光纤通信[M].第一版.北京:科学技术文献出版社,1992
    [84]A. A. Friesem, U. Levy. Parallel image transmission by a singleoptical fiber [J].Optics Letters,1978,2(5):133-135
    [85]A. M. Tai. Two-dimensional image transmission through a single optical fiber bywavelength-time multiplexing [J]. Applied Optics,1983,22(23):3826
    [86]李欢,向阳.推扫式超光谱成像仪光学系统的选择[J].红外技术,2008,30(11):626-628
    [87]王之江.光学设计理论基础[M].北京:科学出版社,1985.158-200
    [88]A. T. Pritt, J. P. N. Kupferman, S. J. Young, et al. Imaging LWIR Spectrometersfor Remote Sensing Applications [C]. SPIE,1997,3063:139-142
    [89]沈中.航天超光谱成像仪原理分析[J].航天返回与遥感,2002(6):28-34
    [90]丛杉珊.大视场、长焦距、反射式空间光学系统设计[D]:[硕士学位论文].长春:长春理工大学,2008
    [91]潘君骅.光学非球面的设计加工和检验[M].北京:科学出版社,1994.10-167
    [92]Thomas Wilson, Curtiss Davis. Naval EarthMap Observer (NEMO) Satellite [J].SPIE,1999,3753:2-11
    [93]Jun-ichiIshigaki, Toshihiro Okamura, KunihiroTanikawa, et al. Designing andtesting of off-axis three-mirror optical system for multispectral sensor [J]. SPIE,1997,3061:356-369
    [94]李欢,向阳.10°远心离轴三反消像散望远系统的光学设计[J].光子学报,2009,38(9):2256-2259
    [95]何煦.光纤视场折叠高分辨率超光谱成像仪装调方法和检测技术研究[D]:[博士学位论文].北京:中国科学院研究生院,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700