用户名: 密码: 验证码:
黄土高原流域生态水文模拟和植被生态用水计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是世界上黄土分布最集中、覆盖度最大的地区,由于黄土的易侵蚀性及历史上强烈的人类活动影响,黄土高原成为世界上植被退化和水土流失最严重的地区之一,随之而来的生态环境恶化阻碍了区域社会经济的发展,进入河道的泥沙也对黄河下游河道和水利工程的安全造成了威胁。建国以来,国家开展了大规模的水土流失治理工作,有效减少了土壤侵蚀和进入黄河的泥沙,改善了生态环境。但水土保持措施同时也引起了植被生态用水增加、河道径流减少、土壤干化等问题。探索黄土高原生态水文相互作用关系,评估植被生态用水量及其对河道径流的影响对于黄土高原未来的水土流失治理工作具有重要的指导意义。
     本文以流域生态水文过程模拟研究为基础,根据黄土高原水循环特点改进生态水文模型RHESSys (Regional Hydro-Ecological Simulation System),建立了基于植被生理过程的黄土高原分布式生态水文耦合模型,对生态模拟和模型参数的不确定性进行初步研究,并应用该模型在黄土高原泾河流域不同尺度上进行流域生态水文过程的模拟分析,最后利用模型进行基于生态水文过程的大流域植被生态用水计算,并分析了水土保持措施对径流量的影响。
     首先,论文在查阅国内外研究成果的基础上,对生态水文相互作用、生态水文模拟、植被生态用水和水土保持措施的水文效应等研究现状进行整理总结,对黄土高原生态水文研究现状进行了分析,提出了黄土高原生态水文模拟和植被生态用水计算等研究中存在的问题。
     其次,以生态水文模型RHESSys为基础构建黄土高原流域生态水文模型,结合黄土高原实际情况对模型进行修改,包括增加影响黄土高原水循环的水土保持工程模块和大流域模型需要的河道径流演算模块、水库调度模块等。以黄土高原泾河流域为例,应用分布式生态水文模型RHESSys进行生态水文模拟,经过对径流、净初级生产力和叶面积指数的验证,证明了模型在泾河流域的适用性。将生态水文模型和分布式水文模型WEP-L(Water and Energy transfer Processes in Large basin)进行在泾河流域的模拟对比,分析生态水文模型在黄土高原大流域的应用效果和生态过程模拟对水文模拟的影响,并使用改进的GLUE (Generalized Likelihood uncertainty Estimation)方法研究对比模型参数不确定性。结果表明RHESSys模型可以应用于黄土高原大流域生态水文模拟,且反映了植被变化对流域径流、蒸散发和土壤水过程的影响,但其对汛期洪峰过程的模拟仍有待提高。
     然后,以黄土高原上经过治理的杨家沟和未治理的董庄沟两个对比小流域为例,利用分布式生态水文模型RHESSys,讨论人工林对流域径流、土壤水和生态系统健康的影响。结果表明,经过治理的杨家沟年径流量和径流模数减少,汛期径流量减少大于非汛期,两个流域表层土壤水含量相似,杨家沟深层土壤水和地下水补给量有减少趋势,杨家沟人工林生长指标净初级生产力(NPP)/生物量(Biomass)在治理初期减少,后趋于稳定,根据Budyko曲线,两个流域都处于水分限制状态,杨家沟经过40年治理,达到生态水文平衡状态。
     最后,提出了基于生态水文过程的植被生态用水计算方法,以黄土高原泾河流域为例,计算了泾河流域1981-2010年各植被类型植被生态用水变化及年内分配,利用生态水文模型不同情景分析了上世纪80年代以来泾河流域各项水土保持措施变化及其对流域径流的影响,结果表明水土保持措施造成多年平均径流量减少,且水土保持措施的影响逐渐增大。根据研究结果对今后黄土高原流域水土流失治理措施提出了建议。
     本文主要创新点有以下几个方面:(1)在生态水文模型RHESSys中增加影响黄土高原水循环过程的工程措施,构建完整的黄土高原生态水文模型,实现生态水文模型在黄土高原大流域上的第一次应用。(2)基于生态水文模型分析了人工林生长过程的生态水文影响,提出了多个人工林生长状态的判断指标,揭示了黄土高原流域的水分限制关系(3)提出了基于生态水文过程的植被生态用水计算方法,总结了泾河流域植被生态用水时空变化规律。(4)基于生态水文模拟,定量分析了泾河流域水土保持措施对径流的影响作用。
     本文研究成果不仅在流域生态水文过程模拟研究、黄土高原生态水文相互作用机理等科学问题上具有重要意义,而且对正确评估水土保持措施效应,支撑流域水土保持和生态建设措施科学配置,建立科学的生态建设体系等方面具有重要作用。
Eco-hydrological process is one of the most important processes in the nature, impacting water balance, ecosystem health and human activities in the basin. The loess Plateau is an area with serious water and soil loss and fragile ecosystem because of its unique geographic condition and historical human activities. According to the practice requirement of ecosystem repair and water resources management right now, the eco-hydrological simulation application in large basins is the bottleneck in basin level eco-hydrological researches.
     This paper presents an application of biophysical based distributed eco-hydrological model system based on RHESSys (Regional Hydro-Ecological Simulation System) in the Jinghe River Basin of Loess Plateau. The ecological simulation and parameters' uncertainties of the model were tested and the model applications of two spatial levels were conducted in the Jinghe River Basin. Based on the eco-hydrological model, the vegetation ecological water use and the water and soil conservation effects on stream flow were calculated and evaluated.
     First, a review of researches on eco-hydrological interactions, eco-hydrological simulations, vegetation ecological water use and water and soil conservation effects on hydrology wascarried out based on present global researches results. The main researches shortages of the eco-hydrological simulation and vegetation ecological water use in the Loess plateau were addressed, and the theories and approaches of eco-hydrological interaction simulations were evaluated.
     Second, the eco-hydrological model were constructed based on RHESSys with several modification according to realities of the Loess Plateau, including adding stream routing module, reservoir operation module and soil and water conservation modules. The eco-hydrological model and distributed hydrological model Water and Energy transfer Processes in Large basin (WEP-L) were both applied in the Jinghe River Basin to evaluate the hydrological simulation results and ecological simulation effects on hydrological simulation, and the Generalized Likelihood uncertainty Estimation (GLUE) approach were used to evaluate the parameters uncertainties of both models. The results shows that RHESSys model can applied in big basin of the Loess Plateau and reflect the vegetation dynamic effects on hydrological processes, and improve the base flow simulation precision, but the simulation precision on flood season need to be improved.
     Third, eco-hydrological model RHESSys was applied in two pair catchments in the Jinghe River Basin, one of which was reforested since1950s and the other one wasn't. The reforestation effects on runoff, soil moisture and ecosystem were evaluated and discussed. The results showed the runoff of reforested catchment is smaller than the control catchment, and the runoff differences are larger in the flood season. The deep soil moisture and ground water recharge of the reforested catchment were less than the control catchment. The Net Primary Production (NPP)/BOIMASS of reforested catchment decreased at first, then became stable. According to the Budyko curves of both catchments, this area is water limited. The reforested catchment reaches its eco-hydrological stable after about40years since reforestation.
     At last, an approach of vegetation ecological water use calculation based on eco-hydrological processes was proposed. The vegetation ecological water use of Jinghe River Basin was calculated and analyzed by this approach. The soil and water conservation effects on stream flow were evaluated by eco-hydrological model. The results showed that the soil and water conservation decrease the.stream flow, and the effects increase by time.
     The main innovations of this paper are:(1) modifing eco-hydrological model to apply in large basins;(2) proposing a method to distinguish eco-hydrological stable of artificial forest growth, evaluated the eco-hydrological effects of artificial forest, and revealing the water limitation situation of the Loess Plateau;(3) proposing a vegetation ecological water use calculation method, and analyzing the vegetation ecological water use of the Jinghe River Basin spatially and temporally.
     This research is of great importance not only in eco-hydrological simulation, but also in effect evaluation of soil and water conservation, and supporting ecological construction and water resources planning.
引文
[1]BAIRD A J, WILBY R L. Eco-Hydrology[M]. Taylor & Francis,1999.
    [2]CHAPIN Ⅲ F S, MOONEY H A, MATSON P. Principles of Terrestrial Ecosystem Ecology[M]. Springer,2002.
    [3]杨爱民,唐克旺,王浩,et al.生态用水的基本理论与计算方法[J]. JOURNAL OF HYDRAULIC ENGINEERING,2004(12):39-45.
    [4]严登华,何岩,邓伟,et al.生态水文学研究进展[J]. SCIENTIA GEOGRAPHICA SINICA,2001, 21(5):773-778.
    [5]RODRIGUEZ-ITURBE I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamies[J]. Water Resources Research,2000,36(1):3-9.
    [6]夏军,丰华丽,谈戈,et al.生态水文学——概念、框架和体系[J]. JOURNAL OF IRRIGATION AND DRAINAGE,2003,22(1):4-10.
    [7]中国科学院碳循环项目办公室.中国陆地生态系统通量观测网络研究进展[J]. RESOURCES SCIENCE,2005,27(1):1.
    [8]孙晓敏,袁国富,朱治林,et a1.生态水文过程观测与模拟的发展与展望[J]. PROGRESS IN GEOGRAPHY,2010,29(11):1293-1300.
    [9]李新,刘绍民,马明国,et a1.黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-499.
    [10]陈腊娇,王力哲.遥感在生态水文模型中的应用进展[J].气候变化研究快报,2012(1):106-112.
    [11]MAUSER W, SCHADLICH S. Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data[J]. Journal of Hydrology,1998,212-213:250-267.
    [12]凌峰.基于空间信息技术的流域分布式水文模型研究[D].2006.
    [13]于德永,潘耀忠,姜萍,et al.东亚地区植被净第一性生产力对气候变化的时空响应[J].北京林业大学学报,2005,27(增刊2):96-101.
    [14]信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学D辑地球科学,2007,37(11):1504-1514.
    [15]BAND L E, PATTERSON P, NEMANI R, et al. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology[J]. Agricultural and Forest Meteorology,,1993(63):93-126.
    [16]TAGUE C L, BAND L E. RHESSys:Regional Hydro-Ecologic Simulation System—An Object-Oriented Approach to Spatially Distributed Modeling of Carbon,Water, and Nutrient Cycling[J]. Earth Interactions,2004,8(19):1-42.
    [17]CHRISTENSEN L, TAGUE C L, BARON J S. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem[J]. Hydrological Processes,2008, 22(18):3576-3588.
    [18]BAND L E, TAGUE C L, BRUN S E, et al. Modelling Water sheds as spatial object hierarchies: structure and dynamics[J]. Transactions in GIS,2000,4(3):181-196.
    [19]TAGUE C. Application of the RHESSys model to a california semiarid shrubland watershed[J]. JAWRA Journal of the American Water Resources Association,2004,40(3):575-589.
    [20]JEFFERSON A, NOLIN A, LEWIS S, et al. Hydrogeologic controls on streamflow sensitivity to climate variation[J]. Hydrological Processes,2008,22(22):4371-4385.
    [21]VERTESSY R A, HATTON T J, BENYON R G, et al. Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration[J]. Tree Physiology,1996,16(1-2):221-232.
    [22]WATSON F G R, VERTESSY R A, GRAYSON R B. Large-scale modelling of forest hydrological processes and their long-term effect on water yield[J]. Hydrological Processes,1999,13(5): 689-700.
    [23]JIA Y, NI G, KAWAHARA Y, et al. Development of WEP model and its application to an urban watershed[J].2001.
    [24]JIA Y, WANG H, ZHOU Z, et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin [J]. Journal of Hydrology,2006, 331(3-4):606-629.
    [25]LAWRENCE D M, OLESON K W, FLANNER M G, et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems,2011,3(1):n/a-n/a.
    [26]LIANG XU L D P. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research,1994,99(7):14415-14428.
    [27]ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large Area Hydrologic Modeling and Assessment Part Ⅰ:Model Developmentl[J]. JAWRA Journal of the American Water Resources Association,1998,34(1):73-89.
    [28]杨大文,雷慧闽,丛振涛.流域水文过程与植被相互作用研究现状评述[J].水利学报,2010,41(10):1142-1149.
    [29]EAGLESON P S. Climate, soil, and vegetation:3. A simplified model of soil moisture movement in the liquid phase[J]. Water Resources Research,1978,14(5):722-730.
    [30]KERKHOFF A J, MARTENS S N, MILNE B T. An ecological evaluation of Eagleson's optimality hypotheses[J]. Functional Ecology,2004,18(3):404-413.
    [31]RODRIGUEZ-ITURBE I, D'ODORICO P, PORPORATO A, et al. On the spatial and temporal links between vegetation, climate, and soil moisture[J]. Water Resources Research,1999,35(12): 3709-3722.
    [32]FARQUHAR G D. Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase[J]. Archives of Biochemistry and Biophysics,1979,193(2):456-468.
    [33]刘昌明,杨胜天,温志群,et al.分布式生态水文模型EcoHAT系统开发及应用[J].中国科学E辑技术科学,2009,39(6):1112-1121.
    [34]EAGLESON P S. Ecohydrology:Darwinian expression of vegetation form and function[M]. Cambridge University Press,2002.
    [35]SCHYMANSKI S J, SIVAPALAN M, RODERICK M L, et al. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance[J]. Water Resources Research, 2009,45(1):n/a-n/a.
    [36]汤奇成.绿洲的发展与水资源的合理利用[J].干旱区资源与环境,1995,9(3):107-112.
    [37]左其亭.干旱半干旱地区植被生态用水计算[J].水土保持学报,2002,16(3):114-117.
    [38]杨志峰,崔保山,刘静玲.生态环境需水量评估方法与例证[J].中国科学D辑地球科学,2004,34(11):1072-1082.
    [39]王芳,梁瑞驹,杨小柳,et al.中国西北地区生态需水研究(1)——干旱半干旱地区生态需水理论分析[J].自然资源学报,2002,17(1):1-8.
    [40]王芳,王浩,陈敏建,et al.中国西北地区生态需水研究(2)——基于遥感和地理信息系统技术的区域生态需水计算及分析[J].自然资源学报,2002,17(2):129-137.
    [41]张杰,高雪峰,王润元.生态用水的估算方法研究和问题探讨[J].干旱气象,2008,26(2):12-16.
    [42]杨志峰,姜杰,张永强.基于MODIS数据估算海河流域植被生态用水方法探讨[J].环境科学学报,2005,25(4):449-456.
    [43]MONTEITH J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology,1965,19:205-234.
    [44]黄奕龙,陈利顶,傅伯杰,et al.黄土丘陵小流域生态用水试验研究--气候和土地利用变化的影响[J].水科学进展,2006,17(1):14-19.
    [45]王让会,于谦龙,李凤英,et al.基于生态水文学的新疆绿洲生态用水若干问题[J].水土保持通报,2005,25(5):100-104.
    [46]HE X, LI Z, HAO M, et al. Down-scale analysis for water scarcity in response to soil-water conservation on Loess Plateau of China[J]. Agriculture, Ecosystems & Environment,2003,94(3): 355-361.
    [47]SHANGGUAN Z P, ZHENG S X. Ecological properties of soil water and effects on forest vegetation in the Loess Plateau [J]. International Journal of Sustainable Development & World Ecology,2006,13(4):307-314.
    [48]CHEN L, WEI W, FU B, et al. Soil and water conservation on the Loess Plateau in China:review and perspective[J]. Progress in Physical Geography,2007,31(4):389-403.
    [49]穆兴民.黄土高原水土保持对河川径流及土壤水文的影响[D].西北农林科技大学,2002.
    [50]BOSCH J M, HEWLETT J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology,1982,55(1-4): 3-23.
    [51]ZHANG X, YU X, WU S, et al. Response of land use/coverage change to hydrological dynamics at watershed scale in the Loess Plateau of China[J]. Acta Ecologica Sinica,2007,27(2):414-421.
    [52]HUANG M, ZHANG L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China[J]. Hydrological Processes,2004,18(10):1885-1898.
    [53]HE H, ZHOU J, ZHANG W. Modelling the impacts of environmental changes on hydrological regimes in the Hei River Watershed, China[J]. Global and Planetary Change,2008,61(3-4): 175-193.
    [54]ZHANG X P, ZHANG L, MCVICAR T R, et al. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China[J]. Hydrological Processes,2008,22(12): 1996-2004.
    [55]QIU Y, JIA Y, ZHAO J, et al. Valuation of Flood Reductions in the Yellow River Basin under Land Use Change[J]. Journal of Water Resources Planning and Management,2010,136(1):106-115.
    [56]胡良军,邵明安.黄土高原植被恢复的水分生态环境研究[J].应用生态学报,2002,13(8):1046-1048.
    [57]王军,傅伯杰,邱扬,et a1.黄土丘陵区土地利用与土壤水分的时空关系[J].自然资源学报,2001,16(6):521-525.
    [58]黄奕龙,陈利顶,傅伯杰,et al.黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响[J].第四纪研究,2003,23(3):334-342.
    [59]李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    [60]谭勇,王长如,梁宗锁,et al.黄土高原半干旱区林草植被建设措施[J].草业学报,2006,15(4):4-11.
    [61]王云强.黄土高原地区土壤干层的空间分布与影响因素[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2010.
    [62]侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999(5):11-14.
    [63]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-84.
    [64]孙长忠,黄宝龙,陈海滨,et al.黄土高原人工植被与其水分环境相互作用关系研究[J].中国林业大学学报,1998,20(3):7-14.
    [65]张宝庆,吴普特,赵西宁.近30a黄土高原植被覆盖时空演变监测与分析[J].农业工程学报,2011,27(4):287-294.
    [66]陈操操,谢高地,霖甄,et al.泾河流域植被覆盖动态变化特征及其与降雨的关系[J].生态学报,2008,28(3):925-938.
    [67]索安宁于波.泾河流域植被景观格局对流域径流的调节作用[J].水土保持学报,2005,19(4):13-34.
    [68]宋富强,康慕谊,陈雅如,et al.陕北黄土高原植被净初级生产力的估算[J].生态学杂志,2009,28(11):2311-2318.
    [69]李海光.黄土高原吕二沟流域环境演变的生态水文响应[D].北京林业大学,2011.
    [70]莫兴国,林忠辉,刘苏峡.气候变化对无定河流域生态水文过程的影响[J].生态学报,2007.
    [71]王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].北京林业大学,2007.
    [72]王凯博.黄土丘陵区燕沟流域植被生态特征及其生产力形成过程模拟[D].中国科学院教育部水土保持与生态环境研究中心,2011.
    [73]张淑兰.土地利用和气候变化对流域水文过程影响的定量评价[D].中国林业科学院,2011.
    [74]莫非.六盘山洪沟小流域森林植被的水文影响与模拟[D].中国林业科学院,2008.
    [75]TAGUE C, HEYN K, CHRISTENSEN L. Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems [J]. Ecohydrology,2009,2(4):541-554.
    [76]TAGUE C, BAND L. Simulating the impact of road construction and forest harvesting on hydrologic response[J]. Earth Surface Processes and Landforms,2001,26(2):135-151.
    [77]MACKAY D.S. Evaluation of hydrologic equilibrium in a mountainous watershed:incorporating forest canopy spatial adjustment to soil biogeochemical processes [J]. Advances in Water Resources, 2001,24(9):1211-1227.
    [78]MITCHELL S W, CSILLAG F, TAGUE C. Impacts of Spatial Partitioning in Hydroecological Models:Predicting Grassland Productivity with RHESSys[J]. Transactions in GIS,2005,9(3): 421-442.
    [79]LANDRUM L, TAGUE C, BARON J S. Modeling hydrologic and biogeochemical processes in Loch Vale watershed using the regional hydroecological simulation system (rhessys)[C]//Alpine, TX,:2002.
    [80]TAGUE C, GRANT G, FARRELL M, et al. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades[J]. Climatic Change,2008,86(1):189-210.
    [81]THORNTON P E T. Regional ecosystem simulation:Combining surface and satellite based observations to study linkages between terrestrial energy and mass budgets[D]. Missoula: UNIVERSITY OF MONTANA,1998.
    [82]CHEN J., LIU J, CIHLAR J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J], Ecological Modelling,1999,124(2-3):99-119.
    [83]RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. [J]. Ecology Model,1988(42):125-154.
    [84]CHEN J M, RICH P M, GOWER S T, et al. Leaf area index of boreal forests:Theory, techniques, and measurements [J]. Journal of Geophysical Research:Atmospheres,1997,102(D24): 29429-29443.
    [85]NORMAN J. Biometeorology in integrated pest management:proceedings of a conference on Biometeorology and Integrated Pest Management held at the University of California, Davis, July 15-17,1980[C]//Simulation of microclimates. Academic Press,1982.
    [86]HADDELAND I, LETTENMAIER D P. Hydrologic Modeling of Boreal Forest Ecosystems[M]. University of Washington,1995.
    [87]OKE T R. Boundary Layer Climates[M]. Routledge,2002.
    [88]JARVIS P G. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1976,273(927):593-610.
    [89]RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecological Modelling,1988,42(2):125-154.
    [90]CLAPP R B, HORNBERGER G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research,1978,14(4):601-604.
    [91]VANGENUCHTEN M T, NIELSEN D R. Describing and predicting the hydraulic properties of unsaturated soils[J]. Ann Geophys,1985,3(5):615-627.
    [92]WILLIAMS T G, FLANAGAN L B. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum[J]. Oecologia,1996,108(1):38-46.
    [93]WARING R H, RUNNING S W. Forest Ecosystems:Analysis at Multiple Scales[M]. Elsevier, 2010.
    [94]RYAN M G. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems[J]. Tree Physiology,1991,9(1-2):255.
    [95]LANDSBERG J J, WARING R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning [J]. Forest Ecology and Management,1997,95(3):209-228.
    [96]DICKINSON R E, SHAIKH M, BRYANT R, et al. Interactive canopies for a climate model[J]. Journal of Climate,1998,11(11):2823-2836.
    [97]ABER J D, MELILLO J M. Terrestrial ecosystems[M]. Harcourt Academic Press,2001.
    [98]PARTON W, MOSIER A, OJIMA D, et al. Generalized model for N-2 and N2O production from nitrification and denitrification[J]. GLOBAL BIOGEOCHEMICAL CYCLES,1996,10(3): 401-412.
    [99]GOLD A J, GROFFMAN P M, ADDY K, et al. Landscape Attributes as Controls on Groithd Water Nitrate Removal Capacity of Riparian Zonesl[J]. JAWRA Journal of the American Water Resources Association,2001,37(6):1457-1464.
    [100]PHILIP J R. The theory of infiltration:1. The infiltration equation and its solution[J]. Soil science, 1957,83:345-357.
    [101]MANLEY R E. The soil moisture component of mathematical catchment simulation models[J]. Journal of Hydrology,1977,35(3-4):341-356.
    [102]GREEN W H, AMPT G A. Studies on Soil Physics:1. Flow of air and water through soils[J]. Journal of Agricultural Science,1911,4:1-24.
    [103]MCDONNELL J J. A Rationale for Old Water Discharge Through Macropores in a Steep, Humid Catchment[J]. Water Resources Research,1990,26(11):2821-2832.
    [104]WIGMOSTA M S, VAIL L W, LETTENMAIER D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research,1994,30(6):1665-1679.
    [105]KELLIHER F M, BLACK T A, PRICE D T. Estimating the effects of understory removal from a Douglas Fir forest using a two-layer canopy evapotranspiration model[J]. Water Resources Research,1986,22(13):1891-1899.
    [106]HARTMAN M D, BARON J S, LAMMERS R B, et al. Simulations of snow distribution and hydrology in a mountain basin[J]. Water Resources Research,1999,35(5):P.1587.
    [107]LARAMIE R L, SCHAAKE J D. Snow; Mathematical models; Data processing[M]. Cambridge: Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology,1972.
    [108]CROLEY T. Veritable evaporation modeling on the Laurentian Great Lakes.[J]. Water Resour. Res., 1989,25(781-792).
    [109]DINGMAN S L. Physical Hydrology[M]. Waveland PressInc,2008.
    [110]COUGHLAN J C, RUNNING S W. Regional ecosystem simulation:A general model for simulating snow accumulation and melt in mountainous terrain[J]. Landscape Ecology,1997,12(3): 119-136.
    [111]DUNNE T, LEOPOLD L B. Water in Environmental Planning [M]. W. H. Freeman,1978.
    [112]BEVEN K J, KINIRY M J. A physically based, variable contributing area model of basin hydrology /Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant[J]. Hydrological Sciences Bulletin,1979,24(1):43-69.
    [113]QUINN P, BEVEN K, CHEVALLIER P, et al. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models[J]. Hydrological Processes,1991,5(1):59-79.
    [114]WEMPLE B C, JONES J A, GRANT G E. Channel Network Extension by Logging Roads in Two Basins, Western Cascades, Oregonl[J]. JAWRA Journal of the American Water Resources Association,1996,32(6):1195-1207.
    [115]LUCE C H, HOLDEN Z A. Declining annual streamflow distributions in the Pacific Northwest United States,1948-2006[J]. Geophysical Research Letters,2009,36:1-6.
    [116]PETERS D L, BUTTLE J M, TAYLOR C H, et al. Runoff Production in a Forested, Shallow Soil, Canadian Shield Basin[J]. Water Resources Research,1995,31(5):1291.
    [117]CHOU V T, MAIDMENT D R, MAYS L W. Applied hydrology[M]. New York:McGraw-Hill, 1988.
    [118]WHITE M A, THORNTON P E, RUNNING S W, et al. Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial Ecosystem Model:Net Primary Production Controls[J]. Earth Interactions,2000,4(3):1-85.
    [119]HUI P, YANGWEN J, YAQIN Q, et al. The Eco-hydrologcial Evolution Law of Natural Vegetation in Haihe River Basin[J]. Procedia Environmental Sciences,2011,10, Part C(0):2240-2246.
    [120]汪岗,范昭.黄河水沙变化研究(第二卷)[M].郑州:黄河水利出版社,2002.
    [121]JIA Y W, TAMAI N. Integrated analysis of water and heat balance in Tokyo metropolis with a distributed model[J]. J. Japan Soc. Hydrol. Water Resour,1998,11(1):150-163.
    [122]JIA Y, KINOUCHI T, YOSHITANI J. Distributed Hydrologic Modeling in a Partially Urbanized Agricultural Watershed Using Water and Energy Transfer Process Model [J]. Journal of Hydrologic Engineering,2005,10(4):253-263.
    [123]JIA Y, NI G, YOSHITANI J, et al. Coupling Simulation of Water and Energy Budgets and Analysis of Urban Development Impact[J]. Journal of Hydrologic Engineering,2002,7(4):302-311.
    [124]KIM H, NOH S, JANG C, et al. MONITORING AND ANALYSIS OF HYDROLOGICAL CYCLE OF THE CHEONGGYECHEON WATERSHED IN SEOUL, KORE[C]//Proceedings of the 2005 International Conference on Simulation and Modeling. Nakornpathom, Thailand:2005.
    [125]PENG H, JIA Y, QIU Y, et al. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau. China[J]. Hydrological Sciences Journal,2013,58(3):651-670.
    [126]BEVEN K, BINLEY A. The future of distributed models:Model calibration and uncertainty prediction [J]. Hydrological Processes,1992,6(3):279-298.
    [127]卫晓婧,熊立华,万民,et al.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J].水利学报,2009,40(4):464-474.
    [128]VAN DIJK A I J M, KEENAN R J. Planted forests and water in perspective [J]. Forest Ecology and Management,2007,251(1-2):1-9.
    [129]DUFFY P D, URSIC S J. Land rehabilitation success in the Yazoo basin, USA[J]. Land Use Policy, 1991,8(3):196-205.
    [130]SUN G, ZHOU G, ZHANG Z, et al. Potential water yield reduction due to forestation across China[J]. Journal of Hydrology,2006,328(3-4):548-558.
    [131]YU P, WANG Y, WU X, et al. Water yield reduction due to forestation in arid mountainous regions, northwest China[J]. International Journal of Sediment Research,2010,25(4):423-430.
    [132]WANG L, WANG Q, WEI S, et al. Soil desiccation for Loess soils on natural and regrown areas[J]. Forest Ecology and Management,2008,255(7):2467-2477.
    [133]KHURANA E, SINGH J s. Ecology of seed and seedling growth for conservation and restoration of tropical dry forest:a review[J]. Environmental Conservation,2001,28(01):39-52.
    [134]MOHAMED M A A, BABIKER I S, CHEN Z M, et al. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP)[J]. Science of The Total Environment,2004,332(1-3):123-137.
    [135]YOSHIFUJI N, KUMAGAI T, TANAKA K, et al. Inter-annual variation in growing season length of a tropical seasonal forest in northern Thailand[J]. Forest Ecology and Management,2006, 229(1-3):333-339.
    [136]MARCOLLA B, CESCATTI A, MANCA G, et al. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow[J]. Agricultural and Forest Meteorology,2011,151(9):1233-1243.
    [137]DJAVANSHIR K, REID C PP. Effect of Mbisture Stress on @rmination and Radicle Development of Pinus eldarica Medw. and Pinus ponderosa Laws.[J]. Canadian Journal of Forest Research,1975, 5(1):80-83.
    [138]SU-SEE L. Forest health in plantation forests in south-east asia[J]. Australasian Plant Pathology, 1999,28(4):283-291.
    [139]ZAMITH L R, SCARANO F R. Restoration of a Restinga Sandy Coastal Plain in Brazil:Survival and Growth of Planted Woody Species[J]. Restoration Ecology,2006,14(1):87-94.
    [140]HOU Q, HAN R, LI H. On the problem of vegetation reconstruction in the Yan'an Experimental area[J]. Research of Soil and Water Conservation,2000,7(2):102-110.
    [141]WU Q, YANG W. Vegetation construction and sustainable development on the Loess Plateau in China[M]. Beijing:Science Press,1998.
    [142]VAN DIJK A I J M, HAIRSINE P B, ARANCIBIA J P, et al. Reforestation, water availability and stream salinity:A multi-scale analysis in the Murray-Darling Basin, Australia[J]. Forest Ecology and Management,2007,251(1-2):94-109.
    [143]JASKIERNIAK D. Modelling the effects of forest regeneration on streamflow using forest growth models[D]. University of Tasmania,2011.
    [144]LI Y. Experimental study on parameter-distribution of soil water movement in Nanxiaohegou basin[D]. Xi'an:Xi'an University of Technology,2007.
    [145]NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part Ⅰ—A discussion of principles[J]. Journal of Hydrology,1970,10(3):282-290.
    [146]HIRSCH R M, SLACK J R. A Nonparametric Trend Test for Seasonal Data With Serial Dependence[J]. Water Resources Research,1984,20(6):727-732.
    [147]WANG Q, WATANABE M, OUYANG Z. Simulation of water and carbon fluxes using BIOME-BGC model over crops in China[J]. Agricultural and Forest Meteorology,,2005(131): 209-224.
    [148]DOU L, HUANG M, HONG Y. Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China[J]. Water Resources Management,2009,23(10):1935-1949.
    [149]ZHANG L, DAWES W R, WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research,2001,37(3):701-708.
    [150]ZHANG L, POTTER N, HICKEL K, et al. Water balance modeling over variable time scales based on the Budyko framework-Model development and testing[J]. Journal of Hydrology,2008, 360(1-4):117-131.
    [151]LI Y. The properties of water cycle in soil and their effect on water cycle for land in the Loess Plateau.[J]. Acta Ecologica Sinica,1983,3(2):91-101.
    [152]HUANG T, PANG Z. Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles:a case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal,2011,19(1):177-186.
    [153]TIAN H, CHEN G, LIU M, et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007[J]. Forest Ecology and Management,2010,259(7):1311-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700