用户名: 密码: 验证码:
同平面轴等直径钩杆空间螺旋线齿轮设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)具有结构微型化、功能多样化、智能化、能耗低、灵敏度和工作效率高等优点。微小型/微型机电产品的最主要特征是体积小、重量轻,以小动力的运动传递或者分度运动为主,以动力传递为主的常规传动机构通常不再适用。因此,微小/微传动机构及驱动装置的工作原理、性能特征和设计制造的创新研究已逐渐成为机械学科前沿研究领域的研究热点和重要方向之一。
     本文首先针对国内外微小/微传动机构及驱动装置的研究成果进行了系统性的阐述与分析,然后在前期用于正交轴传动的空间曲线啮合轮传动机构的研究基础上,开展了同平面轴等直径钩杆空间螺旋线齿轮设计理论研究。首先,建立了具有普适性的用于同平面内任意角度交叉轴和平行轴传动的空间曲线啮合理论。在此基础上,研究解决等直径钩杆空间螺旋线齿轮传动机构工业化应用的关键问题,从而为构建独立而完整的同平面轴等直径钩杆空间螺旋线齿轮设计理论奠定基础。大量理论分析与实验研究表明,本文研究的同平面轴等直径钩杆空间螺旋线齿轮具有工业化应用的指导性与可行性。
     总体来说,本文具体开展了以下几个方面的研究工作:
     1.建立了适用于任意角度交叉轴和平行轴传动的空间曲线啮合方程。首先建立了空间曲线啮合坐标系,分析空间曲线啮合的约束条件,推导具备普适性的轴线共面的空间曲线啮合方程。根据主从动钩杆空间矢量关系,得到等直径钩杆空间螺旋线齿轮主从动钩杆的接触线与中心线方程。
     2.在轴线共面的空间曲线啮合方程的基础上,推导等直径钩杆空间螺旋线齿轮的重合度设计公式。分析影响等直径钩杆空间螺旋线齿轮重合度的各项参数,研究重合度的几种设计方法。在重合度设计公式及其影响因素基础上,研究主动钩杆的最少齿数,并针对传动连续性和平稳性进行运动学仿真分析和实验研究,验证重合度设计公式的正确性。
     3.研究等直径钩杆空间螺旋线齿轮参数标准化设计。分析等直径钩杆空间螺旋线齿轮主从动轮的各项齿形结构参数,包括齿数、螺旋升角、螺距、钩杆直径、齿高等,确定主从动轮坐标系中心距,确定等直径钩杆空间螺旋线齿轮的基本设计参数和基本设计尺寸。为避免主从动轮之间的干涉,修正主从动钩杆中心线和接触线参数取值范围。
     4.制定等直径钩杆空间螺旋线齿轮的弯曲疲劳无限寿命设计准则。分别针对等直径钩杆空间螺旋线齿轮啮合传动的主动钩杆和从动钩杆进行受力分析,结合ANSYS有限元数值模拟仿真,推导主动钩杆根部最大名义应力解析式,拟合具有普适性的主动钩杆根部理论应力集中系数的函数表达式。根据疲劳强度理论,结合安全系数法,制定等直径钩杆空间螺旋线齿轮的弯曲疲劳无限寿命设计准则。
     5.研究等直径钩杆空间螺旋线齿轮主动钩杆结构优化设计。分析主动钩杆各项螺旋参数与主动钩杆应力和变形之间的变化规律,确定包括螺旋升角在内的各项设计参数的最优取值范围,提高等直径钩杆空间螺旋线齿轮传动副的承载能力和抗变形能力。
Micro-electro mechanical systems (MEMS) have advantages of structure miniaturization,functional diversities, intelligent, low energy consumption, high sensitivity and efficiency.The most important characteristics of MEMS products are small size and light weight, whichare mostly using for low-power motion transmission and dividing movement. Theconventional power transmission is no longer applicable for MEMS. Therefore, theinnovative research of work principle, performance characteristics and the design andmanufacture of small devices or microdevices has become one of the hot and importantresearch fields of mechanical transmission.
     The domestic and foreign research results of microdevices are analyzed systematically inthis dissertation. On the basis of space-curve meshing-wheel (SCMW) transmissionmechanism used for orthogonal shaft drive, the coplanar axes spatial helix gear with equaldiameter of tines is researched. The generalized mesh theory is founded firstly, which suits fortransmission between arbitrary angle intersected axes and parallel axes in one plane. The keypoints of industrialized application are researched, which will lay the foundation ofindependent and complete design theory of coplanar axes spatial helix gear with equaldiameter of tines. Lots of analysis and experimental study indicate that the proposed coplanaraxes spatial helix gear with equal diameter of tines has guidance and feasibility forindustrialized application. The detailed work accomplished in this dissertation is as follows.
     First of all, the generalized space curve mesh theory is established for transmissionmotion between arbitrary intersected axes and parallel axes in one plane. Based on the spacemesh coordinate systems, constraint conditions of space mesh are indicated and the vectorrelationships between the driving and driven tines are analyzed. Then the equations of thecontact curves and the central curves of the driving and driven tines of coplanar axes spatialhelix gear are deduced.
     Secondly, the design formula of contact ratio is deduced based on the generalized meshequation of coplanar axes spatial helix gear. Impacting factors of the contact ratio areanalyzed, and different design methods for contact ratio are discussed. The least tooth numberof the driving wheel is studied, according to the impacting factors. Then material samples aremanufactured for kinematics simulation and experiments. Numerical examples illustrate thedesign formula of contact ratio and the kinematics performance of the coplanar axes spatialhelix gear mechanism.
     Thirdly, the standardized parameters design for spatial helix gear with equal diameter oftines is worked out. The tooth profile structure parameters for the spatial helix gear with equaldiameter of tines are studied, including tooth number, helical angle, helical pitch, diameter oftines, height of teeth etc., and the central distance of the coordinate systems is determined.Then the basic design parameter and basic design size of spatial helix gear with equaldiameter of tines are determined. The parameters value scope of central curve of the drivingand driven tines are corrected to avoid interference between the bodies of the wheels.
     Fourthly, a design criterion of bending fatigue infinite lifetime for spatial helix gear withequal diameter of tines is presented. Applied forces and the maximum localized stressesbetween the meshing tines of spatial helix gear with equal diameter of tines are analyzed.Analytic formula for the maximum nominal stress at the end of the tine is deduced, combinedwith ANSYS simulation. The equation of theoretical stress concentration factor is fittednumerically, which suits for the general application situation. According to fatigue theory, thedesign criterion of bending fatigue infinite lifetime for spatial helix gear with equal diameterof tines is presented, combined with safety factor method. Then a numerical exampleillustrates the design criterion.
     Fifthly, optimization design for driving tine’s structure of spatial helix gear with equaldiameter of tines is presented. The variation between the skew parameters and the stress anddeformation of the driving tine is analyzed, and the optimum value scope of the skewparameters including helix angle with equal diameter of tines are determined, which willhighly improve the carrying capacity and anti-distortion capacity of the spatial helix gearmechanism.
引文
[1] Huang Y. MEMS reliability review[J]. IEEE Transactions on Device and MaterialsReliability,2012,12(2):482-493
    [2] Lightman K. MEMS Industry Group[J]. Advancing Microelectronics,2008,35(2):8-9
    [3] Bandorf R., Luthje H., Staedler T. Influencing Factors on Microtribology of DLC Filmsfor MEMS and Microactuators[J]. Diamond and Related Materials,2004,13(4-8):1491-1493
    [4] Nagel D.J. MEMS: micro technology, mega impact[J]. IEEE Circuits&Device,2001,17(2):14-25
    [5]李旭辉. MEMS发展应用现状[J].传感器与微系统,2006,25(5):7-9
    [6] Horie, Mikio. Mechano-micro/nano systems[A]. Optomechatronic Micro/nanoComponents, Devices, and System[C]. San Diego, United States: SPIE,2004:86-97
    [7]彭云峰,李瑰贤.微齿轮的基础研究中的几个关键问题分析[J].机械设计与研究,2005,21(1):41-43
    [8] Henderson, D. Micro Moves[J]. Machine Design,2006(1),78:114-120
    [9]游小叶.齿轮转动的历史印记―记华南理工大学陈扬枝教授发明新型齿轮机构[J].科学中国人,2009,8:90-91
    [10] Kahraman A., Blankenship G.W. Effect of involute contact ratio on spur geardynamics[J]. Journal of Mechanical Design,1999,121(1):112-118
    [11] Alipiev O. Geometric design of involute spur gear drives with symmetric andasymmetric teeth using the Realized Potential Method[J]. Mechanism and MachineTheory,2011,46(1):10-32
    [12] Litvin F.L., Fuentes, A., Fan Q., et al. Computerized design, simulation of meshing, andcontact and stress analysis of face-milled formate generated spiral bevel gears[J].Mechanism and Machine Theory,2002,37(5):441-459
    [13] Argyris J., Fuentes, A., Litvin F.L. Computerized integrated approach for design andstress analysis of spiral bevel gears[J]. Computer Methods in Applied Mechanics andEngineering,2002,191(11-12):1057-1095
    [14] Litvin F.L., Gonzalez-Perez I., Fuentes A., et al. Generalized concept of meshing andcontact of involute crossed helical gears and its application[J]. Computer Methods inApplied Mechanics and Engineering,2005,194(34-35):3710-3745
    [15] Litvin F.L., Fan Q., Vecchiato D., et al. Computerized generation and simulation ofmeshing of modified spur and helical gears manufactured by shaving[J]. ComputerMethods in Applied Mechanics and Engineering,2001,190(39):5037-5055
    [16] Seol I.H., Litvin F.L. Computerized design, generation and simulation of meshing andcontact of worm-gear drives with improved geometry[J]. Computer Methods in AppliedMechanics and Engineering,1996,138(1-4):73-103
    [17] Litvin F.L., Argentieri G., Donno M.D., et al. Computerized design, generation andsimulation of meshing and contact of face worm-gear drives[J]. Computer Methods inApplied Mechanics and Engineering,2000,189(3):785-801
    [18] Chen C., Yang S. Geometric modelling for cylindrical and helical gear pumps withcircular arc teeth[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2012,214(4):599-607
    [19] Litvin F.L., Lu J. Computerized design and generation of double circular-arc helicalgears with low transmission errors[J]. Computer Methods in Applied Mechanics andEngineering,1995,127(1-4):57-86
    [20] Litvin F.L., Feng P. Computerized design and generation of cycloidal gearings[J].Mechanism and Machine Theory,1996,31(7):891-911
    [21] Demenego A., Vecchiato, D., Litvin F.L., et al. Design and simulation of meshing of acycloidal pump[J]. Mechanism and Machine Theory,2002,37(3):311-332
    [22] Guo Y., Parker R.G. Dynamic modeling and analysis of a spur planetary gear involvingtooth wedging and bearing clearance nonlinearity[J]. European Journal of Mechanics,A/Solids,2010,29(6):1022-1033
    [23] Eritenel T., Parker R.G. Modal properties of three-dimensional helical planetarygears[J]. Journal of Sound and Vibration,2009,325(1-2):397-420
    [24] Litvin F.L. Theory of Gearing[M]. Washington D.C.: NASA Reference Publication1212,1989
    [25] Litvin F.L., Fuentes A. Gear Geometry and applied theory[M]. New York: CambridgeUniversity Press,2004
    [26] Litvin F.L., Fuentes A., Howkins M., et al. Design, generation and TCA of new type ofasymmetric face-gear drive with modified geometry[J]. Computer Methods in AppliedMechanics and Engineering,2001,190(43-44):5837-5865
    [27] Litvin F.L., Gonzalez-Perez L., Fuentes A., et al. Design, generation and stress analysisof face-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics andEngineering,2005,194(36-38):3870-3901
    [28] Litvin F.L., Fuentes A., Zanzi C., et al. Design, generation, and stress analysis of twoversions of geometry of face-gear drives[J]. Mechanism and Machine Theory,2002,37(10):1179-1211
    [29] Yang S. A rack-cutter surface used to generate a spherical gear with discretering-involute teeth[J]. International Journal of Advanced Manufacturing Technology,2005,27(1-2):14-20
    [30] Chao L., Tsay C. Contact characteristics of spherical gears[J]. Mechanism and MachineTheory,2008,43(10):1317-1331
    [31] Chao L., Tsay, C. Tooth flank, undercutting and tooth pointing of spherical gears[J].Mechanism and Machine Theory,2011,46(4):534-543
    [32] Xia J., Liu Y., Geng C., et al. Noncircular bevel gear transmission with intersectingaxes[J]. Journal of Mechanical Design,2008,130(5):054502
    [33] Litvin F.L., Gonzalez-Perez L., Fuentes A., et al. Design and investigation of geardrives with non-circular gears applied for speed variation and generation of functions[J].Computer Methods in Applied Mechanics and Engineering,2008,197(47-48):3783-3802
    [34]任重义,段建中.基于ANSYS的四圆弧齿轮齿形优化[J].机床与液压,2009,37(11):188-201
    [35]罗齐汉,历海洋,张予川,等.点线啮合齿轮参数选择的封闭图[J].机械工程学报,2005,41(1):37-40
    [36]杜世勤.新型磁齿轮复合电机的设计研究[D].上海:上海大学,2010
    [37] Ikuta K., Calverley S.D., Howe D. Design, analysis and realisation of ahigh-performance magnetic gear[J]. IEE Proceedings-electric Power Applications,2004,151(2):135-143
    [38] Ikuta K. Non-contact Magnetic Gear for Micro transmission Mechanism[A].Proceedings of the1991IEEE Micro Electro Mechanical Systems-MEMS '91[C]. NewJersey, United States: IEEE,1991:125-130
    [39] Rasmussen P.O., Andersen T.O., Jrgensen F.T., et al. Development of ahigh-performance magnetic gear[J]. IEEE Transactions on Industry Applications[J].2005,41(3):764-770
    [40] Kadota Y., Inoue K., Uzuka K., et al. Noncontact Operation of a Miniature CycloidMotor by Magnetic Force[J]. IEEE/ASME Transactions on Mechatronics,doi:10.1109/TMECH.2012.2208225
    [41] Yang P., Liao N. Surface sliding simulation in micro-gear train for adhesion problemand tribology design by using molecular dynamics model[J]. Computational MaterialsScience,2007(4),38:678-684
    [42] Pham P.H., Dao D.V., Amaya S., et al. Straight movement of micro containers based onratchet mechanisms and electrostatic comb-drive actuators[J]. Journal ofMicromechanics and Microengineering,2006,16(12):2532-2538
    [43] Kwak S.S., Mou J.I., Huang S.R.S., et al. Kinematics and dynamics of a microparallel-link mechanism[J]. Microsystem Technologies,2004,10(4):293-306
    [44] Zhang X., Zhao Y., Li B., et al. Pumping capacity and reliability of cryogenicmicro-pump for micro-satellite applications[J]. Journal of Micromechanics andMicroengineering,2004,14(10):1421-1429
    [45] Zhang Y., Pan W. Design and analysis of a MEMS horizontal torsion micro mirror withfolded springs[J]. Optics and Precision Engineering,2005,13:81-85
    [46] Bae B., Han J.H., Masel R.I., et al. A Touch mode capacitance type injector valve for amicroscale gas chromatography system[J].2005AIChE Annual Meeting and FallShowcase[C]. New York, United States: American Institute of Chemical Engineers,2005:7319
    [47] Mutzenich S., Vinay T., Rosengarten, G. Analysis of a novel micro-hydraulic actuationfor MEMS[J]. Sensors and Actuators, A: Physical,2004,116(3):525-529
    [48] Suzumori K, M iyagawa T, Kimura M, et al. Micro inspection robot for1-in pipes[A].IEEE/ASME Transactions on Mechatronics[C]. New Jersey, United States: IEEE,1999:286-292
    [49]罗亮.空间曲线啮合轮机构重合度及参数设计公式[D].广州:华南理工大学,2009
    [50] Dopper J., Clemens M., Ehrfeld W., et al. Micro gear pumps for dosing of viscousfluids[J]. Journal of Micromechanics and Microengineering,1997,7(3):230-232
    [51]张继承.基于α∶CH薄膜的微齿轮的制备[J].传感技术报,2006,19(5):1398-1400
    [52]陈文元,陈卫平,范志荣.微3-K2行星齿轮减速器中微齿轮啮合模型和参数计算[J].上海交通大学学报,2000,34(3):381-383
    [53] Que L., Park J.S., Gianchandani Y.B. Bent-beam electrothermal actuators-Part I: Singlebeam and cascaded devices[J]. Journal of Microelectromechanical Systems,2001,10(2):247-254
    [54]胡志军,陈迪,黄闯,等.一种新型的电热驱动MEMS微继电器的研制[J].传感技术学报,2009,22(12):1696-1700
    [55] Kim W.J., Sadighi, A. Design and relay-based control of a novel linear magnetostrictivemotor[A].2009American Control Conference[C]. New Jersey, United States: IEEE,2009:3482-3487
    [56]许文秉,杨斌堂,孟光,等.大负载精密驱动超磁致伸缩直线电机动力学建模与仿真[J].上海交通大学学报,2012,46(3):480-486
    [57] Wu C., Tai W., Hsu C., et al. Design and fabrication of a three-dimensional long-stretchmicro drive by electroplating[J]. Smart Sensors, Actuators, and MEMS[C]. San Diego,United States: SPIE,2005:295-302
    [58] Wan K., Ren J., Guo Z. Experimental and numerical investigation of thermoelectricSMA actuator of micro thermal louvers[J]. Qinghua Daxue Xuebao/Journal of TsinghuaUniversity,2006,19(5):1478-1480+1484
    [59]方晔.形状记忆合金驱动的仿壁虎机器人的研制[D].合肥:中国科学技术大学,2009
    [60] Greivell N.E., Hannaford B. The design of a ferrofluid magnetic pipette[J]. IEEETransactions on Biomedical Engineering,1997,44(3):129-135
    [61] Alexandrescu N., Udrea C., Comeaga D., et al. Piezo-Electrically operated minirobot[A].2008IEEE International Conference on Automation, Quality and Testing,Robotics[C]. New Jersey, United States: IEEE,2008:392-397
    [62]马官营.人体肠道诊查微型机器人系统及其无线供能技术研究[D].上海:上海交通大学,2008
    [63] Jung K., Nam J., Lee Y., et al. Micro inchworm robot actuated by artificial muscleactuator based on non-prestrained dielectric elastomer[A]. Smart Structures andMaterials2004-Electroactive Polymer Actuators and Devices[C]. San Diego, UnitedStates: SPIE,2004:357-367
    [64] Ohmichi O., Yamagata Y., Higuchi T. Micro impact drive mechanisms using opticallyexcited thermal expansion[J]. Journal of Microelectromechanical Systems,1997,6(3):200-207
    [65] Zhang J., Rastegar J. Micro/macro or link-integrated micro-actuator manipulation-Akinematics and dynamics perspective[J]. Journal of Mechanical Design,2007,129(10):1086-1093
    [66]付国强,梅涛,孔德义,等.微型机器人外场驱动技术的研究现状与发展[J].光学精密工程,2003,11(04):333-337
    [67] Nakamura Y., Nalayama M., Yasuda M., et al. Development of activesix-degree-of-freedom micro-vibration control system using hybrid actuatorscomprising air actuators and giant magnetostrictive actuators[J]. Smart Materials andStructures,2006,15(4):1133-1142
    [68] Khamesee M.B., Kato N., Nomura, Y., et al. Design and control of a microroboticsystem using magnetic levitation[J]. IEEE/ASME Transactions on Mechatronics,2002,7(1):1-14
    [69] Mei T., Chen Y., Fu, G., et al. Wireless drive and control of a swimming microrobot[A].2002IEEE International Conference on Robotics and Automation[C]. New Jersey,United States: IEEE,2002:1131-1136
    [70]梅涛,陈永,张培强,等.铁磁橡胶执行器与微型游泳机器人的尺度效应[J].光学精密工程,2001,6(9):523-526
    [71] Siotsu I., Matsumoto S., Tozaki Y., et al. Development of high speed rotation microtraction drive modified from angular ball bearing (1st report, experimental manufactureand evaluation)[J]. Nihon Kikai Gakkai Ronbunshu C,2006,72(4):1337-1344
    [72] Luo Z.B., Xia Z.X. A novel valve-less synthetic-jet-based micro-pump[J]. Sensors andActuators, A: Physical,2005,122(1): p131-140
    [73]陈扬枝,邢广权,刘小康,等.微小弹性啮合轮传动方法及其装置[P].中国: ZL200520056612.9,2006
    [74] Chen Y.Z., Xing G.Q., Peng X.F. The Space Curve Mesh Equation and its KinematicsExperiment[A]. Proceedings of12th IFToMM World Congress[C]. Besancon (France),2007, June18-21
    [75] Chen Y.Z., Peng X.F., Xing G.Q. Dynamics Modeling and Experiment OnMicro-Elastic-Meshing-Wheel Mechanism[A]. Proceeding of International technologyand innovation conference[C]. Stevenage, United Kingdom: Institution of Engineeringand Technology,2006:883-886
    [76] Chen Y.Z., Xiang X.Y., Luo L. A Corrected Equation of Space Curve Meshing[J].Mechanism and Machine Theory,2009,44(7):1348-1359
    [77]罗亮.空间曲线啮合轮机构重合度及参数设计公式[D].广州:华南理工大学,2009
    [78] Chen Y.Z., Luo L., Hu Q. The Contact Ratio of A Space-Curve Meshing-WheelTransmission Mechanism[J]. Journal of Mechanical Design,2009,131(7):0745011-0745015
    [79] Chen Y.Z., Hu Q., Su L.H. Design Criterion for the Space-Curve Meshing-WheelTransmission Mechanism Based on the deformation of tines[J]. Journal of MechanicalDesign,2010,132(5):0545021-0545026
    [80]孙磊厚.空间曲线啮合轮传动机构的制造工艺研究[D].广州:华南理工大学,2011
    [81] Chen Y.Z., Su L.H., W D., et al. Investigation into the Process of Selective LaserMelting Rapid Prototyping Manufacturing for Space-Curve-Meshing-Wheel[A].International Conference on Surface Finishing Technology and Surface Engineering[C].Durnten-Zurich, Switzerland: Trans Tech Publications,2010:122-127
    [82]陈扬枝,陈祯,傅小燕,等.一种斜交齿轮机构[P].中国: ZL201010105902.3,2012
    [83] Chen Y.Z., Chen Z. Progress on design of a novel gearing mechanism[A].2010International Conference on Gears[C]. Germany,2010:1465-1469
    [84] Chen Y.Z., Chen Z., Fu X.Y. Design parameters for spatial helix gearing mechanism[A].2nd International Conference on Frontiers of Manufacturing and Design Science[C].Durnten-Zurich, Switzerland: Trans Tech Publications,2012:3215-3219
    [85] Chen Z., Chen, Y.Z., Ding J. A generalized space curve meshing equation for arbitraryintersecting gear[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2012, doi:10.1177/0954406212463310
    [86] Ding J., Chen Y.Z., Lv Y.L. Design of space-curve meshing-wheels with unequal tineradii[J]. Strojniski Vestnik/Journal of Mechanical Engineering,2012,56(11):633-641
    [87]王树人.齿轮啮合理论简明教程[M].天津:天津大学出版社,2005
    [88]吴序堂.齿轮啮合原理[M].西安:西安交通大学出版社,2009
    [89] Dooner D.B. On the three laws of gearing[J]. Journal of Mechanical Design,2002,124(4):733-744
    [90] Xu L.Z., Huang Z., Yang, Y.L. Mesh theory for toroidal drive[J]. Journal of MechanicalDesign,2004,126(3):551-557
    [91]周建伟.微分几何[M].北京:高等教育出版社,2008
    [92] Uicker J.J., Pennock G.R., Shigley J.E. Theory of Machines and Mechanisms[M].London: Oxford press,2003
    [93] Liou C.H., Lin H.H., Oswald F.B., et al. Effect of contact ratio on spur gear dynamicload with no tooth profile modifications[J]. Journal of Mechanical Design,1996,118(3):539-443
    [94] Benton M., Seireg A. Factors influencing instability and resonances in gearedsystems[J]. Journal of Mechanical Design,1981,103(2):372-378
    [95] Blankenship G.W., Kahraman A. Steady state forced response of a mechanical oscillatorwith combined parametric excitation and clearance type non-linearity[J]. Journal ofSound and Vibration,1995,185(5):743-765
    [96] Blankenship G.W., Singh R. Analytical Solution for modulation sidebands associatedwith a class of mechanical oscillators[J]. Journal of Sound and Vibration,1995,179(1):13-16
    [97] Anette A. An analytical study of the effect of the contact ratio on the Spur gear dynamicresponse[J]. Journal of Mechanical Design,2000,122(3):508-514
    [98] Deng X., Fang Z., Wei B., et al. Design and experiment of spiral bevel gears with highcontact ratio[J]. Chinese Journal of Mechanical Engineering,2004,40(6):95-99
    [99] Nisbett R.G.B. Shigley's Mechanical Engineering Design[M]. Columbus: McGraw HillPrimis,2006
    [100]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981
    [101] Zheng Y., Kim C., Cho C., et al. The concentration of stress and strain in finitethickness elastic plate containing a circular hole[J]. Journal of Solids and Structure,2008,45(3-4):713-731
    [102]赵少汴,王忠保.抗疲劳设计[M].北京:机械工业出版社,1992
    [103]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,1996
    [104]朱加铭.有限元与边界元法[M].哈尔滨:哈尔滨工程大学出版社,2002
    [105]王新荣,陈永波.有限元法基础及ANSYS应用[M].北京:科学出版社,2008
    [106] Duggan T.V., Byrne J. Fatigue as a Design Criterion[M]. London: Macmillan Press Ltd,1977
    [107] Lee Y.L., Byrne J. Fatigue Testing and Analysis[M]. Burlington: ElsevierButteworth-Heinemann publication,2007
    [108] Jaroslav M. Finite element analysis of machine elements: A bibliography(1977-1997)[J]. Engineering Computations,1999,16(6):677-748
    [109] Prasil L., Mackerle J. Finite element analyses and simulations of gears and gear drives:A bibliography (1997-2006)[J]. Engineering Computations,2008,25(3):196-219
    [110] Brauer J. Analytical geometry of straight conical involute gears[J]. Mechanism andMachine Theory,2002,37(1):127-141
    [111] Francesco G.D. and Marini S. Structural analysis of asymmetrical teeth: reduction ofsize and weight[J]. Gear Technology,1997,14(5):47-48
    [112] Guingand M., Vaujany J.-P., Jacquin C.-Y. Quasi-static analysis of a face gear undertorque[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(39-41):4301-4318
    [113] Kahraman A. and Vijayakar S. Effect of internal gear flexibility on the quasi-staticbehavior of a planetary gear set[J]. Journal of Mechanical Design,2001,123(3):408-415
    [114] Li S. Deformation and bending stress analysis of a three-dimensional, thin-rimmedgear[J]. Journal of Mechanical Design,2002,124(1):129-135
    [115] Sainsot P. Contribution of gear body to tooth deflections–a new bidimensionalanalytical formula[J]. Journal of Mechanical Design,2004,126(4):748-52
    [116] Wang Y., Cheung H.E., Zhang W. Dynamic modelling of bar-gear mixed multibodysystems using a specific finite element method[J]. Chinese Journal of MechanicalEngineering,1999,12(2):91-97
    [117] Wang Y., Zhang W.J., Cheung, H.M.E. Finite element approach to dynamic modeling offlexible spatial compound bar-gear systems[J]. Mechanism and Machine Theory,2001,36(4):469-487
    [118] Barone S., Borgianni L., Forte P. CAD/FEM procedures for stress analysis inunconventional gear applications[J]. International Journal of Computer Applications inTechnology,2002,15(4-5):157-167
    [119] Brauer J. A general finite element model of involute gears[J]. Finite Elements inAnalysis and Design,2004,40(13-14):1857-1872
    [120] Li C.H., Chiou H.-S., Hung C., et al. Integration of finite element analysis and optimumdesign on gear systems[J]. Finite Elements in Analysis and Design,2002,38(3):179-192
    [121] Zhang Y. and Fang Z. Analysis of transmission errors under load of helical gears withmodified tooth surfaces[J]. Journal of Mechanical Design,1997,119(1):120-126
    [122] Smith K.B. and Filler R.R. Face gear finite element stress analysis tool development[A].60th Annual Forum Proceedings-American Helicopter Society[C]. Alexandria, UnitedStates: American Helicopter Society,2004:1238-1250
    [123] Ajmi M. and Velex P. A model for simulating the quasi-static and dynamic behaviour ofsolid wide-faced spur and helical gears[J]. Mechanism and Machine Theory,2005,40(2):173-190
    [124] Baud S. and Velex P. Static and dynamic tooth loading in spur and helical gearedsystems-experiments and model validation[J]. Journal of Mechanical Design,2002,124(2):334-346
    [125] Chen Y., Tsay C. Stress analysis of a helical gear set with localized bearing contact[J].Finite Elements in Analysis and Design,2002,38(8):707-723
    [126] Pimsarn M. and Kazerounian K. Efficient evaluation of spur gear tooth mesh load usingpseudo-interference stiffness estimation method[J]. Mechanism and Machine Theory,2002,37(8):769-786
    [127] Ramamurti V., Vijayendra N.H., Sujatha, C. Static and dynamic analysis of spur andbevel gears using FEM[J]. Mechanism and Machine Theory,1998,33(8):1177-1193
    [128] Litvin F.L., Fuentes A., Gonzalez-Perez I., et al. New version of Novikov-Wildhaberhelical gears: computerized design, simulation of meshing and stress analysis[J].Computer Methods in Applied Mechanics and Engineering,2002,191(49-50):5707-5740
    [129] Litvin F.L., Fuentes A., Gonzalez-Perez I., et al. Modified involute helical gears:computerized design, simulation of meshing and stress analysis[J]. Computer Methodsin Applied Mechanics and Engineering,2003,192(33-34):3619-3655
    [130] Ltvin F.L., Wang A.G., Handschuh R.F. Computerized generation and simulation ofmeshing and contact of spiral bevel gears with improved geometry[J]. ComputerMethods in Applied Mechanics and Engineering,1998,158(1-2):35-64
    [131] Handschuh R.F. and Bibel G.D. Experimental and analytical study of aerospace spiralbevel gear tooth fillet stresses[J]. Journal of Mechanical Design,1999,121(4):565-572
    [132] Ni Y., Guo G. The Finite Element Analysis of Stress Concentration Factor for theV-notch on the inner surface of cylindrical shell[A].20102nd International Conferenceon Industrial Mechatronics and Automation[C]. Piscataway, United States: IEEEComputer Society,2010:314-317
    [133]张朝辉. ANSYS11.0结构分析工程应用实例详解[M].北京:机械工业出版社,2010
    [134] Khoshnaw F.M., Ahmed N.M. Effect of the load location along the involute curve ofspur gears on the applied stress at the fillet radius[J]. Materialwissenschaft undWerkstofftechnik,2008,39(6):407-414
    [135] Khoshnaw F.M., Ahmed N.M. The pressure angle effects of spur gears on stressconcentration factor[J]. Engineering Computations,2009,26(4):360-374
    [136] Zheng Y. Stress and strain concentration factors for tension bars of circularcross-section with semicircular groove[J]. Engineering Fracture Mechanics,2009,76(11):1683-1690
    [137]机械设计手册编委会.疲劳强度设计[M].北京:机械工业出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700