用户名: 密码: 验证码:
催化氧化烯烃的烯丙基碳—氢键官能团化的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,过渡金属催化碳-氢键的直接官能团化反应被认为是有机合成中强大的工具,在合成天然和非天然有机化合物中扮演者非常重要的角色。在这些过程中,比较突出的是钯催化碳-氢键的官能化反应。因为在这些过程中,关于历史、机理、理论和实际应用这些方面都得到充分的讨论。特别的是,发展一种新的方法能使在选择性和起始原料的易得性上比之前碳-氢键的官能化反应有优势的话,将引起化学家异乎寻常的兴趣。
     钯催化对烯丙位碳-氢键的直接官能化得到氧基化反应、烷基化反应、胺基化反应、硅基化反应或去氢化反应时著名的Trost-Tsuji反应一种比较好的补充。这种新的反应过程中显示出不必要的官能化操作(FGMs)可以忽略掉,提出了一种高效的方法合成的官能化的烯烃,并且能减少合成的步骤和提高反应的总收率。显然,从一个原子经济性和环境的角度来看,这样一个催化的烯丙基位置碳-氢键的活化/官能团化反应将是非常可取的。
     在此背景下,本论文系统地研究了钯催化氧化末端烯烃的直接烯丙基碳-氢键官能团化,通过用水、一氧化碳、N-tosylhydrazones和叠氮化钠作为亲核试剂能得到一系列官能化的烯烃,具体内容如下:
     (1)钯催化氧化末端烯烃的烯丙基碳-氢键的氧基化反应。烯基醛和烯丙基醇作为一种多功能的基础构建部分被广泛应用于在有机合成中。由于他们在化学和生物学中的重要性,引起了有机化学家的关注,并且促进了发展新的合成策略来制备这些化合物。我们发展了一种新的简易的方法通过钯催化对烯丙基位置碳-氢键的直接氧基化反应来合成反式的烯基醛和反式的烯丙基醇。在此过程中,使用了水作为亲核试剂和氧源对末端烯烃直接进行烯丙位碳-氢键的氧基化。通过对温度和氧化剂的控制,反应可以选择性的生成反式的烯基醛或反式的烯丙基醇。
     (2)钯催化氧化末端烯烃的烯丙基碳-氢键的羰基化反应。一般来说,在Tsuji–Trost的羰基化反应中,需要在烯丙基位置的官能团中需要引入一个反应离去基团来合成有用的β-烯酸酯化合物。因此,发展一种新颖的、高效的和可以避免不必要的官能团操作的羰基化反应,将吸引越来越多的关注。我们发展了一种新颖的方法用一氧化碳通过钯催化对烯丙基位置碳-氢键直接羰基化。这个发现提供了一种新颖的路径来高区域选择性合成β-烯酸酯化合物和1,4-二羰基这种重要的化学骨架。在此反应中,由于不需要引入离去基团,将会使它成为有机化学中受欢迎的合成工具。
     (3)钯催化氧化末端烯烃的烯丙基碳-氢键的烷基化反应。在过去的十年里,发展钯催化碳-碳键形成反应已经显著的推进了有机合成中的“技术发展水平”。最近,钯催化重氮化合物的交叉偶联反应是一种新型的构建碳-碳键的交叉偶联反应。另外一种备受关注的途径是通过用N-tosylhydrazones作为亲核试剂来原位生成重氮化合物来实现这样的交叉偶联反应。这过程中所需的N-tosylhydrazones可以很容易的用羰基化合物制备得到。并且可以把它看做是对羰基化合物,这样一个包括多个步骤和其他方法的高合成实用性的交叉偶联反应。我们发展了钯催化用N-tosylhydrazones对烯烃的烯丙基位置碳-氢键直接氧化烷基化。这个反应以非常易得的原料来进行,并且能高立体选择性地合成1,4-二烯化合物和4-烯-1酮化合物。
     (4)钯催化氧化末端烯烃的烯丙基碳-氢键的叠氮基化反应。叠氮官能团已经作为一种很重要的部分用来在有机合成化学全合成,药物化学,材料科学,超分子化学,高分子化学和生物技术等领域合成含氮化合物。一般来说,叠氮化合物是通过叠氮化钠对有机卤化物的取代反应来得到。我们发展了钯催化在常压下的分子氧的氛围下烯烃与叠氮化钠进行的直接氧化的叠氮化反应。这种方法提供了一种新的高效,绿色的路线来合成烯丙基叠氮化合物。此外由钯催化烯丙基的叠氮化反应和铜催化的[3+2]环加成反应组成的一锅法可以从烯烃为起始原料直接合成三氮唑。反应中原位生成的烯丙基叠氮化合物可以还原成胺类化合物或者氧化成烯基腈类化合物。
Over the past10years, transition metal catalyzed direct C–H bond functionalization hassince emerged as a powerful tool in organic synthesis, playing vital roles in the syntheses ofnatural and unnatural compounds. Prominent among these processes are thepalladium-catalyzed C–H bond functionalization. Because the historical, mechanistic,theoretical, and practical aspects of these processes have been amply discussed. In particular,the development of alternative methodologies that could be advantageous in terms of theselectivity and the availability of starting materials prior to the C–H bond functionalizationevent are of extraordinary interest.
     Palladium-catalyzed direct functionalization of allylic C-H bonds leading to oxygenation,alkylation, amination, silylation or dehydrogenation is a valuable complement to thewell-known Trost-Tsuji reaction. The new procedure shows that unnecessary functional groupmanipulations (FGMs) can be bypassed which presents a highly efficient approach for thesynthesis of functionalized alkenes, reducing synthetic steps and increasing overall yield.Clearly a catalytic version of the allylic C-H activation would be highly desirable from anatom-economic and environmental perspective.
     In this context, we have studied the palladium-catalyzed allylic functionalization ofterminal alkenes with water, carbon monoxide, N-tosylhydrazones or sodium azides forstreamlining the synthesis of functionalized alkenes. The details are summarized as following:
     (1) Palladium-catalyzed oxidative allylic C-H oxygenation of terminal alkenes. Alkenylaldehydes and allylic alcohols as versatile building blocks have been widely used in organicsynthesis. Their importance in chemistry and biology has stimulated considerable attentionfrom organic chemists and encouraged the development of new synthetic strategies to preparethese compounds. We developed a facile synthesis of (E)-alkenyl aldehydes or (E)-allylicalcohols from alkenes via Pd(II)-catalyzed allylic C-H oxygenation. In this process, water wasused as a nucleophilic reagent and an oxygen source for direct oxygenation of an allylic C-Hbond. By controlling temperature or oxidant, the reaction can be made selective for(E)-alkenyl aldehydes or (E)-allylic alcohols.
     (2) Palladium-catalyzed oxidative allylic C-H carbonylation of terminal alkenes. Generally, afunctional group at the allylic position is required in Tsuji–Trost carbonylation to serve as areacting and leaving group for the synthesis of synthetically useful β-enoic acid esters.Therefore, the development of new allylic carbonylation in synthetic efficiency throughavoiding unnecessary functional group manipulations is attracting increasing attention. We developed palladium-catalyzed direct oxidative carbonylation of allylic C–H bonds withcarbon monoxide. These observations provides novel routes for accessing β-enoic acid estersand synthetically important1,4-dicarbonyl scaffolds with high regioselectivity, whichabolishes the need for a leaving group, will lead to this becoming a popular synthetic tool.
     (3) Palladium-catalyzed oxidative allylic C-H alkylation of terminal alkenes usingN-tosylhydrazones as allylating agents. Over the past few decades, the development ofpalladium-catalyzed carbon–carbon bond-forming reactions has dramatically advanced“state-of-the-art” organic synthesis. Recently, Pd-catalyzed cross-coupling reactions ofdiazo compounds have emerged as a new type of cross-coupling reaction for the constructionof carbon-carbon bonds. An alternative route that makes use of N-tosylhydrazones asnucleophiles, which are an in situ source of diazo compounds for this transformation, hasattracted much attention. The required N-tosylhydrazones are easily generated from carbonylcompounds, and the reaction can be seen as a cross-coupling of carbonyl groups, a process ofhigh synthetic relevance that involves several steps and other methodologies. We developedpalladium-catalyzed direct oxidative alkylation of allylic C–H bonds with N-tosylhydrazones.The reaction proceeds with readily available starting materials and affords1,4-dienes and4-en-1-ones in a highly stereoselective manner.
     (4) Palladium-catalyzed oxidative allylic C-H azidation of terminal alkenes with sodium azide.The azide functional group has been used as an important moiety for the formation ofnitrogen-containing compounds in fields ranging from synthetic organic chemistry to totalsynthesis, pharmaceutical chemistry, materials science, supramolecular chemistry, polymerchemistry, and biotechnology. Generally, Azides are typically prepared from the substitutionof organic halides with sodium azide, but this approach requires the prior synthesis of theorganic halides. We developed palladium-catalyzed direct oxidative azidation of alkenes withsodium azide under atmospheric pressure of dioxygen. This methodology provides a newefficient and green route for accessing allylic azides. Furthermore, the one-pot processconsisting of Pd-catalyzed allylic azidation of alkenes and Cu-catalyzed [3+2] cycloadditionled directly to the triazole from alkene. The formed allylic azide can be also in situ reduced toallylic amino or oxidized to alkenyl nitrile.
引文
[1] Lyons T. W., Sanford M. S. Palladium-Catalyzed Ligand-Directed C-H FunctionalizationReactions [J]. Chem. Rev.,2010,110(2):1147-1169
    [2] Beccalli E. M., Broggini G., M. Martinelli, et al. C-C, C-O, C-N bond formation on sp2carbon by Pd (II)-catalyzed reactions involving oxidant agents [J]. Chem. Rev.2007,107(11):5318-5365
    [3] Alberico D., Scott M. E., Lautens M. Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation [J]. Chem. Rev.2007,107(1),174-238
    [4] Jazzar R., Hitce J., Renaudat A., et al. Functionalization of Organic Molecules byTransition-Metal-Catalyzed C(sp3)-H Activation [J]. Chem. Eur. J.2010,16(9):2654-2672
    [5] Giri R., Shi B.-F., Engle K. M., et al. Transition metal-catalyzed C–H activation reactions:diastereoselectivity and enantioselectivity [J]. Chem. Soc. Rev.2009,38(11):3242-3272
    [6] Chen X., Engle K. M., Wang D.-H., et al. Palladium(II)-Catalyzed C-H Activation/C-CCross-Coupling Reactions: Versatility and Practicality.[J]. Angew. Chem., Int. Ed.2009,48(28):5094-5115
    [7] Campeau L.-C., Stuart D. R., Fagnou K., Recent advances in intermolecular directarylation reactions [J]. Aldrichimica Acta2007,40(2):35-41
    [8] Thansandote P., Lautens M., Construction of Nitrogen-Containing Heterocycles by C-H BondFunctionalization [J]. Chem. Eur. J.,2009,15(24):5874-5883
    [9] Ackermann L., Carboxylate-assisted transition-metal-catalyzed C-H bond functionalize-tions: mechanism and scope [J]. Chem. Rev.2011,111(3):1315-1345
    [10] Balcells D., Clot E., Eisenstein O., C-H Bond Activation in Transition Metal Speciesfrom a Computational Perspective [J]. Chem. Rev.2010,110(2):749823
    [11] Beck E. M., Gaunt M. J., Pd-Catalyzed C–H Bond Functionalization on the Indole andPyrrole Nucleus [J]. Top. Curr. Chem.2010,292(1):85-121
    [12] Wencel-Delord J., Drge T., Liu F., et al. Towards mild metal-catalyzed C–H bondactivation [J]. Chem. Soc. Rev.2011,40(9):4740-4761.
    [13] Tsuji J., Palladium Reagents and Catalysts: New Perspectives for the21st Century [M].Wiley, Chichester (UK), Chapter4(2004)
    [14] Trost, B. M., Crawley, M. L. Asymmetric Transition-Metal-Catalyzed AllylicAlkylations: Applications in Total Synthesis.[J]. Chem. Rev.2003,103(8):2921-2944
    [15] Trost, B. M. Asymmetric Allylic Alkylation, an Enabling Methodology.[J]. J. Org.Chem.2004,69(18):5813-5837
    [16] Negishi E.-I, Handbook of Organopalladium Chemistry for Organic Synthesis (Ed:)[M].Wiley-Interscience; New York (2002)
    [17] Kazmaier, U., Pohlman, M. In Metal-Catalyzed Cross-Coupling Reactions;2nd ed.[M].;De Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, Chapter9, p531(2004)
    [18] Tsuji, J., Minami, I. New synthetic reactions of allyl alkyl carbonates, allyl.beta.-ketocarboxylates, and allyl vinylic carbonates catalyzed by palladium complexes.[J]. Acc. Chem.Res.1987,20(4):140-145
    [19] Chen M. S., White M. C. A Sulfoxide-Promoted, Catalytic Method for theRegioselective Synthesis of Allylic Acetates from Monosubstituted Olefins via C HOxidation [J]. J. Am. Chem. Soc.2004,126(4):1346-1347
    [20] Chen M. S., Labenz N.A., et al. Serial Ligand Catalysis: A Highly Selective Allylic C HOxidation [J]. J. Am. Chem. Soc.2005,127(19):6970-6971
    [21] Fraunhoffer K.J., Prabagaran N., Sirois L. E., et al. Macrolactonization via HydrocarbonOxidation [J]. J. Am. Chem. Soc.2006,128(4):9032-9033
    [22] Delcamp J. H., White M. C. Sequential Hydrocarbon Functionalization: Allylic C HOxidation/Vinylic C H Arylation [J]. J. Am. Chem. Soc.2006,128(47):15076-15077
    [23] Edmondson, S. D., Mastracchio A., Duffy J. L., et al. Discovery of potent and selectiveorally bioavailable β-substituted phenylalanine derived dipeptidyl peptidase IV inhibitors [J].Bioorg. Med. Chem. Lett.2005,15(12):3048-3052
    [24] Evans, D. A., Gauchet-Prunet, J. A., Carreira, E. M., et al. Synthesis of1,3-diol synthonsfrom epoxy aromatic precursors: an approach to the construction of polyacetate-derivednatural products [J]. J. Org. Chem.1991,56(2):741-750
    [25] Lin B.-L., Labinger J. A., Beraw J. E. Mechanistic investigations of bipyrimidine-promoted palladium-catalyzed allylic acetoxylation of olefins [J]. Can. J. Chem.2009,87(1):264-271
    [26] Thiery E., Aouf C., Belloy J., et al. Palladium-Catalyzed Allylic Acyloxylation ofTerminal Alkenes in the Presence of a Base [J]. J. Org. Chem.2010,75(5):1771-1774
    [27] Mitsudome, T., Umetani, T., Nosaka, N., et al. Convenient and efficient Pd-catalyzedregioselective oxyfunctionalization of terminal olefins by using molecular oxygen as solereoxidant [J]. Angew. Chem. Int. Ed.2006,45(3):481-485
    [28] Henderson, W. H., Check, C. T., Proust, N., et al. Allylic Oxidations of Terminal OlefinsUsing a Palladium Thioether Catalyst [J]. Org. Lett.,2010,12(4):824-827
    [29] Campbell, A. N., White, P. B., Guzei, I. A., et al. Allylic C-H Acetoxylation with a4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-Based Strategy To AchieveAerobic Catalytic Turnover [J]. J. Am. Chem. Soc.,2010,132(43):15116-15119
    [30] Vermeulen N. A., Delcamp J. H., White M. C. Synthesis of Complex Allylic Esters viaC H Oxidation vs C C Bond Formation [J]. J. Am. Chem. Soc.2010,132(32):11323-11328
    [31] Covell D. J., White M. C. A Chiral Lewis Acid Strategy for Enantioselective Allylic C-HOxidation [J]. Angew. Chem. Int. Ed.2008,47(34):6448-6451
    [32] Gormisky P. E., White M. C. Synthetic Versatility in C-H Oxidation: A Rapid Approachto Differentiated Diols and Pyrans from Simple Olefins [J]. J. Am. Chem. Soc.2011,133(32):12584-12589
    [33] Saito T., Fuwa, H., Sasaki, M. Toward the Total Synthesis of Goniodomin A, AnActin-Targeting Marine Polyether Macrolide: Convergent Synthesis of the C15C36Segment[J].Org. Lett.2009,11(22):5274-5277
    [34] Stang, E. M.&White,M. C. Total synthesis and study of6-deoxyerythronolide B bylate-stage C–H oxidation.[J]. Nature Chem.2009,1:547-551
    [35] Chen H., Jiang H., Cai C., et al. Facile Synthesis of (E)-Alkenyl Aldehydes from AllylArenes or Alkenes via Pd(II)-Catalyzed Direct Oxygenation of Allylic C-H Bond [J]. Org Lett.2011,13(5):992-994.
    [36] Reed S. A., White M. C. Catalytic Intermolecular Linear Allylic C H Amination viaHeterobimetallic Catalysis [J]. J. Am. Chem. Soc.,2008,130(11):3316-3318
    [37] Raju B., Anandan S., Gu S., et al. Conformationally restricted analogs ofdeoxynegamycin [J]. Bioorg. Med. Chem. Lett.2004,14(12):3103-3107
    [38] Liu G., Yin G., Wu L. Palladium-Catalyzed Intermolecular Aerobic Oxidative Aminationof Terminal Alkenes: Efficient Synthesis of Linear Allylamine Derivatives [J]. Angew. Chem.,Int. Ed.2008,47(25):4733-4736
    [39] Fraunhoffer K. J., White M. C. syn-1,2-Amino Alcohols via Diastereoselective AllylicC H Amination [J]. J. Am. Chem. Soc.2007,129(23):7274-7276
    [40] Qi X., Rice G. T., Lall M. S., et al. Diversification of a β-lactam pharmacophore viaallylic C-H amination: accelerating effect of Lewis acid co-catalyst [J]. Tetrahedron2010,66(26):4816-4826
    [41] Trost B. M., Sudhakar A. R. Cis hydroxyamination equivalent. Application to thesynthesis of (-)-acosamine [J]. J. Am. Chem. Soc.1987,109(12):3792.-3794
    [42] Wu L., Qiu S., Liu G. Br nsted Base-Modulated Regioselective Pd-CatalyzedIntramolecular Aerobic Oxidative Amination of Alkenes: Formation of Seven-MemberedAmides and Evidence for Allylic C-H Activation [J]. Org. Lett.2009,11(12):2707-2710
    [43] Reed S. A., Mazzotti A. R., White M. C. A Catalytic, Br nsted Base Strategy forIntermolecular Allylic C H Amination [J].J. Am. Chem. Soc.,2009,131(33):11701-11706
    [44] Shimizu Y., Obora Y., Ishii Y. Intermolecular Aerobic Oxidative Allylic Amination ofSimple Alkenes with Diarylamines Catalyzed by the Pd(OCOCF3)2/NPMoV/O2System [J].Org. Lett.2010,12(6):1372-1374
    [45] Yin G., Wu Y., Liu G. Scope and Mechanism of Allylic C H Amination of TerminalAlkenes by the Palladium/PhI(OPiv)2Catalyst System: Insights into the Effect ofNaphthoquinone [J].J. Am. Chem. Soc.2010,132(34):11978-11987
    [46] Jiang C., Covell D. J., Stepan A. F., et al. Sequential Allylic C–H Amination/VinylicC–H Arylation: A Strategy for Unnatural Amino Acid Synthesis from α-Olefins [J].Org. Lett.2012,14(6):1386-1389
    [47] Franzén J., B ckvall J.-E. Carbon Carbon Bond Formation in Palladium(II)-CatalyzedAllylic Oxidation: A Novel Oxidative Carbocyclization of Allene-Substituted Olefins[J]. J. Am. Chem. Soc.2003,125(20):6056-6057
    [48] Piera J., N rhi K., B ckvall J.-E. PdII-Catalyzed Aerobic Allylic OxidativeCarbocyclization of Allene-Substituted Olefins: Immobilization of an Oxygen-ActivatingCatalyst [J]. Angew. Chem., Int. Ed.2006,45(41):6914-6917
    [49] A. J. Young, M. C. White. Catalytic Intermolecular Allylic C-H Alkylation [J]. J. Am.Chem. Soc.2008,130(43):14090-14091
    [50] Lin S., Song C. X., Cai G. X., et al. Intra/Intermolecular Direct Allylic Alkylation viaPd(II)-Catalyzed Allylic C H Activation [J]. J. Am. Chem. Soc.2008,130(39):12901-12903
    [51] Jensen T., Fristrup P. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation [J].Chem. Eur. J.2009,15(38):9632-9636
    [52] Young A. J., White M. C. Allylic C-H Alkylation of Unactivated a-Olefins: SerialLigand Catalysis Resumed [J]. Angew. Chem. Int. Ed.2011,50(30):6824-6827
    [53] Larsson J. M., Zhao T. S. N., SzabóK. J. Palladium-Catalyzed Oxidative Allylic C HSilylation [J].Org. Lett.2011,13(7):1888-1891
    [54] Chen H., Cai C., Liu X., et al. Highly regioselective palladium-catalysed oxidativeallylic C–H carbonylation of alkenes [J]. Chem. Commun.2011,47(44)12224-12226
    [55] Stang E. M., White M. C. Molecular Complexity via C–H Activation: ADehydrogenative Diels–Alder Reaction [J]. J. Am. Chem. Soc.2011,133(38):14892-14895
    [56] Zubkov, F. I., Ershova, J.D.,Orlova, A.A., et al. A new approach to construction ofisoindolo[1,2-a]isoquinoline alkaloids Nuevamine, Jamtine, and Hirsutine via IMDAFreaction [J]. Tetrahedron2009,65(18):3789-3803
    [57] Trost B. M., Fullerton T. J. New synthetic reactions. Allylic alkylation [J]. J. Am. Chem.Soc.1973,95(1):292-294
    [58] Trost B. M., Weber L., Strege P. E., et al. Allylic alkylation: preparationof.pi.-allylpalladium complexes from olefins [J]. J. Am. Chem. Soc.1978,100(11):3407-3415
    [59] Trost B. M., Weber L., Strege P. E., et al. Allylic alkylation: nucleophilic attackon.pi.-allylpalladium complexes [J]. J. Am. Chem. Soc.1978,100(11):3416-3426
    [60] Trost B. M., Weber L., Strege P. E., et al. Allylic alkylation: nature of the nucleophileand application to prenylation [J]. J. Am. Chem. Soc.1978,100(11):3426-3435
    [61] Engelin C., Jensen T., Rodriguez S., et al. Mechanistic Investigation ofPalladium-Catalyzed Allylic C–H Activation [J]. ACS Catal.2013,3(3):294-302
    [62] Keinicke, L., Fristrup, P., Norrby, P.-O., et al. Nonradical Zinc Barbier Reaction forDiastereoselective Synthesis of Vicinal Amino Alcohols [J]. J. Am. Chem. Soc.2005,127(45):1575615761
    [63] Fristrup P., Le Quement S., Tanner D., et al. Reactivity and Regioselectivity in the HeckReaction: Hammett Study of4-Substituted Styrenes [J]. Organometallics2004,23(26):61606165
    [64] Makarov I. S., Fristrup P., Madsen R. Mechanistic Investigation of the Ruthenium-N-Heterocyclic-Carbene-Catalyzed Amidation of Amines with Alcohols [J]. Chem. Eur. J.2012,18(49):1568315692
    [65] Fristrup P., Tursky M., Madsen R. Mechanistic investigation of the iridium-catalysedalkylation of amines with alcohols [J]. Org. Biomol. Chem.2012,10(13):25692577
    [66] Fristrup P., Kreis M., Palmelund A., et al. The Mechanism for the Rhodium-CatalyzedDecarbonylation of Aldehydes: A Combined Experimental and Theoretical Study [J]. J. Am.Chem. Soc.2008,130(15):52065215.
    [67]) Fristrup P., Jensen G. H., Andersen M. L. N., et al. Combining Q2MM modeling andkinetic studies for refinement of the osmium-catalyzed asymmetric dihydroxylation (AD)mnemonic [J]. J. Organomet. Chem.2006,691(10):21822198
    [68] Fristrup P., Tanner D., Norrby P.-O. Updating the asymmetric osmium-catalyzeddihydroxylation (AD) mnemonic: Q2MM modeling and new kinetic measurements [J].Chirality2003,15(4):360-368
    [69] Hansch C., Leo A., Taft R. W. A survey of Hammett substituent constants and resonanceand field parameters [J]. Chem. Rev.1991,91(2):165195.
    [70] Grimme S., Antony J., Ehrlich S., et al. A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the94elements H-Pu[J]. J. Chem. Phys.2010,132(15):154104-154112
    [71] Bantreil X., Prestat G., Moreno, A., et al.-and δ-Lactams throughPalladium-Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMRInvestigation, and DFT Rationalization [J]. Chem. Eur. J.2011,17(10):2885-2896.
    [72] Davies D. L., Donald S. M. A., Al-Duaij O., et al. N H versus C H Activation of aPyrrole Imine at {Cp*Ir}: A Computational and Experimental Study [J]. Organometallics2006,25(26):59765978
    [73] Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Mechanistic Studyof Acetate-Assisted C H Activation of2-Substituted Pyridines with [MCl2Cp*]2(M=Rh, Ir)and [RuCl2(p-cymene)]2[J]. Organometallics2009,28(2)433440.
    [74] Lapointe D., Fagnou K. Overview of the Mechanistic Work on the ConcertedMetallation–Deprotonation Pathway [J]. Chem. Lett.2010,39(11):11181126
    [75] Boutadla Y., Davies D. L., Macgregor S. A., et al. Mechanisms of C–H bond activation:rich synergy between computation and experiment [J]. Dalton Trans.2009,(30):58205831
    [76] Mitsudome T., Umetani T., Nosaka N., et al. Convenient and Efficient Pd-CatalyzedRegioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as SoleReoxidant [J]. Angew. Chem., Int. Ed.2006,45(3):481-485
    [77] Cornell C. N., Sigman M. S. Discovery of a Practical Direct O2-Coupled WackerOxidation with Pd[()-sparteine]Cl2[J]. Org. Lett.2006,8(18):4117-4120
    [78] Wang A., Jiang H. Palladium-Catalyzed Direct Oxidation of Alkenes with MolecularOxygen: General and Practical Methods for the Preparation of1,2-Diols, Aldehydes, andKetones [J]. J. Org. Chem.2010,75(7):2321-2326
    [79] Gagneux A., Winstein S., Young W. G. REARRANGEMENT OF ALLYLIC AZIDES[J]. J. Am. Chem. Soc.1960,82(22):5956-5957
    [80] Padwa A., Sa M. M. Intramolecular O-H insertion reaction of azido substituteddiazoesters and its relevance to the mechanism of the allylic azide rearrangement [J].Tetrahedron Lett.1997,38(29):5087-5090
    [81] Yamada T., Sakaguchi S., Ishii Y. Oxidative Coupling of Benzenes with α,β-UnsaturatedAldehydes by the Pd(OAc)2/Molybdovanadophosphoric Acid/O2System [J]. J. Org. Chem.2005,70(14):5471-5474
    [82] Dong H., Shen, M., Redford, J. E., et al. Transition Metal-Catalyzed Synthesis ofPyrroles from Dienyl Azides [J]. Org. Lett.2007,9(25):5191-5194
    [83] Mueller C. A., Pfaltz A. Mass Spectrometric Screening of Chiral Catalysts byMonitoring the Back Reaction of Quasienantiomeric Products: Palladium-Catalyzed AllylicSubstitution [J]. Angew. Chem., Int. Ed.2008,47(18):3363-3366
    [84] Baranovsky, A. Synthesis of New Biosynthetically Important Diarylheptanoids and TheirOxa-and Fluoro-Analogues by Three Different Strategies [J]. Synth. Commun.2003,33(6):1019-1045
    [85] Ohmiya H. H., Makida Y., Li D., et al. Palladium-Catalyzed γ-Selective andStereospecific Allyl Aryl Coupling between Acyclic Allylic Esters and Arylboronic Acids [J].J. Am. Chem. Soc.2010,132(2):879-889
    [86] Duhamel L., Tombret F. Efficient synthesis of a new nucleophilic acetaldehydeequivalent:(Z)2-trimethylsiloxyvinyllithium [J]. J. Org. Chem.1981,46(18):3741-3742
    [87] Kitching W., Rappopor Z., Winstein S., et al. Allylic Oxidation of Olefins by PalladiumAcetate [J]. J. Am. Chem. Soc.1966,88(9):2054-2055
    [88] Mann S. E., Alie A. E., Tizzard G. J., et al. Sulfur-Directed Olefin Oxidations:Observation of Divergent Reaction Mechanisms in the Palladium-Mediated Acetoxylation ofUnsaturated Thioacetals [J]. Orgnaometallics2011,30(7):1772-1775
    [89] Teo P., Wickens Z. K., Dong G., et al. Efficient and Highly Aldehyde Selective WackerOxidation [J]. Org. Lett.2012,14(13):3237-3239
    [90] Dong G., Teo P., Wickens Z. K., et al. Primary Alcohols from Terminal Olefins: FormalAnti-Markovnikov Hydration via Triple Relay Catalysis [J]. Science2011,333(6049):1609-1612.
    [91] Omura S., Hirano A., Iwai Y., et al. Herquline, a new alkaloid produced by Penicilliumherquei. Fermentation, isolation and properties [J]. J. Antibiot.1979,32(8):786-790
    [92] Furusaki A., Matsumoto T., Ogura H., et al. X-Ray crystal structure of herquline, a newbiologically active piperazine from Penicillium herquei Fg-372[J]. Chem. Soc., Chem.Commun.1980,(15):698a-698a
    [93] Li S.-H., Wang J., Niu X.-M., et al. Maoecrystal V, Cytotoxic Diterpenoid with a NovelC19Skeleton from Isodon eriocalyx (Dunn.) Hara [J]. Org. Lett.2004,6(23):4327-4330
    [94] Jia L., Jiang H., Li J. Selective carbonylation of norbornene in scCO2[J]. Green Chem.1999,1(2):91-93
    [95] Greenman K. J., Van Vranken D. L. Palladium-catalyzed carbene insertion into benzylbromides [J]. Tetrahedron2005,61(26):6438-6441
    [96] Peng C., Cheng J., Wang J. Palladium-Catalyzed Cross-Coupling of Aryl or VinylIodides with Ethyl Diazoacetate [J]. J. Am. Chem. Soc.2007,129(28):8708-8709
    [97] Chen S., Wang J. Palladium-catalyzed reaction of allyl halides with α-diazocarbonylcompounds [J]. Chem. Commun.2008,(35):4198-4200
    [98] Peng C., Wang Y., Wang J. Palladium-Catalyzed Cross-Coupling of α-DiazocarbonylCompounds with Arylboronic Acids [J]. J. Am. Chem. Soc.2008,130(5):1566-1567
    [99] Yu W. Y., Tsoi Y. T., Zhou Z., et al. Palladium-Catalyzed Cross Coupling Reaction ofBenzyl Bromides with Diazoesters for Stereoselective Synthesis of (E)-α,β-Diarylacrylates [J].Org. Lett.2009,11(2):469-472
    [100] Kudirka R., Devine S. K. J., Adams C. S., et al. Palladium-Catalyzed Insertion of α-Diazoesters into Vinyl Halides To Generate α-β Unsaturated γ-Amino Esters [J]. Angew.Chem.2009,121(20):3731-3734
    [101] Chen Z.-S., Duan X.-H., Zhou P.-X., et al. Palladium-Catalyzed Divergent Reactions of-Diazocarbonyl Compounds with Allylic Esters: Construction of Quaternary Carbon Centers[J]. Angew. Chem. Int. Ed.2012,51(6):1370-1374
    [102] Barluenga J., Moriel P., Valdés C., et al.-Tosylhydrazones as Reagents forCross-Coupling Reactions: A Route to Polysubstituted Olefins [J]. Angew. Chem. Int. Ed.2007,46(29):5587-5590
    [103] Barluenga J., Tomás-Gamasa M., Moriel P., et al. Pd-Catalyzed Cross-Coupling Reac-tions with Carbonyls: Application in a Very Efficient Synthesis of4-Aryltetrahydropyridines[J]. Chem. Eur. J.2008,14(16):4792-4795
    [104] Barluenga J., Escribano M., Moriel P., et al. Synthesis of Enol Ethers and Enamines byPd-Catalyzed Tosylhydrazide-Promoted Cross-Coupling Reactions [J]. Chem. Eur. J.2009,15(48):13291-13294
    [105] Xiao Q., Ma J., Yang Y., et al. Pd-Catalyzed C═C Double-Bond Formation byCoupling of N-Tosylhydrazones with Benzyl Halides [J]. Org. Lett.2009,11(20):4732-4735
    [106] Tréguier B., Hamze A., Provot O., et al. Expeditious synthesis of1,1-diarylethylenesrelated to isocombretastatin A-4(isoCA-4) via palladium-catalyzed arylation ofN-tosylhydrazones with aryl triflates [J]. Tetrahedron Lett.2009,50(47):6549-6552
    [107] Zhang Z., Liu Y., Gong M., et al. Palladium-Catalyzed Carbonylation/Acyl MigratoryInsertion Sequence [J]. Angew. Chem. Int. Ed.2010,49(6):1139-1142
    [108] Brachet E., Hamze A., Peyrat J. F., et al. Pd-Catalyzed Reaction of Sterically HinderedHydrazones with Aryl Halides: Synthesis of Tetra-Substituted Olefins Related toiso-Combretastatin A4[J]. Org. Lett.2010,12(18):4042-4045
    [109] Xiao Q., Xia Y., Li H., et al. Coupling of N-Tosylhydrazones with Terminal AlkynesCatalyzed by Copper(I): Synthesis of Trisubstituted Allenes [J]. Angew. Chem.2011,123(5):1146-1149
    [110] Zhou L., Ye Fe., Zhang Y., et al. Pd-Catalyzed Three-Component Coupling ofN-Tosylhydrazone, Terminal Alkyne, and Aryl Halide [J]. J. Am. Chem. Soc.2010,132(39):13590-13591
    [111] Barluenga J., Florentino L., Aznar F., et al. Synthesis of Polysubstituted Olefins byPd-Catalyzed Cross-Coupling Reaction of Tosylhydrazones and Aryl Nonaflates [J]. Org. Lett.2011,13(3):510-513
    [112] Barluenga J., Tomás-Gamasa M., Aznar F., et al. Arylation of-Chiral Ketones byPalladium-Catalyzed Cross-Coupling Reactions of Tosylhydrazones with Aryl Halides [J].Angew. Chem.2010,122(38):7008-7011
    [113] Barluenga J., Quinones N., Cabal M.-P. Tosylhydrazide-PromotedPalladium-Catalyzed Reaction of β-Aminoketones with o-Dihaloarenes: CombiningOrganocatalysis and Transition-Metal Catalysis [J]. Angew. Chem.2011,123(10):2398-2401
    [114] Chen Z.-S., Duan X.-H., Wu L.-Y., et al. Copper-Catalyzed C–P Coupling throughDecarboxylation [J]. Chem. Eur. J.2011,17(20):6918-6921
    [115] Zhou F., Ding K., Cai Q. Palladium-Catalyzed Amidation of N-Tosylhydrazones withIsocyanides [J]. Chem. Eur. J.2011,17(44):12268-12271
    [116] Zhang J., Liu Y., Ling L., et al. Pd-Catalyzed Carbonylation of Diazo Compounds atAtmospheric Pressure: A Catalytic Approach to Ketenes [J]. J. Am. Chem. Soc.2011,133(12):4330-4341
    [117] Zhou L., Ye F., Zhang Y., et al. Cyclopropylmethyl Palladium Species from CarbeneMigratory Insertion: New Routes to1,3-Butadienes [J]. Org. Lett.2012,14(3):922.-925
    [118] Zhao X., Jing J., Lu K., et al. Pd-catalyzed oxidative cross-coupling ofN-tosylhydrazones with arylboronic acids [J]. Chem. Commun.2010,46(10):1724-1726
    [119] Zhou L., Ye Fe., Ma J., et al. Palladium-Catalyzed Oxidative Cross-Coupling ofN-Tosylhydrazones or Diazoesters with Terminal Alkynes: A Route to Conjugated Enynes [J].Angew. Chem. Int. Ed.2011,50(15):3510-3514
    [120] Zhang Y., Wang J. Recent Developments in Pd-Catalyzed Reactions of DiazoCompounds.[J]. Eur. J. Org. Chem.2011,(6):1015–1026
    [121] Bamford W. R., Stevens T. S. The decomposition of toluene-p-sulfonylhydrazones byalkali.[J]. J. Chem. Soc.1952,(0):4735-4740
    [122] Fulton J. R., Aggarwal V. K., Vicente J. de. The Use of Tosylhydrazone Salts as a SafeAlternative for Handling Diazo Compounds and Their Applications in Organic Synthesis.[J].Eur. J. Org. Chem.2005,(8):1479-1492
    [123] Barluenga J., Escribano M., Aznar, F., et al. Arylation of a-Chiral Ketones byPalladium-Catalyzed Cross-Coupling Reactions of Tosylhydrazones with Aryl Halides.[J].Angew. Chem.2010,122(38):7008–7011
    [124] Barluenga J., Moriel, P. Valdés, C., et al. N-Tosylhydrazones as Reagents forCross-Coupling Reactions: A Route to Polysubstituted Olefins.[J]. Angew. Chem., Int. Ed.2007,46(29):5587–5590
    [125] Zhou L., Ye Fe., Ma J., et al. Palladium-Catalyzed Oxidative Cross-Coupling ofN-Tosylhydrazones or Diazoesters with Terminal Alkynes: A Route to Conjugated Enynes [J].Angew. Chem. Int. Ed.2011,50(15):3510-3514
    [126] Zhou P., Jiang H., Huang L., et al. Acetoxypalladation of unactivated alkynes andcapture with alkenes to give1-acetoxy-1,3-dienes taking dioxygen as terminal oxidant.[J].Chem. Commun.,2011,47(3):1003–1005
    [127] Scriven E. F., Turnbull K. Azides: their preparation and synthetic uses [J]. Chem. Rev.1988,88(2):297-368
    [128] Br se S., Gil C., Knepper K., et al. Organic Azides: An Exploding Diversity of aUnique Class of Compounds [J]. Angew. Chem. Int. Ed.2005,44(33):5188-5240
    [129] Br se S., Banert K. Organic Azides: Synthesis and Applications,Wiley, Chichester,2010.
    [130] Snider B. B., Zhou J. Synthesis of Lanopylin B1[J]. J. Org. Chem.2005,70(3):1087-1088
    [131] Mascitti V., Corey E. J. Total Synthesis of (±)-Pentacycloanammoxic Acid [J]. J. Am.Chem. Soc.2004,126(48):15664-15665
    [132] Cassidy M. P., Oezdemir A. D., Padwa A. An Aza-Wittig/π-Furan CyclizationApproach Toward the Homoerythrina Alkaloid (±)-Selaginoidine [J]. Org. Lett.2005,7(7):1339-1342
    [133] Kolb H. C., Sharpless K. B. The growing impact of click chemistry on drug discovery[J]. Drug Discovery Today2003,8(24):1128-1137
    [134] Whiting M., Muldoon J., Lin Y.-C., et al. Inhibitors of HIV-1Protease by Using In SituClick Chemistry [J]. Angew. Chem. Int. Ed.2006,45(9):14351439
    [135] Binder W. H., Sachsenhofe R.‘Click’ Chemistry in Polymer and Materials Science [J].Macromol. Rapid Commun.2007,28(1):15-54
    [136] Lahann J. Click Chemistry for Biotechnology and Materials Science, Wiley, Chichester,2009
    [137] Sletten E. M., Bertozzi C. R. From Mechanism to Mouse: A Tale of Two BioorthogonalReactions [J]. Acc. Chem. Res.2011,44(9):666-676
    [138] Kolb H. C., Finn M. G., Sharpless K. B. Click Chemistry: Diverse Chemical Functionfrom a Few Good Reactions [J]. Angew. Chem. Int. Ed.2001,40(11):2004-2021
    [139] Binder W. H., Kluger C. Azide/Alkyne-“Click” Reactions: Applications in MaterialScience and Organic Synthesis [J]. Curr. Org. Chem.2006,10(14):1791-1815
    [140] Breinbauer R., K hn M. Azide–Alkyne Coupling: A Powerful Reaction forBioconjugate Chemistry [J]. ChemBioChem2003,4(11):1147-1149
    [141] Kapat A., Koning A., Montermini F., et al. A Radical Procedure for the Anti-Markovnikov Hydroazidation of Alkenes [J]. J. Am. Chem. Soc.2011,133(35):13890-13893
    [142] Waser J., Gaspar B., Nambu H., et al. Hydrazines and Azides via the Metal-CatalyzedHydrohydrazination and Hydroazidation of Olefins [J]. J. Am. Chem. Soc.2006,128(35):11693-11712
    [143] Waser J., Nambu H., Carreira E. M. Cobalt-Catalyzed Hydroazidation of Olefins:Convenient Access to Alkyl Azides [J]. J. Am. Chem. Soc.2005,127(23):8294-8295
    [144] Waser J., Carreira E. M. in Organic azides (Eds.: S. Br se, K. Banert), Wiley,Chichester,2010, pp.95-111
    [145] Banert K., Berndt C., Firdous S., et al. Extremely Simple but Long Overlooked:Generation of-Azido Alcohols by Hydroazidation of Aldehydes [J]. Angew. Chem. Int. Ed.2010,49(52):10206-10209
    [146] Barluenga J., Tomás-Gamasa M., Valdés C. Reductive Azidation of CarbonylCompounds via Tosylhydrazone Intermediates Using Sodium Azide [J]. Angew. Chem. Int.Ed.2012,51(24):5950-5952
    [147] Tang C., Jiao N. Copper-Catalyzed C–H Azidation of Anilines under Mild Conditions[J]. J. Am. Chem. Soc.2012,134(46):18924-18927
    [148] Lubriks D., Sokolovs I., Suna E. Indirect C–H Azidation of Heterocycles viaCopper-Catalyzed Regioselective Fragmentation of Unsymmetrical λ3-Iodanes [J]. J. Am.Chem. Soc.2012,134(37):15436-15442
    [149] Punniyamurthy T., Velusamy S., Iqbal J. Recent Advances in Transition MetalCatalyzed Oxidation of Organic Substrates with Molecular Oxygen [J]. Chem. Rev.2005,105(6):2329-2364
    [150] Shi Z., Zhang C., Tang C., et al. Recent advances in transition-metal catalyzed reactionsusing molecular oxygen as the oxidant [J]. Chem. Soc. Rev.2012,41(8):3381-3430
    [151] Wu W., Jiang H. Palladium-Catalyzed Oxidation of Unsaturated Hydrocarbons UsingMolecular Oxygen [J]. Acc. Chem. Res.2012,45(10):1736-1748
    [152] Cho S.-D., Choi W.-Y., Lee S.–G., et al. Chemoselective reduction of
    highly-functionalized azidopyridazines to corresponding aminopyridazines using Fe/NH4Cl
    in organic solvent-water two-phase solution [J]. Tetrahedron lett.1996,37(39):7059-7060

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700