用户名: 密码: 验证码:
改性钙基吸收剂的CO_2吸收循环特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,工业生产过程中伴随着污染物的大量排放,其中温室气体(主要组分为C02)的排放被认为是造成全球气候变化异常的主要诱因,且30%以上的C02排放量来自于以化石燃料为原料的能源生产过程。因此,有效控制能源工业中C02的排放量已成为全球未来经济和环境可持续发展的必然选择。以钙基吸收剂固体颗粒作为C02载体,捕集燃烧化石燃料所产生的烟气中C02,形成的CaC03产物热解,释放高浓度C02气体,进一步液化后注入地质处置层或深海,被认为是可帮助实现电力生产过程中近零或零C02排放的污染控制方式,但其弊端是CO2吸收循环效率呈现衰减趋势,因此,若采用天然石灰石作为吸收剂,其消耗量较大。为全面解释钙基吸收剂CO2吸收循环过程的化学反应机理,并寻找改善其吸收效率衰竭特性的方式,本文主要研究内容为以流化床作为主要实验设备,气体吸附仪、扫描电镜及X荧光衍射光谱测量仪为实验辅助分析设备,探讨天然、合成及高温改性钙基吸收剂的C02吸收循环特性,以确定最适于进行长期煅烧/碳酸化循环的钙基吸收剂颗粒种类,探讨各种碳酸化反应参数、改性处理参数等对吸收剂样品的作用机理,且基于实验数据,建立晶粒重叠生长模型,模拟吸收剂颗粒的CO2吸收循环过程。
     利用流化床反应器,以天然石灰石作为CO2载体,在不同反应参数(温度、压力及气氛)条件下进行煅烧/碳酸化循环,测量其C02吸收循环特性;并对天然吸收剂样品的颗粒结构特性变化进行测量。实验结果表明,随着碳酸化循环的深入,样品颗粒内小孔(dpre<200nm)容积的不断降低,导致其C02吸收能力呈现衰减趋势。
     为改善天然钙基吸收剂的CO2循环吸收衰减特性,基于CaO水合反应,制备以A1203或MgO为主要杂质的合成钙基吸收剂,同样利用流化床实验及颗粒结构分析,探讨不同种类合成吸收剂的煅烧/碳酸化循环特性。以A1203为杂质的合成钙基吸收剂的CO2吸收循环特性较优,具体而言,样品具有较高的C02吸收能力;较高的碳酸化反应活性;稳定的CO2吸收循环特性;较低的损耗率。相较于天然石灰石样品,部分合成吸收剂颗粒显示出不同的CO2循环吸收特性,即随着碳酸化反应气氛中C02摩尔分数的增加,其C02吸收效率增加。
     对钙基吸收剂进行高温改性处理,也被认为是一种改变吸收剂碳酸化循环特性的方式。在不同改性处理参数(温度、气氛)条件下,分别对天然石灰石及合成钙基吸收剂进行改性处理,获得的高温改性吸收剂样品,投入流化床反应器,测量其煅烧/碳酸化循环反应特性。高温改性合成吸收剂样品的C02吸收循环特性明显优于改性天然吸收剂样品,其C02吸收效率较高,且C02吸收循环效率基本保持稳定,特别是,部分高温改性合成钙基吸收剂样品的C02吸收能力产生了一定量的再生,原因可能是杂质的存在阻碍了样品的烧结。高温改性钙基吸收剂颗粒的孔隙结构分析数据表明,颗粒中小孔(dpore<200nm)容积的再生改善了其C02吸收能力。
     建立重叠球形颗粒生长模型,模拟钙基吸收剂颗粒的煅烧/碳酸化循环过程。分别采用天然石灰石、合成钙基吸收剂及高温改性钙基吸收剂作为计算样本,设定天然石灰石颗粒的晶粒分布为均匀分布,合成吸收剂及改性吸收剂颗粒的晶粒分布为离散均匀分布,并分别基于各自样品的分形维数参数,对假定晶粒分布进行矫正,模拟结果与实验数据吻合良好。进一步对合成吸收剂及改性吸收剂颗粒的SEM电镜图像进行图像处理,所得到的颗粒表面晶粒分布数据与假定晶粒离散分布区间相似。
Recently, there have been a large amount of pollutants emissed to the atmosphere during the process of industry, and the change of climate was due to the emission of greenhouse gas (CO2),30%of which was developed by the generation of electricity from coal. Thus, there is a growing impetus in the world to control the emission of CO2produced during the process of coal firing in the foreseeable future. Ca-based sorbent is employed as the carrier of CO2, then by heating the CaCO3, CO2is released as a concentrated stream suitable for sequestration in the earth or injection to ocean, the above processes are workable to achieve zero, or near-zero emission of CO2in the power industry. But the adsorption activity with CO2based on CaO decreases markedly with the number of forward and reverse steps undergone in reaction, resulting in the large use of limestone, where natural Ca-based sorbents are being considered. Thus, this dissertation was focused on the characteristics of CO2chemical looping employed the natural, synthetic or thermal pretreated calcium-based sorbents as the carrier of CO2based on fluidized bed, the analysis of microstructure of sorbents based on gas adsorption, SEM and X-ray diffraction, the confirmation of sorbents with better CO2capturing capacity, and the influence of the carbonation parameters and the pretreatment parameters on the reaction activity of sorbents, the propulsion of the overlapping grain model to simulate the CO2chemical looping.
     Based on fluidized bed system,4different kinds of limestone were employed as sorbents for capturing CO2, and the calcination/carbonation cycles were conducted in different reaction parameters, such as temperature, pressure and atmosphere, then the capacity and activity of CO2were recorded, in addition, the change of particle microstructure was tested. The results showed that the decreased of small pore(dpore<200nm) volume was responsible to de-activity of natural sorbents with the proceeding of CO2capturing cycle.
     Improved, Ca-based synthetic sorbents have been prepared and tested, the purity was Al2O3or MgO. One of them, a mixed oxide consisting of CaO and Al2O3, met the criteria for an ideal sorbent for CO2, specifically, large uptake of CO2per unit mass of sorbent, reasonably high reactivity during carbonation, stable uptake of CO2after a large number of calcination/carbonation cycles, and good resistance to attrition. Moreover, comparing with limestone, some of synthetic sorbents were represented the increase of uptake with increasing the concentration of CO2during carbonation.
     The thermal pretreatment of Ca-based sorbent under various conditions (temperature, atmosphere) was completed to modify its activity during long-term calcination/carbonation cycle. The pretreated synthetic sorbents were shown larger overall uptake during long-term CO2capturing cycles comparing with limestone. Noticeably, some of pretreated synthetic sorbents'activity were regenerated, as was related to the regeneration of small pore(dpore<200nm) volume.
     The overlapping grain model was developed to formulate the process of calcination/carbonation based on Ca-based sorbent. In case of limestone, synthetic sorbent and thermal pretreated sorbent, the assumed grain diameter distributions were revised based on theirs fractal dimension respectively, the simulations were shown the good agreement with experimental results. Moreover, the surface morphology of synthetic sorbent and also thermal pretreated sorbent was found to be impressive agreement to the assumed morphology of sorbent.
引文
[1]DTI. Energy White paper. Our energy future-Creating a low carbon economy[R]. London:DTI,2003
    [2]Pachauri R. K., Reisinger A., et al. Climate Change 2007:Synthesis Report[R]. Geneva:IPCC,2007
    [3]Shahriar S., Erkan T.. When will Fossil Reserves be Diminished?[J]. Energy Policy,2009,37(1):181-189
    [4]Steeneveldt R., Berger B., Torp T.. CO2 Capture and Storage:Closing the Knowing-doing Gap[J]. Chemical Engineering Research & Design,2006,84(9): 739-763
    [5]Bachu S., Bonijoly D., Bradshaw J., et al. CO2 Storage Capacity Estimation: Methodology and Gaps[J]. International Journal of Greenhouse Gas Control, 2007,1(4):430-443
    [6]Gunter W., Gentzis T., Rottenfusser B., Richardson R.. Deep Coalbed Methane in Alberta, Canada:A Fuel Resource with the Potential of Zero Greenhouse Gas Emissions[J]. Energy Conversion and Management,1997,38:S217-S222
    [7]Ozaki Sonoda, K. Fujioka, Y. Tsukamoto, et al. Sending CO2 into Deep Ocean with a Hanging Pipe from Floating Platform[J]. Energy Conversion and Management,1995,36(6-9):475-478
    [8]Millero F.J.. Thermodynamic of the Carbon Dioxide System in the Oceans[J]. Geochima et Cosmochima Acta,2003,59(4):661-677
    [9]Khoo H. H., Tan R. B. H.. Life Cycle Investigation of CO2 Recovery and Sequestration[J]. Environmental Science and Technology,2006,40(12):4016-4024
    [10]Freund P.. International Collaboration on Capture, Storage and Utilization of Greenhouse Gases[J]. Waste Management,1997,17:281-287
    [11]Rao A., Rubin E.. A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control[J]. Environmental Science and Technology,2002,36(20):4467-4475
    [12]Riemer P.. Greenhouse Gas Mitigation Technologies, an Overview of the CO2 Capture, Storge and future Activities of IEA Greenhouse Gas R&D Programme[J]. Energy Conversion and Management,1996,37(6-8):665-670
    [13]Abanades J. C., Anthony E., Lu D. Y., et al. Capture of CO2 from Combustion Gases in a Fluidized Bed of CaO[J]. AICHE,2004,50(7):1614-1622
    [14]Davison J.. Performance and Costs of Power Plants with Capture and Storage of CO2[J]. Energy,2007,32(7):1163-1176
    [15]Han C., Harrison D. P.. Simultaneous Shift Reaction and Carbon Dioxide Separation for the Direct Production of Hydrogen[J]. Chemical Engineering Science,1994,49(24):5875-5883
    [16]Mahecha-Botero A., Boyd T., Gulamhusein A., et al. Pure Hydrogen Generation in a Fluidized-bed Membrane Reactor:Experimental Finding[J]. Chemical Engineering Science,2008,63(10):2752-2762
    [17]Grzegorz Slowinski. Some Technical Issue of Zero-emission coal Technology[J]. International Journal of Hydrogen Energy,2006,31(8):1091-1102
    [18]Abanades J., Rubin E., Anthony E.. Sorbent Cost and Performance in CO2 Capture Systems[J]. Industrial and Engineering Chemistry Research,2004,43 (13):3462-3466
    [19]Abanades J.. The Maximum Capture Efficiency of CO2 using a Carbonation /Calcination Cycle of CaO/CaCO3[J]. Chemical Engineering Journal,2002,90 (3):303-306
    [20]Maciejewski M., Reller A.. How (un)reliable are Kinetic Data of Reversible Solid-state Decomposition Processes[J]. Thermochimia Acta,1987,110(1):145-152
    [21]Baker E.. The Calcium Oxide-carbon Dioxide System in the Pressure Range 1-300 Atmospheres[J]. Journal of the Chemical Society,1962,70:464-470
    [22]Geoffrey D. S., John C. K., David W. P.. A Mathematical Model for the Flash Calcination of Dispersed CaCO3 and Ca(OH)2 Particles[J]. Ind. Eng. Chem. Res.,1989,28(2):155-160
    [23]W. M. Haynes. Handbook of Chemistry and Physics[M].93. New York:CRC Press.2012:1-46
    [24]Satterfield C. N., Feakes F.. Kinetics of the Thermal Decomposition of Calcium Carbonation[J]. AICHE Journal,1959,5(1):115-122
    [25]Brogward R. H.. Sintering of Nasent Calcium-oxide[J]. Chemical Engineering Science,1989,44(1):53-60
    [26]Fuertes A., Marban G., Rubiera F.. Kinetics of Thermal Decomposition of Limestone Particles in a Fluidized Bed Reactor[J], Chemical Engineering Research and Design,1993,71(4)421-428
    [27]Jose M. C., Manuel G., Jiri M., et al. The Effect of the CO2 Pressure on the Thermal Decomposition Kinetics of Calcium Carbonate[J]. Thermochia Acta, 1995,254(4):121-127
    [28]Sun P., Grace J. R., Lim C.J., et al. The Effect of CaO sintering on Cyclic CO2 Capture in Energy Systems[J]. AICHE Journal,2007,53(9):2432-2442
    [29]李振山,房凡,蔡宁生.高浓度C02下CaCO3循环煅烧实验与模拟[J].热能动力工程,2007,22(6):642-646
    [30]孙剑峰,王浩,俞聪,等.碳酸钙煅烧后的石灰石活性的比较研究[J].能源工程,2008,3:44-46
    [31]尚建宇,王松岭,王春波,等.煅烧石灰石过程中团聚体颗粒内的晶粒融合现象分析[J].中国电机工程学报,2010,30(14):44-49
    [32]Daroudi T., Searcy A.. Effect of Carbon dioxide Pressure on the Rate of Decomposition of Calcite (CaCO3)[J]. The Journal of Physical Chemistry,1981, 85(26):3971-3974
    [33]Hills W. D.. The Mechanism of the Thermal decomposition of Calcium Carbonate[J]. Chemical Engineering Science,1968,23(4):297-320
    [34]Beruto D., Searcy A.. Calcium Oxides of High Reactivity[J]. Nature,1976,263: 221-222
    [35]Dennis J. S., Hayhurst A. N.. The Effect of CO2 on the Kinetics and Extent of Calcination of Limestone and Dolomite Particles in Fluidized-beds[J]. Chemical Engneering Science,1987,42(10):2361-2372
    [36]Borgwardt R.. Calcination Kinetics and Surface Area of Dispersed Limestone Particles[J]. AICHE Journal,1985,31(1):103-111
    [37]Zhong Q., Bjerle I.. Calcination Kinetics of Limestone and the Microstructure of Nascent CaO[J]. Thermochimica Acta,1993,223(8):109-120
    [38]Garcia-Labiano F., Abad A., de Diego L., et al. Calcination of Cacium-based Sorbents at Pressure in a Broad Range of CO2 Concentrations[J]. Chemical Engineering Science,2002,57(13):2381-2393
    [39]A. Escardino, J. Garcia-Ten, C. Feliu, et al. Kinetic Study of the Thermal decom -position Process of Calcite Particles in Air and CO2 Atmosphere[J]. Jounal of Industrial and Engineering Chemistry,2013,19(3):886-897
    [40]Khinast J., Krammer G., Brunner C., et al. Decomposition of Limestone:the Influence of CO2 and Particle Size on the Reaction Rate[J]. Chemical Engineer-ing Science,1996,51(4):623-634
    [41]Bhatia S. K. Plerlmutter D. D.. A Random Pore Model for Fluid-solid Reactions:I. Isothermal, Kinetic Control[J]. AICHE Journal,1980,26(3):379-386
    [42]Bhatia S. K. Plerlmutter D. D.. A Random Pore Model for Fluid-solid Reactions:Ⅱ. Dissusion and Transport Effects[J]. AICHE Journal,1980,26(2): 247-252
    [43]Milne C. R., Silcox G. D., Pershing D. et al. Calcination and Sintering Models for Application to High Temperature, Short-time Sulfation of Calcium-based Sorbents[J]. Industrial and Engineering Chemistry Research,1990,29(2):139-149
    [44]Hu N., Scaroni A.. Calcination of Pulverized Limestone Particles Under Furnace Injection Conditions[J]. Fuel,1996,75(2):177-186
    [45]Dedman A., Owen A.. Calcium Cyanamide Synthesis. Part 4. The Reaction CaO+CO2=CaCO3[J]. Transactions of Faraday Society,1962,58:2027-2035
    [46]Mess D., Sarofim A., Longwell J.. Product Layer Diffudion During the Reaction of Calcium Oxide with Carbon dioxide[J]. Energy & Fuels, 1999,13(5):999-1005
    [47]Baker R.. Reversibility of Reaction CaCO3 (?) CaO+CO2[J]. Journal of Applied Chemistry and Biotechnology,1973,23(10):733-742
    [48]Bhatia S. K., Perlmutter D. D.. Effect of the Product Layer on the Kinetics of the CO2-lime Reaction[J]. AICHE Journal,1983,29(1):79-86
    [49]Cazorla-Amoros D., Joly J., Linares-Splano A.. Carbon Dioxide-calcium Oxide Surface and Bulk Reactions:Thermodynamic and Kinetics Approach[J]. The Journal of Physical Chemistry,1991,95(17):6611-6617
    [50]Kuramoto K., Fujimoto S., Morita A., et al. Repetitive Carbonation Calcination Reactions of Ca-Based Sorbents for Efficient CO2 Sorption at Elevated Tempera-tures and Pressures[J]. Industrial & Engineering Chemistry Research, 2003,42 (5):975-981
    [51]Linares-Splano A., Almela-Alarcon M., de Lecea C. S. M.. CO2 Chemisorption to Characterize Calcium Catalysts in Carbon Gasification Reactions[J]. Journal of Catalysis, 1990,125(2):401-410
    [52]Alvarez D., Abanades J. C. Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2[J]. Industrial & Engineering Chemis-try Research,2005,44(15):5608-5615
    [53]Sun P., Grace J., Lim C., Anthony E.. Determination of Intrinsic Rate Constant of the CaO-CO2 reaction[J]. Chemical Engineering Science,2008,63(1):47-56
    [54]Montes-Hernandes G., Chiriac R., Toche F., et al. Gas-Solid Carbonation of Ca(OH)2 and CaO Particles under Non-isothermal and isothermal Conditions by Using a Thermogtavimetric Analyzer:Implications for CO2 Capture[J]. Interna-tional Journal of Greenhouse Gas Control,2012,11:172-180
    [55]MacKenzie A., Granatstein D., Anthony E., et al. Economics of CO2 capture using the Calcium Cycle with a Pressurized Fluidized Bed Combustor[J]. Energy & Fuels,2007,21(2):920-926
    [56]Silban A., Harrison D.. High Temperature Capture of Carbon Dioxide: Characteristics of the Reversible Reaction Between CaO(s) and CO2(g)[J]. Chemi-cal Engineering Communications,1995,137(1):177-190
    [57]Borgwardt R. H., Roache N., Bruce K. R.. Method for Variation of Grain-size in Studies of Gas Solid Reactions Involving CaO[J]. Industrial & Engineering Che-mistry Fundamentals,1986,25(1):165-169
    [58]Hughes R., Lu D. Y., Anthony E. J., et al. Improved Long-term Conversion of Limestone-derived Sorbents for in situ Capture of CO2 in a Fluidized Bed Com-bustor[J]. Industrial & Engineering Chemistry Research,2004,43(18):5529-5539
    [59]Abanades J. C, Alverez D.. Conversion Limits in the Reaction of CO2 with Lime[J]. Energy & Fuels,2003,17(2):308-315
    [60]Borgwardt R. H.. Calcium-oxide Sintering in Atmospheres Containing Water and Carbon-dioxide[J]. Industrial & Engineering Chemistry Research,1989,28 (4):493-500
    [61]Wang J., Anthony E. J.. On the Decay Behavior of the CO2 Adsorption Capacity of Ca-based Sorbents[J]. Industrial & Engineering Chemistry Research,2005,44:627-629
    [62]Grasa G. S., Abanades J. C. CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination cycles[J]. Industrial & Engineering Chemistry Research,2006,45(26):8846-8851
    [63]Lysikov A. I., Salanov A. N., Okunev A. G.. Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation-Decomposition Cycles[J]. Industrial & Engin-eering Chemistry Research,2007,46(13):4633-4638
    [64]Okunev A. G., Nesterenko S. S., Lysikov A. I.. Decarbonation Rates of Cycled CaO Absorbents[J]. Energy & Fuels,2008,22(3):1911-1916
    [65]Grasa G. S., Alonso M. C., Abanades J. C.. Sulfation of CaO Paricles in a Carbonation/Calcination Loop to a Capture CO2[J]. Industrial & Engineering Chemistry Research,2008,47(5):1630-1635
    [66]Manovic V., Anthony E. J.. Parametric Study on the CO2 Capture Capacity of CaO-based Sorbents in Looping Cycles[J]. Energy & Fuels,2008,22(3):1851-1857
    [67]Sun P., Grace J. R., Lim C. J., et al. A Discrete-pore-size-distribution-based Gas-solid Model and its Application to the CaO+CO2 Reaction[J]. Chemical Engi-neering Science,2008,63(1):57-70
    [68]Nicholas H. F., Andrew T. H.. Reactivity of CaO Derived from Nano-sized CaCO3 Particles Through Multiple CO2 Capture-and-release Cycles[J]. Chemical Engineering Science,2009,64(2):187-191
    [69]李英杰,赵长遂.钙基吸收剂循环煅烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55-60
    [70]李英杰,孙蓉岳,刘洪玲,赵建立,韩奎华,路春美.石灰石和白云石高温 循环脱除C02过程分析[J].化工学报,2011,62(6):1693-1700
    [71]Siaban A., Narcide M., Harrison D.. Characteristics of the Reversible Reaction Between CO2(g) and Calcined Dolomite[J]. Chemical Engineering Communica-tions,1996,146(1):149-162
    [72]Chrissafits K., Dagounaki C., Paraskevopoulos K.. The Effects of Procedural Variables on the Maxium Capture Efficiency of CO2 using a Carbonation /Calcination Cycle of Carbonate Rocks[J]. Thermochimica Acta,2005,428(1-2): 193-198
    [73]Alvarez D., Pena M,, Borredo A. G.. Behavior of Different Calcium-based Sorbents in a Calcination/Carbonation Cycle for CO2 Capture[J]. Energy & Fuels,2007,21 (3):1534-1542
    [74]Salvador C. Enhancement of CaO for CO2 Capture in an Fbc Environments[J]. Chemical Engineering Journal,2003,96(1-3):187-195
    [75]Fennell P., Davidson J., Dennis J. S., et al. Regeneration of Sintered Limestone Sorbents for the Sequestration of CO2 from Combustion and Other Systems[J]. Journal of the Energy Institute,2007,80(2):116-119
    [76]Manovic V., Anthony E. J.. Sequential SO2/CO2 Capture Enhanced by Steam Reactivation of a CaO-based Sorbent[J]. Fuel,2008,89(8-9):1564-1573
    [77]李英杰,赵长遂,李庆钊,段伦博.作为新型C02吸收剂的乙酸钙循环碳酸化特性[J].中国电机工程学报,2008,28(8):65-70
    [78]乔春珍,陈伟娇.水蒸气改善钙基C02吸收剂循环活性的研究[J].环境污染与防治,2012,34(4):44-48
    [79]Katia G., Stefano S., Pier Ugo F.. CO2 Capture by Means of Dolomite in Hydrogen Production from Syn Gas[J]. International Journal of Hydrogen Energy,2008,33(12):3049-3055
    [80]Wang X. Y., Alvarado V., Swoboda-Colberg N., et al. Reactivity of Dolomite in Water-saturated Supercriticle Carbon Dioxide:Significance for Carbon Capture. and Storage and for Enhanced oi; and Gas Recovery[J]. Energy Conversion and Management,2013,65(1):564-573
    [81]乔春珍,王宝利,肖云汉.不同钙基C02吸收剂的循环特性研究[J].燃料化学学报.2010,38(4):478-482
    [82]高英,陈汉平,杨海平,王贤华,张世红,汪军.石灰石和贝壳的煅烧及CO2吸收循环特性[J].中国电机工程学报,2011,31(35):72-77
    [83]Silaban A., Narcida M., Harrison D.. Calcium Acetate as a Sorbent Precursor for the Removal of Carbon Dioxide from Gas Stream at High Temperature[J]. Resources, Conversion & Recycling,1992,7(1-3):139-153
    [84]Aihara M., Nagai T., Matsushita J., et al. Development of Porous Solid Reactant for thermal-energy Storage and Temperature Upgrade using Carbonation/Decarbo-nation Reaction[J]. Applied Energy,2001,69(3):225-238
    [85]Kato M., Nakagawa K., Essaki K., et al. Novel CO2 Absorbents using Lithium-containing Oxide[J]. International Journal of Applied Ceramic Technology, 2005,2(6):467-475
    [86]Li Z. S., Cai N. S. Huang Y. Y., Han H. J.. Synthesis, Experimental Studies, and Analysis of a New Calcium-based Carbon Dioxide Absorbents[J]. Energy & Fuels,2005,19(4):1447-1452
    [87]Lopez-Oritiz A., Rivera N., Rojas A., et al. Novel Carbon Dioxide Solid Acceptors using Sodium Containing Oxides[J]. Separation Science and Technology,2005,39(15):3559-3572
    [88]Fauth D., Frommell E., Hoffman J., et al. Eutectic Salt Promoted Lithium Zirconate:Novel High Temperature Sorbent for CO2 Capture[J]. Fuel Processing Tech-nology,2005,86(14-15):1503-1521
    [89]Feng B., Liu W., Li X., An H.. Overcoming the Problem of Loss-in-capacity of Calcium Oxide in CO2 Capture[J]. Energy & Fuels,2006,20(6):2417-2420
    [90]Feng B., An H., Tan E.. Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems[J]. Energy & Fuels,2007,21(2):426-434
    [91]Grasa G., Gonzalez B., Alonso M., et al. Comparison of CaO-based Synthetic CO2 Sorbents under Realistic Calcination Conditions[J]. Energy & Fuels,2007, 21(6):3560-3562
    [92]Florin N. H.. Harris A. T.. Preparation and Characterization of a Tailored Carbon Dioxide Sorbent for Enhanced Hydrogen Synthesis in Biomass Gasifiers[J]. Industrial & Engineering Chemistry Research,2008,47(7):2191-2202
    [93]Lu H., Khan A., Smirniotis P.. Relationship between Structural Properties and CO2 Capture Performance of CaO-based Sorbents Obtained from Different Organometallic Precursors[J]. Industrial & Engineering Chemistry Research, 2008,47(16):6216-6220
    [94]Martavaltzi C. Development of new CaO Based Sorbent Materials for CO2 Removal at High Temperature[J]. Microporous and Mesoporous Materials, 2008,110(1):119-127
    [95]Dennis J. S., Pacciani R.. The Rate and Extent of Uptake of CO2 by a Synthetic, CaO-containing Sorbent[J]. Chemical Engineering Science,2009,64(9):2147-2157
    [96]Li Y., Zhao C., Chen H., Lunbo D., et al. Cyclic CO2 Capture Behavior of KMn04-doped CaO-based Sorbent[J]. Fuel,2010,89(3):642-649
    [97]Gupta H., Fan L. S.. Carbonation-calcination Cycle using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flus Gas[J]. Industrial & Engineering Chemistry Research,2002,41(16):4035-404
    [98]Kimura S., Adachi M., Noda R., et al. Particle Design and Evaluation of Dry Recovery Sorbent with a Liquid Holding Capability[J]. Chemical Engineering Science,2005,60(14):4061-4071
    [99]Manovic V., Anthony E. J.. Thermal Activation of CaO-based sorbent and Self-reactivation during CO2 Capture Looping Cycles[J]. Environmental Science & Technology,2008,4(11):4170-4174
    [100]Manovic V., Anthony E. J., Geasa G., et al. CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping[J]. Energy & Fuels,2008,22(5):3258-3264
    [101]Chen Z., Song H. S., Portillo M., et al. Long-Term Calcination/Carbonation Cycling and Thermal Pretreatment for CO2 Capture by Limestone and Dolomite[J]. Energy & Fuels,2009,23(3):1437-1444
    [102]Manovic V., Anthony E. J., Loncarevic D.. CO2 looping Cycles with CaO-based Sorbent Pretreated in CO2 at High Temperature[J]. Chemical Engineering Science,2009,64(14):3236-3245
    [103]Manovic V., Anthony E. J.. Lime-Based Sorbents for High-Temperature CO2 Capture-A Review of Sorbent Modification Methods[J]. International Journal of Environmental Research and Public Health,2010,7:3129-3140
    [104]Fennel P. S., Pacciani R., Dennis J. S., et al. The Effect of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand[J]. Energy & Fuels,2007,21(4):2072-2081
    [105]Washburn E.. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material[J]. Proceedings of the National Academy of Science,1921, 7(4):115-116
    [106]Wen C. Y., Yu Y. H.. A Generalized Method for Predicting the Minimum Fluidisation Velocity[J]. AICHE Journal,1962,12(3):610-612
    [107]Chase M. W., Curnutt J. L., Downey J. R., et al. JANAF Thermo chemical Tables,1982 Supplement[J]. Journal of Physical and Chemical Reference Data, 1982,11(3):695-941
    [108]Sun P., Grace J., Lim C. J., Anthony E. J.. Removal of CO2 by Calcium-based Sorbents in the Presence of SO2[J]. Energy & Fuels,2007,21(1):163-170
    [109]Dennis J. S., Hayhurst A. N.. A Simplied Analytical Model for the Rate of Reaction of SO2 with Limestone Particles[J]. Chemical Engineering Science, 1986,41(1):25-36
    [110]Lee K. S., Jung J. H., Keel S. I., et al. Characterization of Calcium Carbonate Sorbent Particle in Furnace Environment[J]. Science of the Total Environment, 2012,429(7):266-271
    [111]李英杰.改性钙基吸收剂高温循环捕集c02过程中的分形维数[J].中国电机工程学报,2011,31(29):35-40
    [112]Li Z. S., Cai N. S., Huang Y. Y.. Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a new Ca-based CO2 sorbent[J]. Industrial & Engineering Chemistry Research,2006,45(6):1911-1917
    [113]Liu W, Dennis J. S. Sultan S., et al. An Inverstigation of the kinetics of CO2 Uptake by a Synthetic Calcium Based Sorbent[J]. Chemical Engineering Science,2012,69(1):644-658
    [114]Avrami M.. Kinetic of Phase Change. Ⅱ Transformation-Time Relations for Ransom Distribution of Nyclei[J]. Jouranl of Chemical Physics,1940,8(2): 212-224
    [115]Sotirchos S. V., Yu H. C. Overlapping Grain Models for Gas-Solid Reaction with solid Product[J]. Industrial & Engineering Chemistry Research,1988,27 (5):836-845
    [116]Wakao N., Smith J. M.. Diffusion in Catalyst Pellets[J]. Chemical Engineering Science,1962,17(11):825-834
    [117]Friesen W. I., Laidlaw W. G.. Porosimetry of Fractal Surfaces[J]. Journal of Colloid and Interface Science,1993,160(1):226-235
    [118]Heesink A. B. M., Prins W., van Swaaij W. P. M.. A Grain Size Distribution Model for Non-catalytic Gas-Solid Reactions[J]. The Chemical Engineering Journal,1993,53(1):25-37
    [119]Dennis J. S., Hayhurst A. N.. Mechanism of the Sulfation of Calcined Limestone Particles in Combustion Gases[J]. Chemical Engineering Science, 1990,45(5):1175-1187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700