用户名: 密码: 验证码:
煤层气提浓耦合工艺及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天然气消费量的逐年升高,天然气价格不断上涨,煤层气作为补充能源越来越受到重视。煤层气应用的主要途径是作为燃料或者发电,煤层气的利用必须经过提浓。目前,煤层气分离普遍是单独使用某种气体分离工艺,但每种工艺均有各自的优缺点,单独使用时难以做到最优,导致能耗高或投资成本大,严重制约了煤层气的回收和利用。
     本文针对目前煤层气提浓工艺存在的问题,将常用的膜分离、变压吸附和深冷分离三种工艺进行耦合用于煤层气的提浓,以能耗和投资之和的总费用最小为目标进行优化。主要包括四个方面的内容:工艺路线优化选择理论、常用的三种分离单元(膜分离、变压吸附和深冷分离)的分离特性研究、分离单元能耗和投资计算方法的研究,在此基础上建立了煤层气提浓耦合工艺优化的理论方法。
     文中应用煤层气提浓耦合工艺的理论方法构建了常用的三种分离单元的流程模拟模型、能耗模型和投资模型。采用流程模拟软件和分离模块相结合的方法建立了三种分离单元的全流程模拟模型。借助全流程模拟模型的计算结果,采用加权平均法构建三种分离单元的能耗计算模型。采用精度较高的逐台设备投资计算方法,调用不同种类的单元设备投资模块计算出每台设备的投资,最后采用“加和法”得到整个单元的投资。该方法实现了单元装置投资的“积木式”计算,使得煤层气投资计算的精度大大提高。
     采用“三步法”实现煤层气工艺耦合的优化选择:第一步是构建三种气体分离工艺的流程模拟模型,第二步是构建单个分离装置的能耗和投资模型,第三步是采用数学规划法对各变量求解。应用该方法编制了一套可以用于煤层气提浓耦合工艺优化的计算机软件。输入煤层气基础条件,通过优化计算可以得到煤层气提浓耦合工艺的配置,同时可以使用该软件对几个主要变量进行工况分析,用于煤层气提浓工艺的决策。
     利用该煤层气提浓耦合工艺优化的计算机软件,对已知煤层气进行了工艺优化,结果显示,与单种工艺进行对比,耦合工艺在总费用方面显示出明显优势。使用该软件对煤层气提浓工艺所涉及的四个主要变量进行了工况分析,给出了各变量对耦合工艺流程配置的影响程度。四个主要操作参数对工艺路线和总费用的影响程度强弱顺序为:原料气压力>原料气浓度>产品纯度>产品回收率。
     创立的能耗指数(ECI)可以替代总费用间接评估气体分离装置的能效。该指标可以大幅度降低计算工作量,适用于快速评定煤层气提浓工艺路线的优劣。
With the increase of natural gas comsuption, the price of it becomes higher and higher.The coal bed methane (CBM) obtains more and more attention as a supplementary energy.The main application of CBM is as a fuel using for power generation. Before the use of CBM,it must be enriched. The common way for CBM separation is using single gases separationprocess. However, it‘s high energy comsuption and investment restricts the recovery andutilization of CBM seviously.
     Aiming at solving the problems of CBM separation technologies, this study is focused onthe combination of membrane separation, pressure swing adsorption and the cryogenicseparation for CBM separation process. The key point of this study is the design andoptimization of combined process through optimizing energy consumption and the total cost ofthe investment. The optimization method of integration process of CBM separation in thisthesis includes four aspects: the selection of optimization process route, separationcharacteristics of three separation units (membrane separation, pressure swing adsorption andcryogenic separation), energy consumption and investment calculation method of the threeseparation units and the theory of coal bed methane separation optimization process.
     Based on the theory of CBM concentration, it was built that the process simulationmodel, energy cost model and investment model of membrane, pressure swing adsorption(PSA) and cryogenic separation. Using the combinative method of Aspen plus and separationmodule built the process simulation model of three separation units. Accoding to thesimulation results, three separation unit energy consumption model was built by the weightedaverage method. This method realized the―building block‖calculation of unit plantinvestment, which improved the calculation accuracy.
     In this study, the three-step method‘is used to achieve the optimal process of the CBM.The first step is to set up models of each gas separation module; the second step is to build theenergy consumption and the investment model of the single separation unit, and the third stepis to solve each variable by using the mathematical programming method. Based on themethod programing, we developed a software used in optimizing CBM concentrated couplingprocess. The configuration of the CBM integration separation can be obtained by inputingbasic parameters. At same time, the software can analysize major variables, which can use inCBM separation process‘s decision-making.
     The software was applied to optimize the certain CBM separation process. Resultsshowed that the coupling process was more superior to the single-process in terms of totalcost. Four working conditions parameters were analysized by this software and gave theeffects of variable. The strength order of the four main operating parameters of the processis:feed gas pressure> feed gas concentration> product purity> product recovery.
     Energy Comsumption Index (ECI) can evaluate the energy efficiency of gas separation.Using this standard could reduce computation greatly, which suitable for rapid assessment ofthe CBM concentration process route.
引文
[1]司光耀,蔡武,张强.国内外煤层气利用现状及前景展望[J].中国煤层气,2009,6(2):44-46
    [2]崔长春.煤层气开发利用前景诱人[J].天然气化工,2008,33(3):71-74
    [3]姚国欣,王建明.国外煤层气生产概况及对加速我国煤层气产业和效益分析[J].中国煤层气,2008,5(4):14-16
    [4]陈耀壮,廖炯,郑桁等.煤层气分离提浓技术研究进展.2010年中国天然气(含煤层气/煤制天然气)产业及系统管网建设发展论坛报告文集[C].北京:中国石油和石化工程研究会,2010:123-131
    [5] GB/T19204-2003液化天然气的一般特性[S].北京:中国国家标准化管理委员会,2003
    [6] GB/17820-2012.天然气的技术要求及检验规则[S].北京:中国国家标准化管理委员会,2012
    [7]林文胜,高婷,席芳,等.煤层气液化技术研究进展[J].制冷学报,2011,32(4):1-8
    [8]胡善霖,廖炯,曾健,等.一种煤层气焦炭碳脱氧方法[P]. CN1919986A,2007
    [9]胡善霖,陈耀壮,廖炯,等.富含甲烷气体的耐硫催化脱氧工艺[P]. CN101139239,2008
    [10]胡文励,陶鹏万,廖炯,等.含可燃性气体的混合气体催化脱氧工艺[P].CN101423783A,2009
    [11]陶鹏万,成雪清.一种冷却效率高的煤层气脱氧方法[J].中国煤层气,2008,5(3):34-37
    [12]郑志,徐晓瑞,张鹏宇,等.混空煤层气脱氧技术现状及展望[J].能源技术与管理,2009,(3):101-103
    [13] Richard W Baker,Kaacid A Lokhandwala,Johannes G Wijmans,et al. Tow stepprocess for nitrogen removal from natural gas[P]. US6425267B1,2002
    [14]方华东.孔狭缝及孔网络模型在炭膜气体分离中的应用[D].大连:大连理工大学,2007
    [15]辜敏,鲜学福.提高煤矿抽放煤层气甲烷浓度的变压吸附技术的理论研究[J].天然气化工,2006,31:6-10
    [16]辜敏,鲜学福.矿井抽放煤层气中甲烷的变压吸附提浓[J].重庆大学学报,2007,30(4):29-33
    [17]刘克万,辜敏,鲜学福.变压吸附浓缩甲烷/氮气中甲烷的研究进展[J].现代化工,2007,27(12):15-18
    [18]王长元,王正辉,陈孝通.低浓度煤层气变压吸附浓缩技术研究现状[J].矿业安全与环保,2008,35(6):70-72
    [19]郭璞,李明.煤层气中CH4/N2分离工艺研究进展[J].化工进展,2008,27(7):963-967
    [20] Simone Cavenati, Carlos A Grande, Alírio E. Rodrigues. Separation ofCH4/CO2/N2mixtures by layered pressure swing adsorption for upgrade of naturalgas[J]. Chemical En gineering,2006,61:3893-3906
    [21] Dong F.,Lou H.M,Kodama A.,et al. The process for separation of ternary gasmixtures:exeplification by Separating a mixture of CH4/CO2/N2[J]. Separation andPurificatio n technology,1999,16:159-166
    [22] Dong Fei,Lou Hongmei,Goto M.,et al. A new PSA process as an extension ofthe Petlyuk distillation concept [J]. Separation Purification Technology,1999,15:31-40.
    [23]辜敏,鲜学福,张代均,等.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报,2002,27(2):197-200
    [24]杨雄,刘应书,李永玲.基于活性炭的真空变压吸附提浓煤层气甲烷的实验研究[J].煤炭学报,35(6):987-991
    [25] James C M. Recovery of Hydrocarbon Components from a Hydrocarbon Carrier GasMixture[P]. US4305734,1981
    [26] Grande C.A.,Cavenati S.,Silva F.A.D.,et al. Carbon molecular sieves for hydrocarbonseparations by adsorption [J]. Industrial and Engineering Chemistry Research,2005,44(18):7218-7227
    [27] Ackley M.W., Yang R.T.. Kinetic Separation by Pressure Swing Adsorption:Method ofCharacteristics Model[J]. AIChE J,1990,36:1229-1238
    [28] Fatehi A.I., Loughlin K.F., Hassan M.M.. Separation of Methane-Nitrogen Mixtures byPressure Swing Adsorption using a Carbon Molecular Sieve[J]. Gas Separation.Purification.1995,9:199-204
    [29] Daiminger U; Lind W. Adsorption Processes for Natural Gas Treatment:A TechnologyUpdate; http://www.engelhard.com,2003
    [30]龚肇元,王宝林,陶鹏万,等.变压吸附法富集煤矿瓦斯气中甲烷[P]. CN85103557,1986
    [31]郑珩,陈耀壮,廖炯,等.煤层气脱氧制CNG/LNG技术开发[J].化工进展,2010,29:337-340
    [32]赵国锋,刘欣梅,代晓东,等.煤矿瓦斯气中低浓度CH4吸附富集研究[J].工业催化,2007,15(8):44-49
    [33]敖元.一种两端低压法煤层气生产天然气方法[P].中国:CN101096908A,2008
    [34] Olajossy A.,Gawdzik A.,Budner Z,et al. Methane separation from coal mine methanegas by vacuum pressures wing adsorption[J]. Trans IChemE,2003,81,PartA:474-482
    [35] Li Y., Meng,Y., Liu,Y. et al. A Novel VPSA Process for Ventilation Air MethaneEnrichment by Active Carbon[J]. Advanced Materials Research.2012,479-481:648-653
    [36]李红艳,贾林祥.煤层气液化技术[J].中国煤层气,2006,3(3):32-33
    [37]陶鹏万,王晓东,黄建彬.低温法浓缩煤层气中的甲烷[J].天然气化工,2005,30(4):43-46
    [38]孙可华.中科院理化所开发成功煤层气分离和液化工艺[J].国内外石油化工快报,2006,36(9):26-26
    [39]范庆虎,李红艳,尹全森,等.低浓度煤层气液化技术及其应用[J].天然气工业,2008,28(3):117-120
    [40] Brian R S.. Process for removing nitrogen from natural gas[P]. US4352685,1982
    [41] Ballard A L,Sloan E D. The Next Generation of Hydrate Prediction. An Overview [J].Journal of Supramolecular Chemistry,2002,(2):385-392
    [42]赵建忠,韩素平,石定贤,等.煤层气水合物技术的应用前景[J].矿业研究与开发,2005,25(5):40-43
    [43]周红军,杜武,郭绪强.一种煤层气分离利用新技术及市场应用分析[J].中国煤层气,2008,5(3):38-41
    [44] Sloan E.D.,Clathrate hydrates of natural gases[M].1997,New York: Marcel Dekker.
    [45] Wang Y.H.,Lang X.M.,Fan S.S.. Hydrate capture CO2from shifted synthesis gas,fluegas and natural gas[J],Journal of Energy Chemistry,2013,22:39–47
    [46] Li X.S.,Xia Z.M.,Chen Z.Y.,et al. Precombustion Capture of Carbon Dioxide andHydrogen with a One-Stage Hydrate/Membrane Process in the Presence ofTetra-n-butylammoniurn Bromide (TBAB)[J]. Energy&Fuels,2011.25(3):1302-1309
    [47] Linga P,Kumar R.,Lee J.D.. Ripmeester J.,Englezos P.,A new apparatus to enhancethe rate of gas hydrate formation: Application to capture of carbon dioxide[J].International Journal of Greenhouse Gas Control,2010.4(4):630-637.
    [48] Li X.S.,Xia Z.M.,Chen Z.Y.,et al. Gas Hydrate Formation Process for Capture ofCarbon Dioxide from Fuel Gas Mixture[J]. Industrial&Engineering ChemistryResearch,2010.49(22):11614-11619
    [49] Lee H.J.,Lee J.D.,Linga P.,et al. Gas hydrate formation process for pre-combustioncapture of carbon dioxide[J]. Energy,2010.35(6):2729-2733.
    [50]李士凤.基于水合物技术的燃煤电厂烟气中二氧化碳捕获研究[D].大连:大连理工大学,2010
    [51] Li S F,Fan S S,Wang J Q,Lang X M,Wang Y H. Semiclathrate Hydrate PhaseEquilibria for CO2in the Presence of Tetra-n-butyl Ammonium Halide (Bromide,Chloride,or Fluoride)[J]. J Chem EngData,2010,55:3212-3215
    [52] Li S F,Fan S S,Wang J Q,Lang X M,Liang D Q. CO2capture from binary mixturevia forming hydrate with the help of tetra-n-butyl ammonium bromide[J]. J NatGasChem,2009,18:15-20
    [53] Adeyemo A.,Kumar R.,Linga P.,Ripmeester J.,Englezos P.,Capture of carbon dioxidefrom flue or fuel gas mixtures by clathrate crystallization in a silica gel column[J].International Journal of Greenhouse Gas Control,2010.4(3):478-485.
    [54] Kang, S.P. and H. Lee, Recovery of CO2from flue gas using gas hydrate:Thermodynamic verification through phase equilibrium measurements [J].Environmental Science&Technology,2000.34(20):4397-4400.
    [55] Xia Z.-M.,Chen Z.-Y.,Li X.-S.,Zhang Y.,Yan K.-F.,Lv Q.-N.,Xu C.-G.,Cai J.Thermodynamic Equilibrium Conditions for Simulated Landfill Gas Hydrate Formationin Aqueous Solutions of Additives[J]. Journal of Chemical&Engineering Data,2012.57(11): p.3290-3295.
    [56]聂江华,基于水合物法分离天然气中二氧化碳研究[D].广州:华南理工大学,2012
    [57] Dabrowski N,Windmeier C,Oellrich L.R..Purification of Natural Gases with High CO2Content Using Gas Hydrates[J]. Energy&Fuels,2009.23:5603-5610.
    [58]聂江华,樊栓狮,郎雪梅,等.水合物法快速脱除天然气中二氧化碳[J],现代化工,2011,(30)S2:45-49
    [59]聂江华,樊栓狮,王燕鸿. TBAB水合物法脱除天然气中的CO2[J],化工进展,2011,(30)S:176-181
    [60] Linga P. Kumar R. Englezos P. The clathrate hydrate process for post andpre-combustion capture of carbon dioxide[J]. J Hazard Mater,2007,149:625-629
    [61] Linga P,Adeyemo A,Englezos P. Medium-pressure clathrate hydrate/membrane hybridprocess for postcombustion capture of carbon dioxide[J]. Environ Sci Technol,2008,42:315
    [62] Fan S S,Li S F,Wang J Q,Lang X M,Wang Y H. Efficient Capture of CO2fromSimulated Flue Gas by Formation of TBAB or TBAF Semiclathrate Hydrates[J]. Energy&Fuels,2009,23:4202-4208
    [63] Happel J,Hnatow M A,MeyerH. The study of separation nitrogen from methane byhydrate formation using a novel apparatus [J]. Annals ofthe New york Academy ofsciences,1994,715:364-380
    [64]马昌峰,王峰.水合物氢气分离技术及相关动力学研究[J].石油大学学报,2002,26(2):76-78
    [65]赵月红,许志宏,温浩,等.一种利用水合物进行煤层气富集和储运的方法及装置[P]. CN1873285A,2006
    [66] Van C.A., Diepen G.A.M.. Gas hydrates of nitrogen and oxygen[J]. Journal of the RoyalNetherlands Chemical Society Red. Trav. Chim. Pays-Bas,1960,79:582-586.
    [67] Deaton W.M.,Frost E.M.J. Gas hydrates and their relation to the operation of natural-gaspipe lines[M]. Bureau of Mines,Amarillo,TX (USA). Helium Research Center,1946.
    [68] Yuv R.M.. Utilizing the mehra process for processing and upgrading of nitrogen-richnatural g as streams[P]. US4623371,1986
    [69] Dwayne T F.,Walter C.B.,David J.E.,et al. Liquid of absorbent solutions for separatingnitrogen from natural gas[P]. US6136222,2000
    [70]彭琳.综合回收炼厂气中氢气及轻烃工艺的设计研究[D].大连:大连理工大学,2008
    [71]赵士华,一种煤层气浓缩方法[P]. CN200510047624.X,2005
    [72]郭正军,李辉,王树立.膜分离-变压吸附集成工艺脱除天然气中酸性气体[J].过滤与分离,2008,18(1):34-41
    [73]徐仁贤.气体分离膜应用的现状和未来[J].膜科学与技术,2003,24(4):123-128
    [74] Baker R W. Future direction of membranes separation technology [J]. Membr Technol,2001.138:5~10.
    [75]蒋国梁,徐仁贤,陈华.膜分离法与深冷法联合用于催化裂化干气的氢烃分离[J].石油炼制与化工,1995,26:26-29
    [76]高根煜.废气中烃类的排放控制和回收利用技术[J].工业安全与环保,2004,30:11-13
    [77]王学松.现代膜技术及其应用指南[M].北京:化学工业出版社,150-165
    [78]徐仁贤.气体分离膜应用的现状和未来[J].膜科学与技术,2003,24(4):123-128
    [79]金大天,曹义鸣,介兴明,等.多组分气体分离膜组件的数学模拟[J].石油化工,2008,37(10):1032-1038
    [80]王同华,李家刚,潘艳秋,等.碳分子筛膜气体分离机理模拟的研究进展[J].新型炭材料,2002,17(4):62-66
    [81]郑辉东,赵素英,王良恩.用正交配置法求解中空纤维气体膜分离过程的数学模型[J].计算机与应用化学,2005,22(1):69-72
    [82]张元秀,李贝贝,蔡培,等.气体膜分离数学模型建立及软件开发[J].计算机与应用化学,2008,25(2):137-140
    [83]王鹏宇,贺高红.气体膜分离过程HYSYS模拟系统的研究[D].大连:大连理工大学,2005
    [84]戴先知,刘应书.抽放煤层气变压吸附过程的数学模拟[J].低温与特性,2006,24(1):36-42
    [85]何东荣,周向辉,张东辉.利用ASPEN-ADSIM模拟变压吸附分离过程,2009,34(3):11-15
    [86]马正飞,刘晓勤,姚虎卿,等.吸附理论与吸附分离技术的进展[J].南京工业大学学报,2006,28(1):100-106
    [87] Warmuzinski K.,Sodzawiczny W. Effect of adsorption pressure on methane purityduring PSA separations of CH4/N2mixtures[J]. Chemical Engineering and Processing1999,(38):55–60
    [88]辜敏,鲜学福.提高煤矿抽放煤层气甲烷浓度的变压吸附技术的理论研究[J].天然气化工,2009,34(3):11-15
    [89]辜敏,陈昌国,鲜学福.抽放煤层气变压吸附过程的数学模拟[J].煤炭学报,2001,26(3):323-326
    [90]石玉美,杨敏之,鲁雪生,等.带丙烷预冷的混台制冷剂循环液化天然气流程的优化分析[J].天然气工业,2001,2l(2):l07-1l0
    [91]刘新伟,李海国,刘芙蓉.天然气液化流程模拟及其工艺计算[J].天然气工业,1999,(1):97-101
    [92]石玉美,汪荣顺,顾安忠,等.混合制冷剂循环液化天然气流程火用分析[J].工程热物理学报,2003,24(4):564-566
    [93]位雅莉.天然气液化工艺模拟与分析[D].成都:西南石油大学,2004
    [94]廖志敏.天然气液化流程模拟和优化[D].南充:西南石油学院,2005
    [95]孙恒,朱鸿梅,舒丹.一种低浓度煤层气低温液化分馏工艺的模拟与分析[J].低温技术,2009,37(8):21-23
    [96]季中敏,范庆虎,刘晓东.适合于低浓度煤层气的低温液化精馏浓缩的工艺流程模拟与分析.煤炭技术,2010,29(6):11-13
    [97]张高博,樊栓狮,华贲,等.适用于分馏塔改造的回流比优化方法[J].化工进展,2011,30:787-792
    [98] Lin W.S.,Gao T.,Gu A.Z.,et al. CBM nitrogen expansion liquefaction processes usingresidue pressure of nitrogen from adsorption separation [J]. Journal of Energy ResourcesTechnology-Transactions of the ASME,2010,132(3):0325011-0325016
    [99]林文胜,高婷,顾安忠,等.利用变压吸附余压预冷的煤层气氮膨胀液化工艺[P].CN200810038555.X,2010
    [100]王敬忠,段亚东,王西荣等.基于Excel规划求解器的轧制规程优化设计[J].特殊钢,2008,29(3):44-46
    [101]邱家学.中国邮递员问题的Excel求解[J].中小企业管理与科技,2010,(6):216-216
    [102] Qi R.H.,Michael A. Henson. Optimal design of spiral-wound membrane networks forgas separations[J]. Journal of Membrane Science,1998,148:71-89
    [103] Zhang G.B.,Fan S.S.,Lang X.M,et al. Process simulation research of CH4/N2separation. Advanced Materials Research[C].2011,403-408(1):585-592
    [104]大矢,晴彦著[日].分离的科学与技术[M].张谨译.北京:中国轻工业出版社,1999:7-9
    [105] Sun L.M.,Quere P.L.,Levan M.D.. Numerical simulation of diffusion-limited PSAprocess models by finite difference methods[J]. Chemical Engineering Science,1996,51(24):5341-5352
    [106] Kearns D.T.,Webley P.A.. Modelling and evaluation of dual-reflux pressure swingadsorption cycles[J]. Chemical Engineering Science,2006,61:7223–7233
    [107] Fatehi A.I.,Loughlin K.F.,Hassan M.M.,et al. Separation of CH4/CO2/N2mixturesby layered pressure swing adsorption for upgrade of natural gas[J]. Gas Separation&Purification.1995,9(3):199–204
    [107]高婷,林文胜,顾安忠.煤层气中含氮量对氮膨胀液化流程的影响[A].上海市制冷学会2007年学术年会论文集[C].上海:上海市制冷学会,2007:35-39
    [108]卢连连,朱启搢.浅谈设计阶段概算编制的方法与体会[J].中国水运,2011,11(9):123-124
    [109] He G.H.,Xu R.X.,Zhu B.L.. Mathematical model for hollow fiber membrane gasseparator[J]. Journal of Chemical Industry and Engineering(China),1994,45(2):162-167
    [110]辜敏,鲜学福.提高煤层气甲烷浓度的吸附剂的选择研究[J].矿业安全与环保,2006,33(3):11-16.
    [111]孙恒,朱红梅,舒丹.一种低浓度煤层气低温液化分馏工艺的模拟与分析[J].低温与超导,2009,37(8):21-23
    [112]葛玉林,杨洪源,沈胜强.夹点分析在原油常减压蒸馏换热网络的应用[J].热科学与技术,2007,6(2):101-105
    [113]钱颂文.换热器设计手册[M].北京:化学工业出版社,2006:27-30
    [114]晏水平,方梦祥,张卫风等.基于膜吸收技术的烟气CO2分离工艺设计[J].动力工程,2007,27(3):416-421
    [115] Zhang G.B,Fan S.S.,Hua B.,et al. Optimization strategy and procedure for coal bedmethane separation. Journal of energy chemistry,2013,22(3):533-541
    [116] CN GB/T50441-2007,石油化工工程设计能耗计算标准[S].北京:中国计划出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700