用户名: 密码: 验证码:
离心泵启动过程的瞬态内流和外特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心泵通常主要在稳定工况下运行,其工作转速、工况等基本不变或者变化非常缓慢,因此对离心泵的研究主要集中在稳定工况下进行。随着离心泵应用领域的拓展以及系统复杂程度的提高,离心泵也会在非稳定工况下运行,如启动、停机和转速变化等瞬态工况,离心泵在非稳定工况运行的水力性能日益受到重视,因此非常有必要开展离心泵在瞬态工况下的性能研究。
     本论文以在瞬态工况下运行的离心泵为研究对象,重点对启动过程中的水力性能进行了较为详细和深入的系统研究,获得了当输送介质中含有固体颗粒时的离心泵瞬态启动特性。论文首先根据动量矩定理提出了一种描述不可压缩流体机械瞬态操作条件下性能的广义欧拉方程式,借助于该方程式开展离心泵在各类瞬态操作条件下附加理论扬程的定量计算;其次,运用动网格方法进行了离心泵启动过程的数值仿真计算研究,建立了基于数值模拟的离心泵瞬态性能研究方法;再次,开展了离心泵启动过程的外特性实验测试研究,借助于无量纲分析方法揭示了离心泵启动过程的瞬态特性;最后,采用数值模拟方法开展了离心泵输送介质中含固体颗粒时的启动过程流动计算,获得了其瞬态特性。
     论文的主要研究工作如下:
     1.从动量矩定理和水力机械内部流动理论出发,推导了一种描述不可压缩流体机械瞬态操作过程性能的广义欧拉方程式。该方程式可较全面地反映了整个叶片厚度变化和叶片型线变化对附加理论扬程的影响,并可被用于泵、风机、透平等不可压缩流体机械在各类瞬态操作过程中的附加理论扬程(或压头、压升)的定量预测。
     2.运用动网格方法开展了离心泵输送清水介质时的快速启动过程的数值模拟研究,建立了基于数值模拟的离心泵瞬态操作过程的研究方法。论文研究工作中,建立了一个包含离心泵模型在内的循环管路系统,并在系统中设置了定压点,数值模拟中对整个系统进行计算。通过数值计算获得了启动过程中的许多特性,包括外特性的变化和内部流场的演化特性。进口压力呈现先降后升特性,流量在启动初期上升较为缓慢。无量纲流量在初始阶段快速上升至稳定值;无量纲扬程在启动初始阶段存在极大值,随后迅速下降低于准稳态值,而后又不断上升接近于准稳态值。
     3.在所搭建的离心泵瞬态性能测试实验台上,对三种典型叶轮结构(普通闭式叶轮、复合叶轮和开式叶轮)的离心泵进行了清水介质的启动过程实验测试研究。通过实验获得了启动过程中转速、流量、扬程和轴功率随时间的变化结果,分析了各个物理量的变化特性。启动过程中转速上升规律基本稳定,不依赖于启动后稳定工况点的变化而变化;流量在启动初期上升较为缓慢,延迟于转速而上升到稳定值,并且随阀门开度的增加延迟变得更为严重;在启动过程中普遍存在压力冲击和轴功率冲击现象。
     4.首先采用基于欧拉-欧拉方法的多相流模型,对固液两相流中固相属性对水力输送性能的影响以及泵流道内固体颗粒的分布进行了数值计算研究,分析了内部流场的变化特性。在离心泵启动实验中获得的转速与流量测试结果基础上,编写用户自定义函数施加到泵叶轮上和进口处充当计算边界条件,采用动网格方法开展了离心泵输送介质中含固体颗粒时的启动计算。研究发现当输送介质发生变化时,启动过程所表现出的性能差别是非常大的。启动前期瞬态性能基本相同,差别主要集中在启动后期;输送固液两相流时的扬程呈现先升后降的变化特性,明显区别于介质为清水时的持续上升趋势;当输送介质含固体颗粒时,扬程滞后于清水介质时的情形而达到稳定状态。
Centrifugal pumps usually run at steady operating conditions in which the rotational speed or the operating point is basically stead or changed slowly in a short time. Hereby the existing investigations on centrifugal pumps mainly are limited to the steady operating conditions. However, with the expansion of applications of centrifugal pumps and the increasing complexity of flow systems, centrifugal pumps have to be operated in transient operating conditions, such as startup, stopping and rapid change of rotational speed etc. As such, the hydraulic performance of centrifugal pumps at transient conditions has been drawn more and more attention in recent years. Therefore, it has become more necessary and urgent to study the hydraulic performance of centrifugal pumps during transient operating periods.
     In this thesis, the study object is the centrifugal pumps operating at transient working conditions. Their hydraulic performances during the startup period are studied systematically and deeply. And the transient characteristics are obtained in the case of delivering solid-liquid two-phase flow by using CFD. Firstly, a new generalized Euler equation is proposed according to the theorem of moment of momentum, which can be used to describe the performance of incompressible fluid machinery during transient operating periods. By means of the proposed equation, the additional theoretical heads of a centrifugal pump can be calculated quantitatively in all kinds of transient operating periods. Secondly, the unsteady flow inside a centrifugal pump during rapid startup period is numerically simulated using the dynamic mesh method. As such, an analytical method for transient performance of centrifugal pump is ultimately established based on the numerical simulation. Thirdly, the experiments on the performances of centrifugal pumps during startup periods are conducted. The transient behavior of centrifugal pump during startup periods is revealed further by the dimensionless analysis method. Finally, the transient flow in pump models in startup period are numerically calculated for the pumped media with solid particle based on numerical simulation, and the transient characteristics are obtained at last.
     The main contents of this thesis are briefly stated as followings:
     1. A generalized Euler equation is theoretically deduced based on the theorem of moment of momentum and theory of flow in hydraulic machinery. The proposed equation fully reflects the influences of blade thickness and blade profile on additional theoretical heads, and is able to predict the additional theoretical heads (or pressure rise) of incompressible fluid machinery, including pumps, fans, and turbines and so on, during all kinds of transient operating periods.
     2. By using the dynamic mesh method, the numerical simulations are carried out in startup process in the case that a centrifugal pump transports water. As such, the study method for obtaining transient performance of a centrifugal pump during all kinds of transient operating periods is established eventually. In order to simulate the unsteady flow inside the centrifugal pump during startup period, a closed-loop pipe system with a centrifugal pump is established, a constant pressure point is set up in the system to make the flow resemble the real status. Through numerical simulation, many important characteristics, such as variations of the performances and the internal flow fields, are obtained. The static pressure at the inlet of the pump firstly declines and then rises. At the very beginning of the startup, the rising rate of flow rate is relatively slow compared with the rising rate of rotational speed. The dimensionless transient flow rate shows a rapid rise trend at the beginning of the startup, and then arrives at a stable value. The dimensionless transient head is of extreme at the very beginning of startup, and quickly falls below the quasi-steady value, then gradually rises to the stable quasi-steady value.
     3. A test rig is established in this thesis to measure the transient performance of centrifugal pumps during startup period. For water, three pumps with three typical centrifugal impellers, namely ordinary closed, splitter-compound, and open impellers, are tested to obtain their performance during startup period. The variations of rotational speed, flow rate, head, and shaft-power with time are recorded in the experiments, and then the variation characteristics of each parameter are analyzed. The transient characteristics of rotational speed are basically stable in startup and are independent of the steady working point after startup. Compared with the rotational speed, the rising rate of flow rate is relatively low at the beginning of the startup. Moreover, the flow rate lags behind the rotational speed to arrive at their final steady value, and the delay becomes more severe with increasing discharge valve opening. Generally, there exist the pressure and haft-power impact phenomena in startup.
     4. Firstly, the calculations of solid-liquid two-phase flow inside a centrifugal pump are accomplished by using the solid-liquid two-phase flow model based on the Euler-Euler approach. The influence of the solid phase properties on the hydraulic performance is emphatically analyzed. Moreover, the characteristics of the flow fields, including the distribution of solid particles in the pump, are also analyzed in detail. Subsequently, the experimental results of rotational speed and flow rate of the pump during startup period are fitted by using a function of time. Then the fitted two functions are encoded by means of user defined function to serve as the boundary conditions to the impeller and the inlet of the pump, respectively. Finally, the unsteady solid-liquid two-phase flows inside the pump are numerically simulated during startup period using the dynamic mesh method. The results show that the difference in performance of centrifugal pump during startup period is very obvious for pure water and the solid-liquid two-phase flow. At the early stage of startup, the transient performances are basically the same, while the difference in performance is very obvious at the later stage of startup. The transient head of delivering pure water always shows a steadily rising effect during startup period, however, that of delivering solid-liquid two-phase flow doesn't, namely a maximum peak occurs in somewhere during the time course. A longer time is needed for a solid-liquid two-phase flow to get a steady performance compared with the water single phase flow.
引文
[1]吴朝晖,王树宗,马世杰.旋转泵式鱼雷发射系统建模与仿真[J].海军工程大学学报,2000,(5):54-58,72.
    [2]练永庆,徐勤超,王树宗.空气涡轮机带负载启动过程仿真[J].机械工程学报,2011,47(8):191-198.
    [3]练永庆,田兵,王树宗,等.空气涡轮泵发射系统发射过程仿真分析[J].兵工学报,2011,32(2):155-162.
    [4]Arndt N, Acosta A J, Brennen C E, et al. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers [J]. ASME Journal of Turbomachinery,1990,112(1):98-108.
    [5]Wang H, Tsukamoto H. Fundamental analysis on rotor-stator interaction in a diffuser pump by vortex method [J]. ASME Journal of Fluids Engineering,2001,123(4):737-747.
    [6]Zhang M, Tsukamoto H. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser [J]. ASME Journal of Fluids Engineering,2005,127(4):743-751.
    [7]Shi F. Tsukamoto H. Numerical study of pressure fluctuations caused by impeller-diffuser interaction in a diffuser pump stage [J]. ASME Journal of Fluids Engineering,2001,123(3): 466-474.
    [8]Guo S, Okamoto H. An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump [J]. International Journal of Rotating Machinery,2003, 9(2):135-144.
    [9]Shiha M, Pinarbasi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump [J]. ASME Journal of Fluids Engineering,2001,123(3):490-499.
    [10]Sano T, Yoshida Y, Tsujimoto Y, et al. Numerical study of rotating stall in a pump vaned diffuser:pump analysis and design [J]. ASME Journal of Fluids Engineering,2002,124(2): 363-370.
    [11]Guleren K M, Pinarbasi A. Numerical simulation of the stalled flow within a vaned centrifugal pump [J]. Proceeding of the Institution of Mechanical Engineering, Part C: Journal of Mechanical Engineering Science,2004,218(4):425-435.
    [12]Miyabe M, Maeda H, Umeki I, et al. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump [J]. Journal of Thermal Science,2006, 15(2):115-120.
    [13]Lucius A, Brenner G. Numerical simulation and evaluation of velocity fluctuations during rotating stall of a centrifugal pump [J]. ASME Journal of Fluids Engineering,2011,133(8): 081102.1-081102.8.
    [14]Tsukamoto H, Ohashi H. Transient characteristics of a centrifugal pump during startup period [J]. ASME Journal of Fluids Engineering,1982,104(1):6-13.
    [15]Tsukamoto H, Matsunaga S, Yoneda H, et al. Transient characteristics of a centrifugal pump during stopping period [J]. ASME Journal of Fluids Engineering,1986,108(4): 392-399.
    [16]Tsukamoto H, Yoneda H, Sagara K. The response of a centrifugal pump to fluctuating rotational speed [J]. ASME Journal of Fluids Engineering,1995,117(3):479-484.
    [17]Lefebvre P J, Barker W P. Centrifugal pump performance during transient operation [J]. ASME Journal of Fluids Engineering,1995,117(2):123-128.
    [18]Thanapandi P, Prasad R. Centrifugal pump transient characteristics and analysis using the method of characteristics [J]. International Journal of Mechanical Sciences,1995,37(1): 77-89.
    [19]Thanapandi P, Prasad R. A quasi-steady performance prediction model for dynamic characteristics of a volute pump [J]. Proceeding of the Institution of Mechanical Engineering, Part A:Journal of Power and Energy,1994,208(1):47-58.
    [20]Dazin A, Caignaert G, Bois G. Transient behavior of turbomachineries:applications to radial flow pump startups [J]. ASME Journal of Fluids Engineering,2007,129(11): 1436-1444.
    [21]Farhadi K, Bousbia-salah A, D'Auria F. A model for the analysis of pump start-up transients in Tehran Research Reactor [J]. Progress in Nuclear Energy,2007,49(7): 499-510.
    [22]Tanaka T, Tsukamoto H. Transient behavior of a cavitation centrifugal pump at rapid change in operating conditions-part1:transient phenomena at opening/closure of discharge valve [J]. ASME Journal of Fluids Engineering,1999,121(4):841-849.
    [23]Tanaka T, Tsukamoto H. Transient behavior of a cavitation centrifugal pump at rapid change in operating conditions-part2:transient phenomena at pump startup/shutdown [J]. ASME Journal of Fluids Engineering,1999,121(4):850-856.
    [24]Tanaka T, Tsukamoto H. Transient behavior of a cavitation centrifugal pump at rapid change in operating conditions-part3:classifications of transient phenomena [J]. ASME Journal of Fluids Engineering,1999,121(4):857-865.
    [25]Duplaa S, Coutier-Delgosha O, Dazin A, et al. Experimental study of a cavitating centrifugal pump during fast startups [J]. ASME Journal of Fluids Engineering,2010, 132(2):No.021301.1-021301.12.
    [26]Elaoud, S, Hadi-Taieb E. Influence of pump starting times on transient flows in pipes [J]. Nuclear Engineering and Design,2011,241(9):3624-3631.
    [27]Dyson G, Teixeira J. Investigation of closed valve operation using computational fluid dynamics[C].//Proceeding of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado, USA, August 2-6,2009:FEDSM2009-78021.
    [28]Grover R B, Koranne S M. Analysis of pump start-up transients [J]. Nuclear Engineering and Design,1981,67:137-141.
    [29]段昌国,常近时.叶片式水力机械的广义基本方程式[J].科学通报,1973(1):42.-46.
    [30]常近时.水力机械装置过渡过程[M].北京:高等教育出版社,2005.
    [31]吴大转.特种离心式水泵快速启动过程瞬态特性的研究[D].杭州:浙江大学,2004.
    [32]李志峰.离心泵启动过程瞬态流动的数值模拟和实验研究[D].杭州:浙江大学,2009.
    [33]王乐勤,吴大转,胡征宇,等.基于键合图法的叶片泵启动特性仿真[J].工程热物理学报,2004,25(3):417-420.
    [34]吴大转,胡征宇,王乐勤.离心泵快速启动过程的瞬态水力特性的数值模拟[J].浙江大学学报(工学版),2005,39(9):1427-1430,1454.
    [35]王乐勤,吴大转,郑水英,等.混流泵开机瞬态水力特性的实验与数值计算[J].浙江大学学报(工学版),2004,38(6):751-755.
    [36]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力性能的数值计算[J].流体机械,2004,32(1):10-13.
    [37]王乐勤,李志峰,戴维平,等.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报,2008,29(8):1319-1322.
    [38]张树生,吴大转.混流泵启动过程汽蚀性能的实验研究[J].流体机械,2005,33(1):1-4.
    [39]王乐勤,吴大转,郑水英.混流泵瞬态水力性能实验研究[J].流体机械,2003,31(1):1-4.
    [40]陈炜,柯仙文,吴大转,等.混流泵停机过程的瞬态水力特性分析研究[J].流体机械,2006,34(12):1-4.
    [41]胡征宇,吴大转,王乐勤.离心泵快速启动过程的瞬态水力特性-外特性研究[J].浙江大学学报(工学版),2005,39(5):605-608,622.
    [42]武鹏,吴大转,李志峰,等.离心泵流量突增过程瞬态流动研究[J].工程热物理学报,2010,31(3):419-422.
    [43]吴大转,王乐勤,胡征宇.离心泵快速启动过程外部特性实验研究[J].工程热物理学报,2006,27(1):68-70.
    [44]平仕良,吴大转,王乐勤.离心式水泵快速开启过程的瞬态效应分析[J].浙江大学学报(工学版),2007,41(5):814-817.
    [45]吴大转,焦磊,王乐勤.不同启动加速度下离心泵瞬态水力性能的实验研究[J].工程热物理学报,2008,29(1):62-64.
    [46]吴大转,焦磊,王乐勤.离心泵启动过程瞬态空化特性的实验研究[J].工程热物理学报,2008,29(10):1682-1684.
    [47]Wu Dazhuan, Wang Leqin, Hao Zongrui, et al. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation [J]. Journal of Mechanical Science and Technology,2010,24(2):575-582.
    [48]吴大转,许斌杰,李志峰,等.离心泵瞬态操作条件下内部流动的数值模拟和性能预测[J].工程热物理学报,2009,30(5):781-783.
    [49]Li Zhifeng, Wu Peng, Wu Dazhuan, et al. Experimental and numerical study on the transient flow in a centrifugal pump during starting period [J]. Journal of Mechanical Science and Technology,2011,25(3):279-287.
    [50]Wu Dazhuan, Wu Peng, Li Zhifeng, et al. The Transient Flow in a Centrifugal Pump during the Discharge Valve Rapid Opening Process [J]. Nuclear Engineering and Design, 2010,240(12):4061-4068.
    [51]Li Zhifeng, Wu Dazhuan, Wang Leqin, et al. Numerical simulation of the transient flow in a centrifugal pump during starting period [J]. ASME Journal of Fluids Engineering,2010, 132 (8):No.081102.1-081102.8.
    [52]Liu J, Li Z, Wang L, et al. Numerical simulation of the transient flow in a radial flow pump during stopping period [J]. ASME Journal of Fluids Engineering,2011,133(11): No.111101.1-111101.8.
    [53]Hu F F, Ma X D, Wu D Z, et al. Transient internal characteristic study of a centrifugal pump during startup process [C].//26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, August 19-23,2012:IAHRⅩⅩⅥ-103.
    [54]王乐勤,吴大转.混流泵管路负载快速变化过程瞬态特性的誓言研究[J].产品检测与实验技术,2003(2):65-68.
    [55]李志峰,王乐勤,戴维平,等.离心泵启动过程的涡动力学诊断[J].工程热物理学报,2010,31(1):48-51.
    [56]李志峰,吴大转,王乐勤,等.离心泵启动过程瞬态特性的实验[J].排灌机械工程学报,2010,28(5):389-393.
    [57]许斌杰,李志峰,吴大转,等.离心泵启动过程瞬态特性的研究[J].中国科技论文在线,2009,4(9):644-649.
    [58]许斌杰,李志峰,吴大转,等.离心泵启动过程瞬态湍流流动的数值模拟研究[J].中国科技论文在线,2010,5(9):683-687.
    [59]Gao Hong, Gao Feng, Zhao Xianchao, et al. Transient flow analysis in reactor coolant pump systems during flow coastdown period [J]. Nuclear Engineering and Design,2010, 211(2):509-514.
    [60]Tang Y, Cheng J, Liu E h, et al. Analysis on the influence of the pump start transient performance with different inertia impeller[C].//26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, August 19-23,2012:IAHRⅩⅩⅥ-261.
    [61]Wan Wuyi, Huang Wenrui. Investigation on complete characteristics and hydraulic transient of centrifugal pump [J]. Journal of Mechanical Science and Technology,2011, 25(10):2583-2590.
    [62]郑铭.泵的全面特性曲线在泵系统流动瞬变计算中应[J].排灌机械,1997(3):30-34,63.
    [63]Tian Wenxi, Su G H, Wang Gaopeng, et al. Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system [J]. Annals of Nuclear Energy,2008,35(12):2280-2287.
    [64]Zhu Zuchao, Guo Xiaomei, Cui Baoling, et al. External characteristics and internal flow features of a centrifugal pump during rapid startup period [J]. Chinese Journal of Mechanical Engineering,2011,24(5):798-804.
    [65]武刚.基于虚拟仪器的流体输送综合测试系统的研究[D].杭州:浙江大学,2005.
    [66]武刚,朱祖超.利用虚拟仪器技术进行泵瞬态特性实验研究[J].机电工程,2003,20(5):177-179.
    [67]张翼飞.离心泵的起动特性分析[J].排灌机械,1996(4):6-9.
    [68]丁福光,刘宏春.离心泵冬天建模在泵启动过程中的应用[J].佳木斯大学学报(自然 科学版),2004,22(3):307-311.
    [69]马素霞.泵系统的动力失灵及特性[J].农业机械学报,2001,32(3):51-54.
    [70]马素霞.泵系统的瞬变流特性[M].北京:中国水利水电出版社,2007.
    [71]郑源,张健.水力机组过渡过程[M].北京:北京大学出版社,2008.
    [72]丁峰,彭永臻,杜红,等.泵系统瞬变过程中断流形态与断流空腔的波动分析[J].哈尔滨建筑大学学报,2001,34(4):40-44.
    [73]刘梅清,刘光临,冯卫民,等.大型泵站水力过渡过程计算及蓄能式液压启闭闸门的研究[J].农业机械学报,2000,31(3):55-58.
    [74]刘梅清,杨文容,徐叶琴.带虹吸式出水流道轴流泵站起动水力过渡过程研究[J].武汉大学学报(工学版),2003,36(1):1-4.
    [75]黄良勇.低扬程大型泵站过渡过程特性研究[D].镇江:江苏大学,2006.
    [76]于永海,徐辉.电磁调速水泵机组起动过程的数值模拟[J].排灌机械,2000,18(3):26-28.
    [77]苏春海,郑源,李贤庆,等.东琛泵站水泵装置启动性能实验与研究[J].河海大学学报,1994,22(5):48-52.
    [78]王培道.高扬程离心泵启动过程系统的非稳定性及对策[J].中国农村水利水电,2011(5):139-140,144.
    [79]隋荣娟.离心泵在启动阶段的水力特性及内流机理研究[D].济南:山东大学,2006.
    [80]隋荣娟,王健祥,孙局彦.管路特性对离心泵启动性能的影响[J].山东轻工业学院学报,2008,22(3):35-37.
    [81]隋荣娟,王健祥,孙局彦.瞬态工况下离心泵的流体运动[J].理论研究,2008(6):20-21.
    [82]徐一鸣,徐士鸣.核主泵惰转转速计算模型的比较[J].发电设备,2011,25(4):236-238.
    [83]张森如.主循环泵瞬态特性计算[J].核动力工程,1993,14(2):183-190.
    [84]邓绍文.秦山核电二期工程主泵瞬态计算[J].核动力工程,2001,22(6):494-496,507.
    [85]张龙飞,张大发,王少明.转动惯量对船用核动力主泵瞬态特性的影响研究[J].船海工程,2005(2):55-27.
    [86]刘夏杰,刘军生,王德忠,等.断电事故对核主泵安全特性影响的实验研究[J].原子能科学技术,2009,43(5):448-451.
    [87]郭玉君,张金玲,秋穗正,等.反应堆系统冷却剂泵流量特性计算模型[J].核科学与工程,1995,15(3):220-225,231.
    [88]蒋志刚,李莉.离心泵基于稳态性能实验的起动特性预测[J].水泵技术,2004(3):27-30.
    [89]张树生,吴大转.离心泵快速启动过程瞬态性能测试系统的研制[J].计算学报,2005,26(2):159-162.
    [90]郭宪军,陈红勋,朱兵.离心泵启动过程的数值模拟[J].上海大学学报(自然科学版),2012,18(3):288-292.
    [91]杨从新,王斌.离心泵在启动阶段的瞬态三维数值模拟[J].排灌机械工程学报,2010,28(2):122-126.
    [92]Yang Congxin, Wang Bin.3-D numerical simulation on transient characteristics of a multistage centrifugal pump during starting period [C]. Power and Energy Engineering Conference, Wuhan, China,2010:177-181.
    [93]邵杰,刘树红,吴玉林.离心泵叶轮变转速工况的内部流动测量[J].水泵技术,2011(2):11-15.
    [94]陈颂英,李春峰,曲延鹏,等.离心泵在启动阶段的水力特性研究[J].工程热物理学报,2006,27(5):781-783.
    [95]张仁田,李慈祥,姚林碧,等.变频调速灯泡贯流泵站的起动过渡过程[J].排灌机械工程学报,2012,30(1):46-52.
    [96]朱文灿.绕线式异步电动机拖动离心水泵起动过程的计算[J].湖南水利,1994(3):26-31.
    [97]孟祥铠,彭旭东,王乐勤.瞬态启停机械密封轴对称动力学模型与密封行为分析[J].化工学报,2011,62(6):1620-1625.
    [98]邵杰,董金新,陈铁军,等.消防稳压泵启动性能的数值模拟[J].水力发电学报,2009,28(4):181-186.
    [99]周大庆,钟淋涓,郑源,等.轴流泵装置模型断电飞逸过程三维湍流数值模拟[J].排灌机械工程学报,2012,30(4):401-406.
    [100]Huang Weifeng, Lin Youbin, Gao Zhi, et al. An acoustic emission study on the starting and stopping processes of a dry gas seal for pumps [J]. Tribology Letters,2013,49(2):379-384.
    [101]Chen Gang, Shao Jie, Wu Yulin, et al. Experimental and numerical simulation on the starting period of a centrifugal pump [J]. Proceedings of the ASME Fluids Engieering Division Summer Conference,2008,2:171-176.
    [102]孙丹丹,倪福生,杨年浩.疏浚泥泵启动、充水、输沙动态特性建模及仿真[J].建模与仿真,2006(1):71-74.
    [103]刘树红,邵杰,吴墒锋,等.轴流转桨式水轮机压力脉动数值预测[J].中国科学E辑:技术科学,2009,39(4):626-634.
    [104]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:Basic theory [J]. Journal of Scientific Computing,1986,1(1):1-51.
    [105]Fluent Inc., FLUENT User's Guide. Fluent Inc.,2003.
    [106]Tan Lei, Cao Shuliang, Wang Yuming, et al. Numerical simulation of cavitation in a centrifugal pump at low flow rate [J]. Chinese Physics Letters,2012,29(1): 014702.1-014702.4.
    [107]徐朝晖,吴玉林,陈乃祥,等.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,2005,2(1):66-68.
    [108]赵斌娟,袁寿其,陈汇龙.基于滑移网格研究双流道泵内非定常流动特性[J].农业工程学报,2009,25(6):115-119.
    [109]Jafarzadeh B, Hajari A, Alishahi M M, et al. The flow simulation of a low-specific-speed high-speed centrifugal pump [J]. Applied Mathematical Modelling,2011,35(1):242-249.
    [110]Zhang Yuliang, Li Yi, Cui Baoling, et al. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump [J]. Chinese Journal of Mechanical Engineering,2013, 26(1):53-60.
    [111]张玉良,李昳,崔宝玲,等.两相流离心泵水力输送性能计算分析[J].机械工程学报,2012,48(14):169-176.
    [112]Sanyal J, Vasquez S, Roy S, et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors [J]. Chemical Engineering Science,1999,54(21): 5071-5083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700