用户名: 密码: 验证码:
纳帕海湿地水文情势模拟及关键水文生态效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原湿地往往地处大江大河上游,是流域内不可或缺的水文单元,具有重要的生态功能和研究价值。但由于高原湿地大多地理位置偏僻,很少能够开展常规水文监测,因此难以开展高原湿地的水文模拟研究。国际水文协会(IAHS)于2002年发起IAHS Decade (2003-2012) on Prediction in Ungauged Basins(简称PUB)使得无常规水文监测湿地水文模拟成为了水文学界关注的一个热点问题。
     本研究选取滇西北高原湖沼湿地纳帕海(Ramsar愠地,无常规水文监测湿地)作为研究区,利用111景Landsat TM/ETM+(Landsat Thematic Mapper/Enhanced Thematic Mapper Plus)遥感影像作为基础数据源,利用NPSI (Neighborhood Similar Pixel Interpolator)方法对Landsat ETM+(slc-off)影像进行条带修复并结合其他遥感数据建立了纳帕海湿地明水面景观数据库。由于纳帕海湿地水文波动主要受降水因子驱动,根据流域降水的时滞效应理论,本研究建立了65d累积降水量与明水面面积之间的经验关联模型,并估算湿地明水面面积的波动规律。
     使用RTK (Real-time Kinematic) GNSS (Global Navigation Satellite System)系统对纳帕海湿地区进行湿地微地貌DEM (Digital Elevation Model),基于ArcGIS平台利用纳帕海湿地明水面景观数据库构建概念模型估算各明水景观对应时期的湿地地表储水量(WS),进而通过回归分析推测出纳帕海湿地明水面面积(OWA)与地表水储量之间的固有关系,从而建立了65d累积降水量与湿地地表水储量之间的经验关联模型并完成了纳帕海湿地水文情势波动模拟。本研究还利用多个时期明水面空间分布数据叠加建立湿地淹水频率空间格局,进而在获取湿地明水面面积以后,通过不同频率下的淹水面积推算出目标面积所对应的最有可能出现的明水面空间分布格局。
     模拟结果表明在多年际时间尺度下,纳帕海湿地在干季保持着稳定的水文情势,雨季水文情势波动显著,但无水量减少的趋势;而年内季节时间尺度下,湿地多年月均湿地地表水储量在7月迅速增长,9月达到最大,10月快速回落,11月至翌年6月基本保持平稳。地表水储量在1年内只有4个月份能够达到200万m3以上,以及其在7月和10月快速涨、退的水文情势表明纳帕海湿地正逐渐向陆生生态系统演替。纳帕海湿地降水与明水面面积增长之间存在着明显的时滞效应,这一时滞效应对于纳帕海湿地保护管理和洪灾防范(特别是雨季)具有明确的参考价值。
     基于上述纳帕海湿地水文模型,本研究对洪水预测、越冬水禽明水面景观栖息地空间格局计算以及湿地植被对水文的响应等三个关键水文生态效应进行分析:
     (1)纳帕海湿地发生百年一遇洪水的降水条件为:最佳累计降水量(OAP,下同)达到553.90mm,洪水淹没面积为:3098.20hm2;发生五十年一遇洪水的降水条件为:OAP达到529.83mm,洪水淹没面积为:2812.37hm2;发生二十年一遇洪水的降水条件为:OAP达到495.23mm,洪水淹没面积为:2427.69hm2;发生十年一遇洪水的降水条件为:OAP达到465.97mm,洪水淹没面积为:2126.49hm2;发生五年一遇洪水的降水条件为:OAP达到432.38mm,洪水淹没面积为:1807.94hm2。通过明水景观空间叠加方法,本研究获得了纳帕海湿地各洪水重现期最有可能出现的淹水空间格局,可以为有关部门的防洪工作提供有效的依据。
     (2)越冬水禽明水景观栖息地面积为302.45hm2,占最大明水景观栖息地面积的64.80%,占研究区总面积的9.74%。纳帕海湿地区北部的主湖区仍然是越冬水禽主要的明水景观栖息地。西南部明水栖息地呈孤岛状分布,其余小斑块明水栖息地较为分散。明水面景观作为主要的水禽越冬栖息地,随着水禽数量的逐年增多,其面临的生态压力也在逐渐增大,有关部门应该加强对人为扰动的控制,以最大明水栖息地为恢复目标逐渐释放空间,为保护物种提供更多生境。
     (3)2012年7-8月纳帕海植被调查结果显示,纳帕海湿地共记录有湿地植物130种,隶属于36科88属。其中,蕨类植物1科1属2种,苔藓植物1科1属1种,种子植物34科,86属,128种。湿地区存在的主要优势物种为蕨麻(Potentilla anserma)与木里苔草(Carex muliensis)。纳帕海湿地区淹水频度在2.1%以下的区域为中生草甸;淹水频度在2.1%——50.0%范围内的区域为沼泽与湿草甸;湿地区淹水频度在50.0%以上范围内的区域为明水面湿地。人为扰动在淹水频率较低的区域对湿地植被生物多样性的影响更加显著。湿地区边缘,淹水频率较低区域凸显出生态交错带具有的边缘效应。这种边缘效应能够反映出湿地生态系统与陆生生态系统的边界,可以为湿地的界定提供新的思路。
Mountains and plateaus in Southwest China contain many subalpine and alpine wetlands, with significant hydroecological functions. But ungauged or poorly gauged conditions limit the study and understanding of hydrological regimes of these wetland types. As the International Association of Hydrological Sciences (IAHS) initiated the decade on prediction in ungauged basins (PUB) during the period2003-2012, with the primary aim of reducing the degree of uncertainty in hydrological predictions, the hydrological modeling of ungauged wetland had been focused by the hydrological researchers.
     This study selected the Napahai Ramsar site, an ungauged subalpine wetland in northwest Yunnan, to explore operational methods in order to simulate its hydrological regime. One hundred and eleven phases of Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imageries from1987to2011were catalogued as the basic data in the Napahai wetland and NSPI (Neighborhood Similar Pixel Interpolator) method had been used to restore the Landsat ETM+(slc-off) imageries. These data were used to found the open water database which contained the areas and the spatial distribution of open water in Napahai wetland. Based on the basin lag time theory and the confirmation of the rainfall was the main driver of hydrological fluctuation, correlation coefficients between open water areas (OWAs) and correspondingly accumulated precipitation levels at different time steps were analyzed, which determined that a75-day time step was optimal to establish the simulation equation between OWAs and accumulated precipitation levels. This model could predict the OWA fluctuation when the daily precipitation data is available to acquire.
     A Trimble R8GNSS (Global Navigation Satellites Systems) RTK (Real-time Kinematic system) and sonar fathometer were used to survey fine-resolution elevation data and generate a digital elevation model of Napahai wetland, which helped to calculate the wetland water storage (WS) by using a conceptual model built in the study and find the inherent correlation with OWA and WS. Then, the WS could be simulate by the optimal accumulated precipitation (OAP). The multi-phase spatial distribution of open water data were used to overlap into the flood frequency spatial distribution which could calculate the most possible flooding pattern at different OWA levels.
     The simulation result indicated that, in the inter-annual time scale, the hydrology was stable in dry season and had a dramatic fluctuation in rainy season; and there were significant variations between rainy and dry seasons in the intra-annual time scale; it increased slowly in June and sharply in August, reached its maximum level in September, declined from October to December, and then kept slowly decreasing until next May. The sharp increase and decrease of the wetland hydrology in July and October demonstrated the wetland ecosystem was turning into terrestrial ecosystem. Fluctuation of WS had obvious time lag behind the rainfall especially in rainy season.
     Based on the hydrological model above, the study analyzed three key ecological responses of hydrology:flood prediction, spatial calculation of waterfowl open water habitat, and the wetland vegetation differentiation drove by hydrology.
     1) As accumulated75-day precipitation levels reached100-year (100a) return period, the flooding area will almost cover the whole Napahai wetland as3098.20hm2; under the scenarios of50-year (50a),20-year (20a),10-year (10a), and5-year (5a) return periods, it will occupy2812.37hm2,2427.69hm2,2126.49hm2and1807.94hm2of the Napahai wetland.
     2) The waterfowl habitat in Napahai wetland covered302.45hm2, which was64.80%of the max waterfowl habitat of this wetland and9.74%of the study area. The main open water habitat was in the north and the other small habitats were fragmented dispersedly. The human interference was the main threaten which should be restrained to release more space for more waterfowl population.
     3) There were one hundred and thirty species of plant in Napahai wetland, which belonged to eighty-eight category and thirty-six classes. Potentilla anserina and Carex muliensis were the dominant species in the wetland. The landscape would be mesophytic meadow as the flood frequency was less than2.1%; it would be marsh or wet meadow as the flood frequency was between2.1%and50%; it would be open water as the flood frequency was greater than50%. The human interference had greater influence in the low flood frequency area, where the edge effect was strong. This methodology may provide a new thought for the disputed wetland definition.
引文
Acreman.M.2001. Hydro-ecology:Linking Hydrology and Aquatic Ecology. Wallindord:IAHS Press,13-44.
    Blooschl G.& Montanari A2010. Climate change impacts, throwing the dice, hydro.prosess,24, 374-381.
    Brooks R., McKenney-Easterling M., Brinson M., et al. 2009. A Stream-Wetland-Riparian (SWR) index for assessing condition of aquatic ecosystems in small watersheds along the Atlantic slope of the eastern U. S.. Environ Monit Assess,150:101-117.
    Cao L.2009. Birds and people both depend on China's wetlands. Nature,460:173.
    Castiglioni S., Lombardi L., Toth E., et al. 2010. Calibration of rainfall-runoff models in ungauged basins:A regional maximum likelihood approach. Advances in Water Resources,33:1235-1242.
    Chander G, Markhamb B, Helder D.2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+,and EO-1 ALI sensors. Remote Sensing of Environment,113:893-903.
    Chen G. F., Qin D. Y, Ye R., et al. 2011. Anew method of rainfall temporal downscaling a case study on sanmenxia station in the Yellow River Basin, Hydrol. Earth Syst. Sci. Discuss.,8, 2323-2344.
    Clarke R. T..2011. Classification procedures in the context of PUB ways forward, Hydrol. Earth Syst. Sci.,8,855-867.
    Finlayson C.M. and Davidson N.C..1999. Summary report, In:Finlayson C.M. and Davidson N.C. (eds), Global review of wetland resources and priorities for wetland inventory. Supervising Scientist Report 144, Supervising Scientist, Canberra,1-14.
    Franks S. W..2007. Integrating models, methods and measurements for prediction in ungauged basins. Predictions in Ungauged Basins:PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia,20-22 November 2002). IAHSPubl.309.
    Gao B.1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment,58 (3):257-266.
    Gao J., Ouyang H, Xu X., et al. 2009. Effects of Temperature and Water Saturation on CO2 Production and Nitrogen Mineralization in Alpine Wetland Soils. Pedosphere,19(1):71-77.
    Gleason RA, Tangen BA, Laubhan MK, et al. 2007. Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North. US Geological Survey Open-File Rep.2007-1159.
    Gujia B., Chatterjiee A, Gautam P., et al. 2003. Wetlands and Lakes at the Top of the World. Mountain Research and Development,23(3):219-221.
    Hay ash M.& Van der Kamp G..2000. Simple equations to represent the volume-area-depth relations of shallow wetlands in small topographic depressions. Journal of Hydrology,237, 74-85.
    Hirotaa M., Tang Y, Hu Q., et al. 2004. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology & Biochemistry,36:737-748.
    Hollis G.E., Thompson J.R..1998. Hydrological data for wetland management. J CIWEN, (12):9-17.
    Huang S., Dahalb D., Young C., et al. 2011a. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota. Remote Sensing of Environment,115(12):3377-3389.
    Huang S., Young C., Feng M., et al. 2011b. Demonstration of a conceptual model for using LiDAR to improve the estimation of floodwater mitigation potential of Prairie Pothole Region wetlands. Journal of Hydrology,405:417-426
    Huckelbridge K.H., Stacey M.T., Glenn E.P., et al. 2010. An integrated model for evaluating hydrology, hydrodynamics, salinity and vegetation cover in a coastal desert wetland. Ecological Engineering, 36:850-861.
    Ji L., Zhang L., Wylie B., et al. 2009. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing,75(11):1307-1317.
    Jin CX,1993. Determination of basin lag time in rainfall-runoff investigations. Hydrological Processes,7 (4):449-457.
    Johnson W., Werner B., Guntenspergen G., et al. 2010. Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate. BioScience,60(2):128-140.
    Kas is chke E.S., Bourgeau-Chavez L.L., Rober A.R..2009. Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex. Remote Sensing of Environment,113:1868-1873.
    Kayranli B., Scholz M., Mustaf A et al. 2010. Carbon Storage and Fluxes within Freshwater Wetlands:a Critical Review. Wetlands,30:111-124.
    Kazezyelmaz-Alhana C.& Medina M..2008. The effect of surfaceground water interactions on wetland sites with different characteristics. Desalination,226:298-305.
    Keith D., Rodoreda S., Bedward M., et al. 2010. Decadal change in wetland-woodland boundaries during the late 20th century reflects climatic trends. Global Change Biology,16,2300-2306.
    Khan S. L, Hong Y, Wang J., et al. 2011. Satellite Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake Victoria Basin:Implications for Hydrologic Prediction in Ungauged Basins. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,49(1): 85-95.
    Krasnostein A.L. and Oldham C.E..2004. Predicting wetland water storage. WATER RESOURCES RESEARCH,40, W10203.
    Lang M.& McCarty G..2009. Lider intensity for improved detection of inundation below the forest canopy. WETLANDS,29(4):1166-1178.
    Lang M., McCarty G., Anderson M..2008. Wetland hydrology at a watershed scale Dynamic information for adaptive management. JOURNAL OF SOIL AND WATER CONSERVATION, 63(2):49.
    Lakshmi V.2004. The role of satellite remote sensing in the Prediction of Ungauged Basins. Hydrological processes,18:1029-1034.
    LePage B. A.2011. Wetlands:A Multidisciplinary Perspective. Wetlands,1:3-25.
    Liu B, Du Y, Liang T.2011. Research progress of passive microwave remote sensing from snow and its application in the eastern Qinghai-Tibet Plateau[C]//Multimedia Technology (ICMT), International Conference on. IEEE,2011:5515-5522.
    Liu Q Yang J, Yang X, et al. 2010. Foraging habitats and utilization distributions of Black-necked Cranes wintering at the Napahai Wetland, China. J. Field Ornithol.81(1)21-30.
    McCartney M., Morardet S., Rebelo L., et al. 2011. A study of wetland hydrology and ecosystem service provision:GaMampa wetland, South Africa. Journal des Sciences Hydrologiques,56(8): 1452-1466.
    McFeeters, S.K..1996. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing,17(7):1425-1432.
    McMenamin S., Hadlya E., Wright C., et al. 2008. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. PNAS,105(44)16988-16993.
    Milzow C., Krogh P. E., Bauer-Gottwein P., et al. 2011. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for model calibration and validation in a large poorly gauged catchment. Hydrol. Earth Syst. Sci.,15,1729-1743.
    Mitsch W. J.& Gosselink L..2000. The value of wetlands importance of scale and landscape setting. Ecological Economics,35,25-33.
    Mitsch W.J. and Gosselink J.G..2007. Wetlands (4th Edition), New York:Wiley,1-32.
    Minke A, Westbrook C, van der Kamp G.2010. Simplified Volum-Area-Depth Method for Estimating Water Storage of Prairie Potholes. Wetlands 30:541-551.
    Niemuth N., Wangler B., Reynolds R..2010. Spatial and Temporal Variation in Wet Area of Wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Wetlands,30,1053-1064.
    Oyebande L. and Adeaga O..2007. Flow simulation in an ungauged basin using a digital elevation model. IAHSPubl.309:282-289.
    Ozesmi S. L.& Bauer M. E.2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management,10,381-402.
    Patil S.& Stieglitz M..2011. Hydrologic similarity among catchments under variable flow conditions, Hydrol. Earth Syst. Sci.,15,989-997.
    Rai V.2008. Modeling a wetland system:The case of KeoladeoNational Park (KNP), India. Ecological Modeling,210:247-252.
    Randrianasolo A, Ramos M.H., Andreassian V.2011. Hydrological ensemble forecasting at ungauged basins using neighbour catchments for model setup and updating, Adv. Geosci.,29: 1-11.
    Schroder B. et aL 2006. Pattern, process, and function in landscape ecology and catchment hydrology how can quantitative landscape ecology support predictions in ungauged basins. Hydrol. Earth Syst. Sci.,10,967-979.
    Schumann G., Matgen P., Cutler M.E., et al. 2008. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS Journal of Photogrammetry & Remote Sensing,63:283-296.
    Sikdar P.K. and Sahu P..2009. Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrvl. Earth Syst. Sci.,6:3143-3173.
    Sivapalan M., Takeuchi K., Franks S.W., et al.2003a. IAHS Decade on Predictions in Ungauged Basins (PUB),2003-2012:Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal,48(6):857-880.
    Sivapalan M..2003b. Prediction in ungauged basins:a grand challenge for theoretical hydrology. Hydrol. Process,17:3163-3170.
    Skalbeck J.D., Reed D.M., Hunt R.J..2009. Relating Groundwater to Seasonal Wetlands in Southeastern Wisconsin, USA Hydrogeology Journal,17:215-228.
    Song C.C., Wang L.L., Guo Y.D., et al.2011. Impacts of natural wetland degradation on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China. Journal of Hydrology,398:1-2.
    Stoll S.& Weiler M..2010. Explicit simulations of stream networks to guide hydrological modelling in ungauged basins, Hydrol. Earth Syst. Sci.,14,1435-1448.
    Su M., Stolte W.J.,Van der.Kamp.2000. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model. Hvdrol. Process,14:2405-2422.
    van der Valk.2005. Water-level fluctuations in North American prairie wetlands. Hydrobiologia, 539:171-188.
    Velde R., Su Z., Ma Y..2008. Impact of Soil Moisture Dynamics on ASAR σo Signatures and Its Spatial Variability Observed over the Tibetan Plateau. Sensors.8:5479-5491.
    Velpuri N. M., Senay G. B., Asante K. O..2011. Using multi-source satellite data for lake level modelling in ungauged basins a case study for Lake Turkana, East Africa, Hydrol. Earth Syst. Sci,8,4851-4890.
    Wagener T., Sivapalan M., Troch P. et al. 2010. The future of hydrology:An evolving science for a changing world. WATER RESOURCES RESEARCH,46, W05301.
    Wagener T.& Montanari A.2010. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. WATER RESOURCES RESEARCH,47, W06301.
    Winsemius H. C., Schaefli B., Montanari A et al. 2007. On the calibration of hydrological models in ungauged basins A framework for integrating hard and soft hydrological information. WATER RESOURCES RESEARCH,45, W12422.
    Withey P. and Van Kooten G. C..2011. The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecological Economics,70:798-805.
    Wang G, Bai W, Li N, et al. 2011. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Climatic Change,106:463-482.
    Wang H, Zhou X, Wang C., et al. 2008. Eco-Environmental degradation in the northeast margin of the Qinghai-Tibetan plateau and comprehensive ecological protection planning. Environ Geol,55:1135-1147.
    Wiens L.2001. A surface area-volume relationship for prairie wetlands in the Upper Assiniboine river basin, Saskatchewan. Canadian Water Resources Journal 26(4):503-513.
    Xu H..2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing,27(14):3025-3033.
    Yadav M..2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources,30,1756-1774.
    Zhang Y, Wang G., Wang Y, et al. 2011. Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environ Monit Assess,180:189-199.
    Zhao L., Li J., Xu S., et al. 2010. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences,7:1207-1221.
    ZhaoX., Stein A, Chen X., et al. 2011. Monitoring the dynamics of wetland inundation by random sets on multi-temporal images. Remote Sensing of Environment,115(9):2390-2401.
    Zhang Z., Wagener T., Reed P., et al. 2008. Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization. WATER RESOURCES RESEARCH,44, W10604.
    白军红,欧阳华,徐惠风,等.2004.青藏高原湿地研究进展.地理科学进展,23(4):1-9
    白军红.2008.中国高原湿地北京:中国林业出版社.33.
    常凤来,田昆,莫剑锋,等.2005不同利用方式对纳帕海高原湿地土壤质量的影响.湿地科学,3(2):132-135
    陈奇伯,寸玉康,李明春,等.2005.香格里拉县典型区段水土保持生态修复监测评价.西南林学院学报,25(2):24-30.
    陈宜瑜和吕宪国.2003.湿地功能与湿地科学的研究方向.湿地科学,1(1):7-11.
    崔保山和杨志峰.2006.湿地学.北京:北京师范大学出版社,11-42.
    邓伟和胡金明.2003.湿地水文学研究进展及科学前沿问题.湿地科学,1(1):12-19.
    邓伟,潘响亮,栾兆擎.2003.湿地水文学研究进展.水科学进展,14(4):521-527.
    段志成.1997.中甸县志.昆明:云南民族出版社.
    傅国斌,刘昌明.2001.遥感技术在水文学中的应用与研究进展.水科学进展,12(4):547-559.
    冯理.2008.纳帕海黑鹳越冬生态观察.硕士学位论文.西南林业大学.
    龟山哲,张继群,王勤学,等2004.应用Terra/MODIS卫星数据估算洞庭湖蓄水量的变化.地理学报,56(1):88-94.
    韩奔,冯理韩联宪,等.2009.纳帕海越冬水鸟数量与水域面积的关系.西南林业大学学报,29(2):44-46
    贺鹏,孔德军,刘强,等.2011.云南纳帕海越冬黑颈鹤夜栖地特征.动物学研究,32(2):150-156
    胡金明,李杰袁寒,等.2010.纳帕海湿地景观格局的季节动态及其驱动.地理研究,(29)5:899-908.
    胡金明,袁寒,李杰,等.2011.滇西北纳帕海湿地区域土壤速效氮组分的分异及指示意义.山地学报,29(3):269-279.
    韩联宪.2009.纳帕海地区鸟类多样性,北京;中国林业出版社.
    黄易.2009.纳帕海湿地退化对碳氮积累影响的研究.安徽农业科学,37(13):6095-6097.
    黄进良.1999.洞庭湖湿地的面积变化与演替.地理研究,18(3):297-304.
    廖峻涛.2010a.云南纳帕海湿地鸟类资源现状及其保护策略.大学学术研究,2:510-513.
    廖峻涛.2010b.云南纳帕海湿地鸟类多样性保护与藏族传统文化的关系初探.昆明市第二届学术年会论文集,632-637.
    李恒.1987.横断山区的湖泊植被.云南植物研究,9(3):257-270.
    李红霞,张新华,张永强,等2011.缺资料流域水文模型参数区域化研究进展.水文,31(3):13-17.
    李杰,胡金明,董云霞,等.2010.1994-2006年滇西北纳帕海流域及其湿地景观变化研究.山地学报,28(2):247-255.
    李晓玲,李爱农,刘国祥,等.2010.云贵高原湖泊分布空间格局.长江流域资源与环境,19(Z1):91-96.
    李宁云.2006.纳帕海湿地生态系统退化评价指标体系研究.硕士学位论文,西南林学院.
    李宁云,袁华,田昆等.2011.滇西北纳帕海湿地景观格局变化及其对土壤碳库的影响.生态学报,2011,31(24):7388~7396
    凌成星,张怀清,林辉,等.2010.利用混合水体指数模型(CIWI)提取滨海湿地水体信息.长江流域资源与环境,19(2):152-157.
    刘红玉,李玉凤,曹晓,等.2009.我国湿地景观研究现状、存在的问题与发展方向.地理学报,64(11):1394-1401.
    刘苏峡,夏军,莫兴国.2005.无资料流域水文预报(PUB计划)研究进展.水利水电技术,36:9-12.
    刘苏峡,刘昌明,赵卫民.2010.无测站流域水文预测(PUB)的研究方法.地理科学进展,29(11):1333-1339.
    闵文彬,彭国照,罗磊,等.2008.若尔盖湿地TM影像判识特征气象科技,36(1):136-142.
    牛振国,宫鹏,程晓,等.2009.中国湿地初步遥感制图及相关地理特征分析.中国科学D辑,39(2):188-203.
    欧阳志云,肖燚,王效科.2005.地理信息系统与自然保护区规划和管理.北京:化学工业出版社.
    孙广友.1998.横断山区沼泽与泥炭.北京:科学出版社.
    孙向民,王根绪,刘光生.2010.三江源区高寒湿地生态水文过程研究进展.水电能源科学,28(11):21-24.
    谈戈,夏军,李新.2004.无资料地区水文预报研究的方法与出路.冰川冻土,26(2):192-196.
    田昆.2004.云南高原纳帕海湿地土壤退化过程及驱动机制.博士学位论文,中科院东北地理与农业生态研究所.
    田昆,常凤来陆梅,等.2004.人为活动对云南纳帕海湿地土壤碳氮变化的影响.土壤学报,41(5):681~686.
    王根绪,李元寿,王一博,等.2007.近40年来青藏高原典型高寒湿地系统的动态变化.地理学报,62(5):481-491.
    王凯,杨晓君,赵健林,等2009.云南纳帕海越冬黑颈鹤日间行为模式与年龄和集群的关系动物学研究,30(1):74-82.
    王兴菊,许士国,张奇.2006.湿地水文研究进展综述.水文,26(4):1-9.
    王云,李麒麟,关磊,等2011.纳帕海环湖公路交通噪声对鸟类的影响.动物学杂志,46(6):65~72
    吴后建,郭克疾,但新球,等.2010.江西药湖湿地水禽栖息地保护与恢复规划设计.林业调查规划,1:102-107.
    肖德荣,田昆,袁华,等2006.高原湿地纳帕海水生植物群落分布格局及变化.生态学报,26(11):3624-3630
    肖德荣,田昆袁华,等.2007.滇西北高原典型退化湿地纳帕海植物群落景观多样性.生态学杂志,26(8):1171-1176
    肖德荣.田昆.张立权.2008.滇西北高原湿地纳帕海植物多样性与土壤肥力的关系.生态学报,28(7):3116-3124.
    徐守国,郭辉军,田昆,等2006.高原湿地纳帕海水生植被调查与分析.山东林业科技,4:48-50.
    殷书柏,吕宪国,武海涛.2010.湿地定义研究中的若干理论问题.湿地科学,8(2):182-188.
    章光新,尹雄锐,冯夏清.2008.湿地水文研究的若干热点问题.湿地科学,6(2):105-115.
    张昆,田昆,莫剑锋,等.2007.水文周期对纳帕海高原湿地草甸土壤碳素的影响.湖泊科学,19(6):705-709.
    赵魁义,娄彦景.2007.青藏高原若尔盖湿地退化与生物多样性修复.中国生物多样性保护与研究进展Ⅶ.北京:气象出版社,310-315.
    赵建林,韩联宪,冯理,等.2008.云南纳帕海黑颈鹤越冬行为与生境利用初步观察.四川动物,27(1):87~91.
    张佰莲,田秀华,刘群,等.2009,崇明东滩自然保护区越冬白头鹤警戒行为的观察.东北林业大学学报,7:126-136.
    张昆,吕宪国,田昆.2008.纳帕海高原湿地土壤有机质对水分梯度变化的响应.云南大学学报(自然科学版),30(4):424-427
    张昆 田昆 吕宪国,等.2009.游干扰对纳帕海湖滨草甸湿地土壤水文调蓄功能的影响.水科学进展,6:800-805.
    张强,马友鑫,刘文俊,等.2007.滇西北高原湿地区土地利用变化特征.山地学报,125(3):265-273
    郑度和李炳元.1990.青藏高原自然地理研究的进展.地理学报,45(2):235-244.
    郑度,林振耀,张雪芹.2002.青藏高原与全球环境变化研究进展.地学前缘,9(01):95-102.
    周德民,宫辉力,胡金明,等.2003.湿地水文生态学模型的理论与方法生态学杂志,26(1):108-111.
    赵魁义.1988.滇西北横断山区沼泽植被类型及其垂直地带性特征.黄锡畴编著,中国沼泽研究.北京:科学出版社.
    赵魁艾1999.中国沼泽志.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700