用户名: 密码: 验证码:
环氧树脂用潜伏型固化剂的合成及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂是一种非常重要的热固性树脂,具有优异的耐化学腐蚀性、力学性能、黏结性、绝缘性等,广泛应用于工业中。环氧树脂由环氧预聚物和固化剂经固化反应而成,环氧树脂预聚物在使用中离不开固化剂,不同结构固化剂的使用会影响环氧树脂固化物的应用性能。潜伏型固化剂的出现使环氧树脂的使用和固化工艺过程变得更为简便,并扩大了环氧树脂的应用范围。在众多潜伏型固化剂中,含硼潜伏型固化剂,如BF3-胺络合物、含胺硼酸酯,不但具有优秀的潜伏性,而且对提高环氧树脂固化物热稳定性具有重要贡献。本文合成了多种含胺硼酸酯,对其潜伏性和固化活性进行评价,系统研究了其固化动力学及其固化物的热降解过程。
     (1)采用硼酸、二甲基乙醇胺与不同的双羟基化合物反应,合成得到多种短链含胺硼酸酯,对其固化活性和潜伏性进行研究。在本文所合成的短链含胺硼酸酯中,由新戊二醇(NPG)、硼酸(BA)和二甲基乙醇胺(DMEA)等摩尔比反应合成的产物(NBD)具有较佳的的固化活性和潜伏性,其凝胶温度为150℃,并可与环氧预聚物E51混合后在60℃下稳定储存54天;DSC曲线显示,由NBD作为固化剂配制的单组份环氧树脂在室温常态下经过放置315天后,在200℃处出现明显的固化放热峰,表明其仍具有固化活性。
     (2)采用二甘醇、硼酸、乙二醇(或新戊二醇)、乙二酸(或己二酸)和二甲基乙醇胺反应制得不同结构的长链含胺硼酸酯,对其固化活性和潜伏性能进行比较研究。研究表明,与短链硼胺固化剂NBD相比,长链含胺硼酸酯的凝胶温度降低了10℃,固化活性得到提高。其中,采用新戊二醇、硼酸、二甲基乙醇胺、乙二醇和乙二酸等摩尔合成得到的固化剂具有较好的固化活性和潜伏性,凝胶温度为140℃,可在60℃下稳定储存6天,且经过60℃下5天的放置后,其DSC曲线仍在200℃左右有明显固化放热峰。
     (3)研究含胺硼酸酯NBD对环氧树脂预聚物的潜伏固化机制及固化动力学。恒温DSC表征以及恒温处理后样品的傅立叶红外光谱(FTIR)结果表明,当温度低于140℃,由于NBD其结构中的活性基团叔胺与硼原子形成络合结构而导致NBD的固化活性处于封闭状态,而当温度达到150℃后,NBD中硼胺络合结构解络合,固化活性得以恢复。且一旦固化反应开始进行,NBD对环氧树脂预聚物的固化速率明显高于DMEA。采用Avrami-Arrhenius方法以及Horowitz-Metzger方法对潜伏型固化剂NBD和显在型固化剂DMEA的固化动力学进行研究比较。单组份环氧树脂E51-NBD的固化反应表观活化能(Ea)大于E51-DMEA的Ea,说明E51-NBD的固化反应比E51-DMEA的固化反应难开始;E51-NBD的Avrami指数n的转折点对应着固化过程中固化机制的明显变化,n在170℃出现第一个转折点意味着体系凝胶点的到来,n在210℃出现第二个转折点,预示着固化反应的即将结束;Avrami-Arrhenius方法有助于判断环氧树脂固化体系的凝胶点,而Horowitz-Metzger方法可以预测固化完成阶段。
     (4)研究了含胺硼酸酯NBD和DMEA对环氧树脂固化物(分别记为E51/NBD和E51/DMEA)热稳定性的影响,并采用Horowitz-Metzger法对环氧树脂固化物热降解反应表观活化能(Ea’)进行了计算。结果表明,硼酸酯结构的引入有效提高了环氧树脂固化物的热稳定性。与E51/DMEA相比,E51/NBD(100/9)将环氧树脂固化物热失重为5%时的温度(T5)由356.5℃提高到405.4℃,900℃时的残炭率由3.0%提高到14.8%。固化剂NBD加入量对环氧树脂固化物的热稳定性有一定影响,当E51:NBD的质量比低于100:12时,E51/NBD的热稳定性随NBD加入量增加而提高;当E51:NBD的质量比高于100:12时,E51/NBD的热稳定性随NBD加入量增加变化不大,甚至略有下降。E51:NBD的质量比为100:12时,E51/NBD具有较佳的热稳定性,其T5为423.7℃, Ea’为350.3kJ/mol,900℃时的残炭率为17.4%。SEM结果表明,环氧树脂固化物(E51/NBD)经过高温900℃热降解后得到的残渣呈多孔状结构,且这种封闭状孔洞能够有效阻止材料与外层氧气接触和抑制分解过程中产生可燃气体的扩散。
     (5)将9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)结构引入含胺硼酸酯中,反应得到无卤阻燃含胺硼酸酯潜伏型固化剂(DBD),并对其固化活性、潜伏性、阻燃性、热稳定性进行了研究。结果表明,DOPO结构的引入使得DBD结构中有较大体积基团存在,一方面对叔胺基团形成较大空间位阻,降低了固化剂的固化活性;另一方面该大体积基团的存在不利于硼胺络合结构的形成,使潜伏性能有所下降。DBD同时具备潜伏性和阻燃性,实现了环氧树脂用固化剂的高性能化。环氧树脂固化物E51/DBD3(100:20)的磷元素含量为1.29%,其阻燃效果可以达到V-0级,LOI值为35.3%,具有较好的阻燃性。同时具备一定的潜伏性,在60℃下可稳定存储9天。研究还发现,随固化剂DBD含量的增加,环氧树脂固化物E51/DBD的热稳定性呈下降趋势,而残炭率呈增加趋势。当E51:DBD的质量比由100:10增至100:25时,制备得环氧树脂固化物E51/DBD的T5由367.1℃下降至349.6℃,Tmax由435.1℃降至398.8℃,900℃时的残炭率由14.3%增至19.6%。
Epoxy resins, one of the most important industrial thermosetting resins, own manyexcellent properties including chemical resistance, good adhesion to many substrates,mechanical properties, and thus find extensive use in various industrial areas. As is wellknown, nearly all epoxy end-use products need reaction with a hardener, and the use ofdifferent hardeners may have different effects on the terminal properties of epoxy resins. Theapperance of latent hardeners enhanced storage stability of epoxy resins containing hardenersunder ambient conditions and extended the limits of application for epoxy resins. Amongvarious latent hardeners, boron-containing compounds, such as BF3-amine complexes andamine-containing borate esters, show not only good latent curing properties, but also animprovement in the thermal stability for epoxy resins.
     Firstly, a series of short chain amine-containing borates were synthesized using boricacid (BA), N,N-dimethylethanolamine (DMEA) and different di-hydroxyl chemicals byone-step method. Their curing activity and latent properties were studied and compared. Theresults showed that the short chain amine-containing borate (named as NBD) synthesized byneopentyl glycol (NPG), boric acid (BA) and N,N-dimethylethanolamine (DMEA) exhibitedexcellent curing activity and latent properties, its triggered temperature of curing activity was150oC and could be kept stably when mixing with epoxy resins at60oC for54days; DSCcharacterization indicated that one-pot epoxy resin system using NBD as a hardener stillpossessed curing reactivity after being set under ambient conditions for more than315days,for an exothermic peak related with curing reaction was found at200oC on DSC curve.
     Secondly, a series of long chain amine-containing borates were synthesized usingdi-ethylene glycol, boric acid (BA), ethylene glycol (or NPG), oxalic acid (or hexanedioicacid) and N,N-dimethylethanolamine (DMEA) by two-step method. Their curing activity andlatent properties were also studied and compared. The results exhibited that curingtemperature of long chain amine-containing borates were lower10oC than that of shortamine-containing borate, because the former presented higher curing activity than the latter.Among the long chain amine-containing borates, the product synthesized by NPG, BA,DMEA, glycol and oxalic acid presented high curing activity and good latent properties,whose triggered temperature of curing activity was140oC and pot life at60oC was6dayswhen mixing with epoxy resins; and DSC results suggested that the one-pot epoxy resins stillpossessed curing reactivity after being set at60oC for5days.
     Thirdly, curing kinetics and curing process of epoxy resins using NBD as a hardenerwere investigated. Isothermal differential scanning calorimetry (DSC) results and fouriertransform infrared (FTIR) spectroscopy indicated that boron-nitrogen coordination in NBDstructure blocked the curing activity of tertiary amine group below140oC, and thecoordination disassociated above150oC. The curing processes of bisphenol A diglycidyl etherepoxy resins (E51) using NBD as a latent hardener in comparison with a common hardener,DMEA, were studied using Avrami-Arrhenius method as well as Horowitz-Metzger methodbased on DSC results. It could be found that NBD showed nearly no curing activity below140oC and exhibited evident curing reactivity when temperature exceeded160oC; and thecuring reactivity of one-pot epoxy resin E51-NBD became higher than E51-DMEA once thetriggering temperature was reached. The apparent activation energy associated with curereaction (Ea) for E51-NBD and E51-DMEA were calculated by Avrami-Arrhenius method orHorowitz-Metzger method. It could be noticed that whatever the method adopted, EaofE51-NBD was larger than that of E51-DMEA, suggesting the cure reaction of the formersystem was more difficult to start than that of the latter. Transition of Avrami exponent n wasconsidered to be related with significant changes of cure mechanism. n value of E51-NBDshowed the first transition at170oC, which had some relationship with its gel point, and thesecond transition occurred at210oC, which was related with the advent of end stage of curingreaction. Avrami-Arrhenius methods could reveal the transition associated with gel point, andHorowitz-Metzger method could disclose the transition associated with the end of curingreaction.
     Fourthly, effects of different hardeners (NBD and DMEA) on thermal stability of curedepoxy resins (marked as E51/NBD and E51/DMEA respectively) were discussed, and theapparent activation energy associated with thermal degradation (Ea’) was calculated byHorowitz-Metzger method. It could be found the introduction of borate by NBD enhancedthermal stability of cured epoxy resins. Comparing with cured epoxy resins E51/DMEA, T5(the temperature at which weight loss is5%) of E51/NBD increased from356.5oC to405.4oC,and char yield at900oC of E51/NBD was14.8%, much higher than that of E51/DMEA(3.0%). It was also noticed that the content of NBD in cured epoxy resin also influenced itsthermal stability. When mass ratio of E51to NBD was lower than100:12, thermal stability ofE51/NBD was enhanced with NBD content increasing. However, when mass ratio of E51toNBD was higher than100:12, few differences could be found in thermal stability of E51/NBDwith NBD content increasing, and the increase of NBD content may induce the reduction ofthermal stability of E51/NBD. E51/NBD(100:12)possessed good thermal stability, whose T5 was423.7oC, Ea’ was350.3kJ/mol, and char yield at900oC was17.4%. SEM resultsindicated that E51/NBD after thermal decomposition at900oC presented porous structure,and the enclosed porous structure was helpful to prevent the contact between epoxy resins andoxygen and inhibit the release of flammable gas.
     Finally,9,10-dihydro-9-oxa-10-phosphahenanthrene-10-oxide (DOPO) structure wasintroduced into amine containing borate to synthesize one novel non-halogen flameretardance hardener (DBD), and its curing activity, latent property, flame resistance andthermal stability were investigated. The results displayed that the introduction of DOPOstructure led the formation of a sterically hindered structure, which blocked the curing activityof tertiary amine and the formation of boron-nitrogen coordination, thus induced loss ofcuring activity and latent property. E51/DBD(100:20), whose phosphorus content is1.29%,possessed good flame retardance (V-0), LOI value was35.3%, and could be kept stably at60oC for9days when mixing with E51. It could also be found that thermal stability of E51/DBDdecreased, yet char yield of E51/DBD increased as DBD content increasing. When mass ratioof E51to DBD increased from100:10to100:25, T5of cured epoxy resin E51/DBD decreasedfrom367.1o C to349.6oC, Tmaxdecreased from435.1oC to398.8oC, however char yield at900oC increased from14.3%to19.6%.
引文
[1]黄相国,毛奎志.日本环氧树脂及固化剂的市场动向[J].热固性树脂,2000,15(2):42-47
    [2]李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社,2003
    [3]陈艳雄.环氧树脂柔性固化剂的合成及其固化反应动力学研究[D].成都:四川大学,2007
    [4]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002
    [5]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001
    [6] Gadhia ST, Joshi JK and Parsania PH. Thermal analysis of cured halogenatedbisphenol-C-epoxy resins [J]. Polym Degrad Stab,2005,88(2):217-223
    [7] Rocks J, George GA and Vohwinkel F. Curing kinetics and thermomechanical behaviourof co-anhydride cured aminoglycidyl epoxy resins [J]. Polym Int,2003,52(11):1758-1766
    [8] Kinjo N, Ogata M, Nishi K and Kaneda A. Epoxy molding compounda as encapsulationmaterials for microelectronic devices [J]. Adv Polym Sci,1989,88:1-48
    [9] Wang CS and Liao JK. Synthesis of high purity o-cresol formaldehyde novolac epoxyresins [J]. Polym Bull,1991,25:559-565
    [10] Gao J and Li Y. Curing kinetics and thermal property characterization of a bisphenol-Sepoxy resin and DDS system [J]. Polym Int,2000,49:1590-1595
    [11] Khurana P, Aggarwal S, Narula AK and Choudhary V. Studies on the curing and thermalbehaviour of DGEBA in the presence of bis(4-carboxyphenyl) dimethyl silane [J]. Polym Int,2003,52:908-917
    [12]任华.新型耐热、阻燃环氧树脂及固化剂的合成和性能研究[D].杭州:浙江大学,2008
    [13]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1999
    [14]黄志雄,彭永利,秦岩等.热固性树脂复合材料及其应用[M].北京:化学工业出版社,2007
    [15] Cizravi JC, Subramaniam K, bin Hussein. Thermal and mechanical properties ofaminopropoxylate-cured epoxy matrices [J]. Polym Int,1998,47(4):397–406
    [16]王青.环氧树脂固化剂研究进展[J].全面腐蚀控制,2001,18-20
    [17]何祟军,蔡立彬等.环氧树脂固化体系研究进展[J].广东化工,2002,30(4):109-111
    [18]刘守贵,甘国华,王家贵.环氧树脂胺系固化剂改性综述[J].热固性脂,1996,4:46-52
    [19]肖卫东,何培新.环氧树脂胺类固化剂的改性[J].胶体与聚合物,2001,19(2):27-29
    [20]王伟.环氧树脂固化技术及其固化剂研究进展[J].热固性脂,2001,16(3):29-33
    [21]张惠玲.新型环氧树脂潜伏性固化剂的合成及性能研究[D].武汉:武汉理工大学,2005
    [22]赵辉,陈志明,王秋英,巫峡.改性咪唑类潜伏性环氧树脂固化剂的制备[J].涂料工业,2004,7:23-25
    [23] Kim WG, Yoon HG and Lee JY. Thermal analysis of cured halogenatedbisphenol-C-epoxy resins [J]. J Appl Polym Sci,2001,81:2711-2720
    [24] Rahmathullah MAM, Jeyarajasingam A, Merritt B, et, al. Room temperature ionic liquidsas thermally latent initiators for polymerization of epoxy resins [J]. Macromolecules,2009,42(9):3219-3221
    [25] Kim M, Sanda F, Endo T. Curing of epoxides with O,O-di-t-butyl phenylphosphonateas thermally latent initiator [J]. Journal of Applied Polymer Science,2001,81(10):2347-2351
    [26] Kobayashi M, Sanda F and Endo T. Application of (triphenylphosphinemethyl-ene)boranes to thermally latent catalysts for polyaddition of bisphenol A diglycidyl ether withbisphenol A: model system of epoxy novolac resin [J]. Macromolecules,2001,34(5):1134-1136
    [27]永焱,理太郎,邬恂若.环氧树脂用新型潜伏性固化剂[J].绝缘材料,1995,4:37-48
    [28] Tachi H, Yamamoto T, Shirai M and Tsunooka M. Photochemical reactions of quaternaryammonium dithiocarbamates as photobase generators and their use in the photoinitiatedthermal crosslinking of poly(glycidyl methacrylate)[J]. J Polym Sci Part A: Polym Chem,2001,39:1329-1341
    [29] Takahashi E, Sanda F and Endo T. Novel pyridinium salts as cationic thermal andphotoinitiators and their photosensitization properties [J]. J Polym Sci Part A: Polym Chem,2002,40:1037-1046
    [30] Crivello JV and Lee JL. Alkoxy-substituted diaryliodonium salt cationic photoinitiators[J]. J Polym Sci Part A: Polym Chem,1989,27:3951-3968
    [31] Crivello JV and Kong S.Photoinduced and thermally induced cationic polymerizations usingdialkylphenacylsulfonium salts [J]. Macromelecules,2000,33:833-842
    [32] Cella JA, Schwabacher AW and Schulz AR. Cationic chelate salts of main groupelements as curing agents for epoxy resins [J]. Ind Eng Chem Prod Res Dev,1983,22:20–25
    [33] Suzuki k, Sugita Y, Sanda F and Endo T. One-component epoxy resin with imine aswater-initiated latent hardener: Improvement of the mechanical and adhesive properties by theaddition of methacrylate copolymer [J]. J Appl Polym Sci,2005,96(5):1943-1949
    [34] Suzuki K, Matsu-Ura N, Horii H, Sugita Y, Sanda F and Endo T. One-pot curing systemof epoxy resin imines initiated with water [J]. J Appl Polym Sci,2002,83:1744-1749
    [35]殷陶.基于环氧微胶囊和潜伏固化剂的自修复型环氧复合材料[D].广州:中山大学,2007
    [36] Yin T, Rong MZ, Zhang MQ, et, al. Self-healing epoxy composites-Preparation andeffect of the healant consisting of microencapsulated epoxy and latent curing agent [J].Composites Science and Technology,2007,67:201-212
    [37] Yin T, Zhou L, Rong MZ, et, al. Self-healing woven glass fabric/epoxy composites withthe healant consisting of micro-encapsulated epoxy and latent curing agent [J]. SmartMaterials and structures,2008,17,015019
    [38]胡玉明,吴良义.固化剂[M].北京:化学工业出版社,2004,349
    [39]李固,桂文娟.热固性树脂,1987,4:21-23
    [40]袁知舜,吕凌.河南化工,1997,11:11-13
    [41]洪宗国,杨政险.三氟化硼微胶囊热固化环氧树脂胶粘剂研究[J].粘接,2000,21(6):7-10
    [42]上海树脂厂.#594、#595胺基硼烷环氧树脂固化剂[J].上海化工,1975,01:31-35
    [43]桂林电器科学研究所.硼胺型环氧固化剂的合成[J].绝缘材料,1977,06:40-45
    [44]单书发.环氧树脂-硼胺络合物固化产物性能的改善[J].电机与控制学报,1986,04:319-323
    [45]陈平,何东晓,王辉.硼胺络合物固化环氧树脂的研究[J].热固性树脂,1993,02:16-19
    [46]陈平.硼胺络合物/环氧树脂体系固化反应机理及其动力学的研究[J].中国胶粘剂,1993,06:27-29
    [47]陈平,毛桂洁.硼胺络合物/环氧树脂体系固化反应机理及其动力学的研究[J].绝缘材料通讯,1997,02:27-29
    [48]陈平,毛桂洁.硼胺络合物/环氧树脂体系的固化反应[J].哈尔滨理工大学学报,1997,02:121-123
    [49]陈平,张岩.硼胺络合物/环氧树脂体系的固化反应机理及其动力学[J].复合材料学报,1999,04:54-57
    [50]徐武,王煊军,刘祥萱.粘结,2006,27(6):26-28
    [51]武田敏充,奥平浩之.室温固化单组分环氧胶粘剂.粘接,2001,22(3):28-30
    [52]彭长征,佘湘平,佘万能.三芳基硫鎓六氟锑酸盐引发环氧树脂阳离子光固化的研究[J].功能高分子学报,1997,10(3):393-398.
    [53]金林生.紫外光固化涂料的原料发展方向.现代涂料与涂装,1999,1:37-38
    [54]李建宗,程时远,肖卫东等.环氧树脂/BPEA22潜伏性固化体系的研究[J].化学与粘合,1992,13(6):8-10,18
    [55]周建文.单组分环氧树脂胶粘剂的研究现状[J].化学与粘合,2004,1:36
    [56]洪啸吟,陈其道,陈明.混杂光固化体系的原理及其应用[R].面向21世纪中国辐射固化技术与市场发展讨论会论文集,2000:21-31.
    [57]常鹏善,左瑞霖,王汝等.环氧树脂增韧改性新技术[J].中国胶粘剂,2002,11(2):37-40
    [58]刘景民,王洛礼,公瑞煜.透明柔韧性环氧树脂室温固化剂的合成与性能.湖北化工,1999,16(6):17-18.
    [59]天津市合成材料工业研究所.环氧树脂与环氧化物[M].天津:天津人民出版社.1974,28-29
    [60]叶枫,李恩普,张忠武等.环氧树脂柔韧性固化剂一链烯基琥珀酸酐的研究[J].热固性树脂,1996,2:28-34
    [61]李清秀,张炜,周红卫.环氧树脂韧性固化剂的合成[J].复旦学报(自然科学版),1997,36(4):469-475
    [62]华峰军,胡春圃.高分子材料科学与工程,1999,15(2):21-23
    [63]张恩天,李奇力,马林.中国胶黏剂,1995,4(3):4-7
    [64] Bennett G S,Farris R J,Thomason S A. Amine-terminated poly(aryl ether ketone)epoxy/amine resin systems as tough high performance materials[J]. Polymer,1991,32(9):1633-1641
    [65]张保龙,张会旗,由英才等.功能基化介晶高聚物增韧环氧树脂性能研究[J].高分子学报,1999,15(1):74-79
    [66]官建国,王维,龚荣洲.环氧树脂用柔性固化剂工艺的研究[J].中国胶粘剂,1999,9(5):10-12
    [67]高潮,邱少君,甘孝贤.氨酯基改性的端氨基聚醚型柔性固化剂的合成及性能研究[J].西安交通大学学报,2003,37(4):424-427.
    [68]李清秀,薛命颖,张炜等.含有硅氧链的胺类化合物的合成[J].复旦学报(自然科学版),1999,35(6):655-685
    [69]张冰,刘香莺,黄英.氨基聚硅氧烷对改性环氧树脂的形态与性能的影响[J].功能高分子学报,2000,13(1):69-72
    [70] Ho TH, Wang JH, Wang CS. Modification of epoxy resins with polysiloxanethermoplastic polyurethane for electronic encapsulation.II[J]. Journal of Applied PolymerScience,1996,60(8):1097-1107
    [71]韦春,钟文斌,谭松庭等.热致性液晶固化剂增韧环氧树脂的研究[J].中国塑料,2001,15(5):42-45
    [72] Ichino T, Hasuda Y. New epoxy-imide resins cured with bis(hydroxyphthalimide)s [J].Journal of Applied Polymer Science,1987,34:1667-1675
    [73] Luijk P, Govers HAJ, Eijkel GB, Boon JJ. Thermal degradation characteristics ofhigh impact polystyrene/decabromodiphenylether/antimony oxide studied byderivative thermogravity and temperature resolved pyrolysis-mass spectrometry:Formation of polybrominated dibenzofurans, antimony (oxy) bromides and brominatedstyrene oligomers[J]. J. Anal. Appl. Pyrol.,1991,20:303
    [74] Wang CS, Berman JR, Walker LL, et al. Meta-bromobiphenol epoxy resins: Applicationsin electronic packaging and printed circuit board[J]. J. Appl. Polym. Sci.,1991,43,1315-1321
    [75] Green J. Review of phosphorus-containing flame-retardants[J]. J. Fire Sci.,1992,10,470
    [76] Shieh JY, Wang CS. Synthesis of novel flame retardant epoxy hardeners and properties ofcured products [J]. Polyme,2001,42:7617-7625
    [77] Perez RM, Sandler JKW, et al. Novel Phosphorus-containing Hardeners with TailoredChemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties [J]. Journal ofApplied Polymer Science,2007,105:2744-2759
    [78] Varley RJ, Liu W, Simon GP. Investigation of the reaction mechanism of different epoxyresins using a phosphorus-based hardener [J]. Journal of Applied Polymer Science,2006,99:3288-3299
    [79] Ye L, Lai Z, Liu J, et al. Effect of agparticle size on electrical conductivity ofisotropically conductive adhesives [J]. IEEE Trans Electr Packg Manuf,1999,22:299
    [80] Li L, Morris JE. Electircal conduction models forisotropically cnductive adhesive joints[J]. IEEE Trans. Como. Packg. Manuf. Technol.,1997,20:3
    [81]张兴宏.高性能含氮阻燃环氧树脂/固化剂的合成、固化反应及结构性能与应用[D].杭州:浙江大学,2006
    [82] Cho CS, Fu SC, Chen LW, et al. Aryl phosphinate anhydride curing for flame retardantepoxy networks [J]. Polymer International,1998,47:203
    [83] Ito M, Miyake S. Flame-retardant resin composition and semiconductor sealant using thesame [P]. US Patent:6180695,2001
    [84] Ito M, Miyake S. Laminate comprising a flame-retardant resin composition [P]. USPatent:6296940,2001
    [85] Levchik SV, Camino G, Luda MP, et al. Epoxy resins cured withaminophenylmethylphosphine oxide.1: combustion performance [J]. Polymer AdvacedTechnology,1996,7:823
    [86] Kuo PL, Wang JS, Chen PC, et al. Flame-retading materials,3. tailor-made thermalstability epoxy curing agents containing difunctional phosphoric amide groups. Macromol.Chem. Phys.,2001,202:2175
    [87] Jeng RJ, Shau SM, Lin JJ, et al. Flame retadant epoxy polymers based on allphosphorus-containing components [J]. Eur. Polym. J.,2002,38:683
    [88] Jeng RJ, Wang JR, Lin JJ, et al. Flame retardant epoxy polymer usingphosphorus-containg polyalkylene amines as curing agents. Journal of Applied PolymerScience,2001,82:3526
    [89] Liu YN, Ji Q, McGrath JE. New fire resistant epoxy resins with improved toughness [J].Am. Chem. Soc. Div. Poolym. Chem. Polym. Prepr.,1997,38:223
    [90] Buser AJW, Schutyser JAJ. Adduct of bisepoxy compound and P guanamine [P]. USPatent:5821317,1998
    [91] Von Gentzkow W, Schmidt E, Slavk M, et al. German Patent DE19856397,2000
    [92] Von Gentzkow W, Schmidt E, Slavk M, et al. German Patent DE19856396,2000
    [93] Je Hong Ryu, Ki Seop Choi, Whan Gun Kim. Latent Catalyst Effects in Halogen-FreeEpoxy Molding Compounds for Semiconductor Encapsulation[J]. Journal of Applied PolymerScience,2005(96):2287-2299
    [94]徐晓鸣,李建宗.环氧树脂含硼固化剂的研究进展[J].热固性树脂.1989,3:32-37
    [95] Martín C, Lligadas G, Ronda JC, et al. Synthesis of novel boron-containingepoxy-novolac resins and properties of cured products [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:6332-6344.
    [96]上海树脂厂.环氧树脂生产与应用[M].燃料化学工业出版社,1972
    [97] Chen CS, Bulkin BJ and Koros WJ. New epoxy resins. I. The stability ofepoxy–trialkoxyboroxines triaryloxyboroxine system [J]. J. Appl. Polym. Sci.,1982,27(12):1177-1190
    [98]雷家珩,杜小弟,张惠玲,陈连喜.改性双氰胺类环氧树脂潜伏性固化剂的研究及其应用[J].化学科技市场,2006,29(2):36-40
    [99] Chiu YC, Chou IC, Tseng WC, et al.Preparation and thermal properties of diglycidylethersulfone epoxy [J]. Polymer Degradation and Stability,2008,93:668-676
    [100] Park SJ, Seo MK, Lee JR.Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationiclatent thermal catalyst [J]. J Polym Sci Part A: Polym Chem,2000,38:2945-2956
    [101] Haworth DT and Pollnow GF. Boron curing agents for epoxy resins [J]. Ind Eng ChemProd Res Dev,1962,1:185-187
    [102] Langer S and Elbling I. Triethanolamine borate, epoxy resin catalyst choice based onreaction mechanisms [J]. Ind Eng Chem,1957,49:1113-1114
    [103] Gert H and Karlheinz S, Z Naturforsch Part B: Chem Sci,1988,43:547-556
    [104] Dispenza C, Carter JT, McGrail PT and Spadaro G. Cure behaviour of epoxy resinmatrices for carbon fibre composites [J]. Polym Int,1999,48:1229-1236
    [105] Zhang XH, Min YQ, Zhao H, Wan HM and Qi GR. Novel Nitrogen-Containing EpoxyResin. II. Cure Kinetics by Differential Scanning Calorimetry [J]. J Appl Polym Sci,2006,100:3483-3489
    [106] Jubsilp C, Punson K, Takeichi T, Rimdusit S. Curing kinetics of Benzoxazineeepoxycopolymer investigated by non–isothermal differential scanning calorimetry [J]. PolymerDegradation and stability,2010,95:918-924
    [107] Yao JB, Wang QL, Chen SQ, Sun JZ and Dong JX. Borate esters used as lubricantadditives [J]. Lubr Sci14:415-423(2002).
    [118] Ehlers JE, Rondan NG, Huynh LK, Pham H, Marks M and Truong TN. Theoreticalstudy on mechanisms of the epoxy-Amine curing reaction [J]. Macromolecules,2007,40:4370–4377
    [109] Lee JY, Shim MJ and Kim SW. Mater Chem Phys,1997,48:36-40
    [110] Berlin AA, Matveyeva NG. Progress in the chemistry of polyreactive oligomers andsome trends of its development em dash1. synthesis and physico-chemical properties [J].Polym Sci Macromol Rev,1977,12:1
    [111] Liu SB, Liu JL, Yu TL. Microgelation in the curing reaction of unsaturated polyesterresins [J]. J Appl Polym Sci,1994,53:1165
    [112] Lu MG, Shim MJ, Kim SW. The macrokinetic model of thermosetteing polymers byphase-change theory. Materials chemistry physics,1998,56:193
    [113] Fava RA. Differential scanning calorimetry of epoxy resins [J]. Polymer,1968,9:137
    [114] Guthner T and Hammer B. Curing of epoxy resins with dicyandiamide and urones [J]. JAppl Polym Sci,1993,50:1453-1459
    [115] Su CC and Woo EM. Cure kinetics and morphology of amine-curedtetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with poly(ether imide)[J]. Polymer36:2883-2894
    [116] Khanna U and Chanda M. Kinetics of anhydride curing of isophthalic diglycidyl esterusing differential scanning calorimetry [J]. J Appl Polym Sci,1993,49:319-329
    [117] Du S, Guo ZS, Zhang B and Wu Z. Cure kinetics of epoxy resin used for advancedcomposites [J]. Polym Int,2004,53:1343-1347
    [118] Hong SG and Wu CS. DSC and FTIR analysis of the curing behaviors ofepoxy/DICY/solvent open systems [J]. Thermochimica Acta,1998,316:167-175
    [119] Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer,1971,12:150-158
    [120] Desio GP, Rebenfeld L. Crystallization of fiber-reinforced poly(phenylene sulfide)composites. II. Modeling the crystallization kinetics [J]. J Appl Polym Sci,1992,45:2005
    [121] Kim SW, Lu MG. and Shim MJ. The isothermal cure kinetics of epoxy/amine systemanalyzed by phase change theory [J]. Polym J,1998,30:90-94
    [122] Horowitz HH and Metzger G. A new analysis of thermogravimetric traces [J]. AnalChem,1963,35:1464-1468
    [123] Lu MG, Shim MJ and Kim SW. J Therm Anal Calorim,1999,58:701-709
    [124] Pollard M and Karelos JL. Analysis of epoxy resin curing kinetics using the Avramitheory of phase change [J]. Polym Eng Sci,1987,27:829-836
    [125] Jagadeesh KS, Rao JG. Effect of Type of Substitution in4,4'-Bis-(diaminodiphenyl)Methane Hardener on Cure Kinetics, Mechanical, and Flame Retardant Properties ofTetrafunctional Epoxy Resins [J]. Journal of Applied Polymer Science,2006,101:480-491
    [126]李晓云,张之圣,曹俊峰.环氧树脂在电子封装中的应用及发展方向[J].电子元件与材料,2003,22(2):36-35
    [127] Chiang CL, Wang FY, Ma CCM, et al.Flame retardance and thermal degradation of newepoxy containing silicon and phosphorous hybrid ceramers prepared by the sol-gel method [J].Polymer Degradation and Stability,2002,77:273-278
    [128] Van Krevelen DW. Some basic aspects of flame resistance of polymeric materials [J].Polymer,1975,16:615-620
    [129] Dyakonov T, Mann PJ, Chen Y, Stevenson WTK. Thermal analysis of some aromaticamine cured model epoxy resin system-II: residues of degradation [J]. Polym degrad stabil,1996,54:67
    [130] Puglia D, Manfredi LB, Vazquez A, Kenny J. Thermal degradation and fire resistance ofepoxy-amine-phenolic blends [J]. Polym Degrad Stabil,2001,73:521
    [131]张臣.无卤阻燃不饱和聚酯的制备研究[D].广州:华南理工大学,2009
    [132] McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors [J].Chem Rev,2000,100:2537-2574
    [133] Gettinger CL, Heeger AJ, Drake JM, Pine DJ. A photoluminescence study ofpoly(phenylene vinylene) derivatives: The effect of intrinsic persistence length [J]. J ChemPhys,1994,101:1673-1678
    [134] Samuel IDW, Rumbles G, Collison CJ. Efficient interchain photoluminescence in ahigh-electron-affinity conjugated polymer [J]. Synth Met,1997,84:479-500
    [135]梁静,申叶舟. DOPO与环氧树脂反应特性的研究[J].绝缘材料,2007,40(1):29-31
    [136] Liu YL, Wu CS, Chiu YS, Ho WH. Preparation, thermal properties, and flameretardance of epoxy–silica hybrid resins [J]. Journal of Polymer Science:Part A: PolymerChemistry,2003,41:2354-2367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700