用户名: 密码: 验证码:
自悬浮聚苯胺的制备、结构及其复合材料的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(RANI)与其它导电高分子相比,其结构多样化、电导率较高、掺杂机制独特、物理性能优异、环境稳定性良好,且原料廉价易得、合成方法简便,是当今导电高分子领域研究的热点之一。但其加工性能未能得到很好的改善,与其它聚合物复合时分散性差,难以在实际中得到广泛应用。因此,制备一类自悬浮聚苯胺,改善其加工性能具有重要的理论意义和实用价值。本博士论文制备了三类自悬浮聚苯胺,探讨了自悬浮聚苯胺的结构、性能以及形成机理。主要研究内容和结果如下:
     1、通过本体聚合与原位掺杂,使聚苯胺分子链上接枝有机长链壬基酚聚氧乙烯醚磺酸-10(NPES),制得自悬浮聚苯胺。这种自悬浮聚苯胺可溶于多种溶剂,并表现出热可逆凝胶的粘弹行为。通过氨水去掺杂及热失重分析(TGA),计算出聚苯胺中NPES的掺杂率(fNPES);不同的掺杂率表现出不同的形态结构,当fNPES大于0.6时的聚苯胺出现两相结构,连续相可流动,分散相为球形胶束;偏光显微镜照片显示局部有液晶结构。
     2、通过化学氧化偶联分别制得苯胺三聚体、四聚体和五聚体。X射线衍射(XRD)测试结果表明三种苯胺低聚物都能结晶,其中苯胺四聚体结晶比较完善。紫外可见光谱(UV-vis)结果表明三种苯胺低聚物都处于氧化态。
     3、通过溶液掺杂技术将NPES化学掺杂在三种苯胺低聚物分子上,制得自悬浮苯胺低聚物。TGA数据表明,三种苯胺低聚物的掺杂率都接近理论掺杂率;偏光显微镜照片呈现出纳米级的两相分离状态,局部有液晶相存在,其中自悬浮苯胺五聚体出现近晶型液晶织构,自悬浮苯胺三聚体和自悬浮苯胺四聚体出现向列相液晶织构;产物具有类液体流变特征,且粘度(η)低于NPES;室温下,自悬浮苯胺三聚体剪切储能模量(G')、剪切损耗模量(G")和η最低;聚合度越高,体系的G'、G"和η对温度变化的敏感度越大。
     4、采用溶液聚合和4-壬基酚聚氧乙烯醚乙酸(GAE)、NPES和4-壬基酚聚氧乙烯醚丙基硫酸-20(NPSE)原位掺杂技术,制备出自悬浮聚苯胺。红外光谱、UV-vis结果表明GAE、NPES和NPSE通过化学掺杂使聚苯胺由氧化态转变成还原态。透射电镜照片表明这三种自悬浮聚苯胺分散相呈颗粒分布,粒度分别小于30nm、5nm和10nm。偏光显微镜照片显示自悬浮聚苯胺局部都有液晶结构,其中,GAE掺杂的自悬浮聚苯胺出现独特的纺锤型衍射织构。
     5、GAE、NPES和NPSE掺杂的自悬浮聚苯胺均呈类液体的流变行为,可溶于多种溶剂,电导率在0.1~2S/m之间。在各自最高掺杂率时,PANI-NPSE的流动性最好,PANI-NPES次之,PANI-GAE最差;PANI-GAE的流动性对温度最敏感,随着温度的升高,粘度下降速度快。
     6、将溶液法制备的PANI-NPES与纳米石墨片(Gr)进行复合,制得PANI/Gr纳米复合材料。与三步法制备的PANI/Gr纳米复合材料相比,表现出较低的粘度和较高的导电性。将PANI-GAE、PANI-NPES和PANI-NPSE分别与聚偏氟乙烯(PVDF)共混制备的PANI/PVDF复合材料具有优异的介电性能。质量分数为7%的NPES掺杂的自悬浮聚苯胺制备的PANI/PVDF复合材料,介电常数高达872,tanδ仅为0.1。
In the past decades, polyaniline (PANI) has been one of the lasting hot spot in the researches on electric conductive macromolecules due to its diverse molecule structures, superior electric conductivity, unique doping mechanism, excellent physical properties, favorable environmental stability, low-cost raw materials and facile synthetic method. However, the extensive exploitation of these fascinating properties has always been restricted from the poor dispersibility of PANI in other polymer matrix. Therefore, the improvement of its processability promises great theoretical and practical significance for various applications of PANI and PANI based hybrids. In this dissertation, three types of self-suspended PANIs were successfully prepared, and the property-structure relationship and forming mechanism based on these PANI derivatives have been fully discussed. The main contents and results are as follows:
     (1) The typical preparation of self-suspended PANI followed a one-step strategy. Macromolecular PANI was obtained via bulk polymerization from aniline monomers, and in situ chemically doped by the organic long-chain proton acid, namely nonylphenol polyoxyethylene ether sulfoacid-10(NPES). The as-prepared self-suspended PANI demonstrated excellent solubility in various solvents and displayed the characteristic viscoelastic behaviors of thermoreversible gel. Furthermore, it's found the morphological structures of final products which were closely correlated to the content of NPES (fNPES), can be calculated by thermal gravimetrical analysis (TGA). Particularly, when fNPES>0.6, the PANI presented two phase structure, the flowable continuous phase and dispersion phase of spherical micelles. Partial liquid crystalline structures were also identified in the polarizing microscope (POM) images.
     (2) Aniline trimer, tetramer, pentamer were prepared by chemically oxidative coupling and the results from X-ray diffraction revealed crystalline nature for all three aniline oligomers. It was worth noting that the tetramer showed a much higher crystallinity. UV-Vis spectra indicated that three oligomers were in emeraldine base.
     (3) The above-prepared aniline oligomers were chemically doped with NPES to obtain self-suspended aniline oligomers. TGA results showed a good coincidence between each doping ratio of the self-suspended aniline oligomers and the corresponding theoretical value. POM images indicated that the three samples were separated, into two phases at nanoscale level and liquid phases were found in local area. Particularly, the self-suspended pentamers exhibited smectic structure, while the trimers and tetramers showed nematic structure. The products featured typical liquid-like manner, and the viscosity (η) was even lower than pure NPES. Amongst three samples, the trimmers exibited the lowest shear storage modulus (G'), shear loss modulus (G") and η. As the degree of polymerization increased, the G', G" and η of hybrid became more sensitive to temperature variation.
     (4) PANI was synthesized via solution polymerization, and in situ doped with4-nonylphenol polyoxyethylene ether acetic acid (GAE), NPES and4-nonylphenol polyoxyethylene ether propyl sulfuric acid-20(NPSE) to obtain three self-suspended polyanilines. Both Fourier transform infrared spectra and UV-Vis spectra suggested that PANI had turn from Emeraldine base into Leucoemeraldine base. Transmission electron microscope (TEM) images revealed that dispersion phases of the three products presented as particles, with diameters lower than30nm,5nm and10nm, respectively. POM images presented the liquid crystalline structures in local areas. Interestingly, GAE doped self-suspended polyaniline exhibits unique spindle diffraction structure.
     (5) The self-suspended polyanilines doped with GAE, NPES and NPSE all exhibited liquid-like rheological behavior and excellent dissolvability in various solvents. The electric conductivity was determined in range of0.1-2S/m. When each possessed the highest doping ratio, PANI-NPSE showed most favorable fluidity and PANI-GAE was the poorest. The flowability of PANI-GAE was most sensitive to temperature, as its viscosity decreased fastest with elevation of the temperature.
     (6) The PANI-NPES prepared via solution polymerization was further composited with graphite flakes to obtain the PANI/Gr composites. Comparing with that obtained by three-step method, the as-preared PANI/Gr composites showed much lower viscosity and superior electric conductivity. In addition, the PANI/PVDF composites made by blending PANI-GAE, PANI-NPES, PANI-NPSE with PVDF respectively demonstrated remarkable dielectric properties. Especially, the dielectric permittivity of the PANI/PVDF composite prepared from self-suspended polyaniline with7wt.%NPSE reached up to872, while the dielectric loss tan8was as low as0.1.
引文
[1]Shirakawa H., Louis E. J., MacDiarmid A. G et al. Synthesis of electrically conducting organic polymers:halogen derivatives of Polyacetylene (CH)x. Journal of the Chemical Society, Chemical Communications.1977,16:578-580.
    [2]Cvetko B. F., Brungs M. P., Burford R. P., et al. Structure, strength and electrical performance of conducting polypyrroles. Journal of materials science,1988,23:2102-2106.
    [3]李永舫.导电聚吡咯的研究.高分子通报,2005,8(4):51-57.
    [4]钟传健,田中群,田昭武.吡咯电化学聚合的现场ESR波谱和Raman光谱研究.中国科学化学,1989,19(12):1233-1238.
    [5]江建明,戚慰先,仲蕾兰,等.化学氧化聚吡咯的结构及导电性的研究.高分子材料科学与工程,1991,7(5):94-98.
    [6]Jen K. Y., Miller G G Elsenbaumer R. L. Highly conducting, soluble and environmentally-stable poly(3-alkylthiophenes). Journal of the Chemical Society-Chemical Communications,1986,17:1346-1347.
    [7]MacDiarmid A. G, Chiang J. C. Halpern M., et al. Aqueous chemistry and electrochemistry of polyacetylene and polyaniline application to rechargeable batteries. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry),1984,25(2):248-249.
    [8]Angelopoulos M., Asturias G. E., Ermer S. P. Polyaniline:solutions, films and oxidation state. Molecular Crystals Liquid Crystals Incorporating Nonlinear Optics,1988.160(1):151-163.
    [9]Klavetter F. L., Cao Y. Homogeneous router to polyaniline. Synthetic Metals,1993,55: 989-996.
    [10]Cao Y., Smith P., Heeger A. J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals,1992.48(1): 91-97.
    [11]Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society,1862,15:161-163.
    [12]王利祥,王佛松.导电聚合物聚苯胺的研究进展--Ⅰ.合成、链结构和凝聚态结构.应用化学,1990,7(5):1-10.
    [13]Willstatter R., Moore C. W. Uber Anilinschwarz. Berichte der Deutschen Chemischen Gesellschaft,1907,40(2):2665-2689.
    [14]Green A. G, Woodhead A. E. Aniline-black and allied compounds:Part I. Journal of the Chemical Society-Transactions,1910,97(0):2388-2403.
    [15]Jozefowicz M. E., Laversanne R., Javadi H. H. S, et al. Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline. Physical Review B:Condensed Matter.1989,39(17):12958-12961.
    [16]Buvet R., Desagher S., Jozefowicz, M. E., et al. Thermodynamic analysis of the populations of charge carriers in dissociable binary semiconductors. Electrochimica Acta,1968,13(6): 1441-1450.
    [17]Surville R. D., Jozefowiez M. E., Yu L. T. et al. Electrochemical chains using protolytic organic semiconductors. Electrochimica Acta,1968,13(6):1451-1458.
    [18]Costantini N., Cagnolati R., Nucci L., et al. Electrochemical synthesis of instrinsically conducting polymers of 3-alkylpyrroles. Synthetic Metals,1998,92(2):139-147.
    [19]Okabayashi K., Goto F., Abe K., et al. Electrochemical studies of polyaniline and its application. Synthetic Metals.1987,18(1-3):365-370.
    [20]Armers S. P., Aldissi M. Potassium iodate oxidation route to polyaniline:an optimization study. Polymer,1991,32(11):2043-2048.
    [21]Cao Y., Andreatta A., Heeger A. J., et al. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer,1989,30(12):2305-2311.
    [22]Genies E. M., Tsintavis C., Syed A. A. Electrochemical systems of the PAN. Molecular Crystals and Liquid Crystals,1985,121(2):181.
    [23]Bidan G, Genies E. M., Lapkowski M. Polypyrrole and poly (N-methylpyrrole) film doped with Keggin-type heteropolyanions:preparation and properties. Journal of Electroanalytical Chemitry and Interfacial Electrochemistry,1988,151(2):297-306.
    [24]Chiang J. C., MacDiarmd A. G'Polyaniline':Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals,1986,13(1-3):193-205.
    [25]Joo J., Oblakowski Z., Epstein A. J., et al. Evolution of the metallic state of polyaniline. Science and Technology of Synthetic Metals,1994, ICSM'94. International Conference on.
    [26]Holland E. R., Pomfret S. J., Adams P. N., et al. Doping dependent transport properties of polyaniline-CSA films. Synthetic Metals,1997,84(1-3):777-778.
    [27]Huang J., Wan M. X. Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science Part A:Polymer Chemistry,1999,37(9): 1277-1284.
    [28]Stejskal J., Riede A., Hlavata D., et al. The effect of polymerization temperature on molecular weight, crystallinity and electrical conductivity of polyaniline. Synthetic Metals, 1998,96(1):55-61.
    [29]Mattoso L. H. C., MacDiarmid A. G., Epstein A. J. Controlled synthesis of high molecular weight polyaniline and poly (o-methoxyaniline). Synthetic Metals,1994,68(1):1-11.
    [30]Gregory R. V, Kimbrell W. C., Kuhn H. H. Electrically conductive non-metallic textile coatings. Journal of Industrial Textiles,1991,20(3):167-175.
    [31]Liu F. L., Wudl F., Nowak M., et al. Phenyl-capped octaaniline (COA):an excellent model for polyaniline. Journal of the American Chemical Society,1986,108(26):8311-8313.
    [32]Wudl F., Angus R. O., Lu F. L., et al. Poly(p-phenyleneamineimine):synthesis and comparison to polyaniline. Journal of the American Chemical Society,1987,109(12): 3677-3684.
    [33]Huang J. X., Virji S., Weiller B. H., R.B.Kaner. Polyaniline nanofibers:facile synthesis and chemical sensors. Journal of the American Chemical Society,2003,125(2):314-315.
    [34]Huang J. X., Kaner R. B. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society,2004,126(3):851-855.
    [35]Diaz A. R, Logan J. A. Interfacial Electrochem. Journal of Electroanalytical Chemistry,1980, 111:111.
    [36]Ohsaka T., Ohnuki Y., Oyama N., et al. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline. Journal of Electroanalytical Chemistry,1984,161(2):399-405.
    [37]Kobayashi T., Yoneyama H., Tamura H. Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry,1984,161(2):419-423.
    [38]Heinze J. Electrochemistry of conducting polymers. Synthetic Metals,1991,43(1-2): 2805-2823.
    [39]Volkov A., Tourillon G, Lacaze P. C., et al. Electrochemical polymerization of aromatic amines:IR, XPS and PMT study of thin film formation on a Pt electrode. Journal of Electroanalytical Chemistry and Interfacial Eletrochemistry,1980,115(2):279-291.
    [40]Huang W. S., Humphrey B. D., MacDiarmid A. G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1986,82(8):2385-2400.
    [41]D.M.Mohilner, R.N.Adams, W.J.Argersinger. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. Journal of the American Chemical Society,1962,84(19):3618-3622.
    [42]Genies E. M., Syed A. A., Tsintavis C. Electrochemical study of polyaniline in aqueous and organic medium. Redox and kinetic properties. Molecular Crystals and Liquid Crystals,1985, 121(1-4):181-186.
    [43]Wang B. C., Tang J. S., Wang F. S. The effect of anions of supporting electrolyte on the electrochemical polymerization of aniline and the properties of polyaniline. Synthetic Metals, 1986,13(4):329-334.
    [44]Wang P., Dordick J. S. Enzymatic synthesis of unique thymidine-containing polyphenols. Macromolecules,1998,31(3):941-943.
    [45]Aiva K. S., Kumar J., Marx K. A., et al. Enzymatic synthesis and characterization of a novel water-soluble polyaniline:poly(2,5-diaminobenzenesulfonate). Macromolecules,1997, 30(14):4024-4029.
    [46]Premachandran R. S., Banerjee S., Wu X. K., et al. Enzymatic synthesis of fluorescent naphthol-based polymers. Macromolecules,1996,29(20):6452-6460.
    [47]Bruno F. F., Akkara J. A., Samuelson L. A., et al. Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface. Langmuir,1995,11(3): 889-892.
    [48]Sahoo S., Nagarajan R., Samuelson L., et al. Enzymatically synthesized polyaniline in the presence of a template poly(vinylphospuonic acid):a solid state NMR study. LMSA,2001, 38(12):1315-1328.
    [49]景遐斌,王利祥,王献红,等.导电聚苯胺的合成、结构、性能和应用.高分子学报,2005,(5):655-663.
    [50]张清华,王献红,景遐斌.聚苯胺的合成及其光谱特性.化学世界,2001,42(5):242-244.
    [51]Geng Y. H., Jing X. B., Li J., et al. NMR study of doped poly(2,5-dimethylaniline). Macromolecular Rapid Communications,1997,18(2):73-81.
    [52]马利,汤琪,导电高分子材料聚苯胺的研究进展.重庆大学学报:自然科学版,2002,25(2):124-127.
    [53]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应.武汉大学学报:自然科学版,1993,(6):65-73.
    [54]Gong J., Su Z. M., Dai Z. M., et al. Syntheses, characterization and conductivity polyaniline doped with H5SiM11VO40(M=Mo, W). Synthetic Metals,1999,101(1-3):751.
    [55]Zhan C. M., Zhen J. J., Su H. S., et al. The synthesis and characterization of polyaniline catalysed and doped by squaric acid. Wuhan University Journal of Natural Sciences,1999, 4(1):103-105.
    [56]MacDiarmid A. G., Epstein A. J. Secondary doping in polyaniline. Synthetic Metals,1995, 69(1-3):85-92.
    [57]Pokhodenko V. D., Kurys Y. I., Posudievsky O. Y. Heteropolyacid/m-cresol system as a primary/secondary dopant combination for polyaniline. Synthetic Metals,2000,113(1): 199-201.
    [58]唐劲松,等.苯胺的化学法聚合及所得产物的表征.全国高分子学术论文报告会预印集.武汉:中国化学会高分子委员会筹备委员会,1987,1339.
    [59]Zeng R.X., Ko T. M. Structure-conductivity relationships of iodine-doped polyaniline. Journal of Polymer Science Part B:Polymer Physics,1997,35(13):1993-2001.
    [60]Wan M. X., Yang J. Electrochemical polymerization of polyaniline at the applied magnetic field. Synthetic Metals,1995,69(1-3):155-156.
    [61]Angelopoulos M. Shaw J.M., Lee K. L., Conducting polymers as lithographic materials. Polymer Engineering & Science,1992,32(20):1535-1540.
    [62]Li S. Z., Wan M. X. Photo-induced doped polyaniline by the vinylidene chloride and methyl acrylate copolymer as photo acid generator. Chinese Journal of Polymer Science,1997,15(2): 108-113.
    [63]Alcdcer L. Conducting Polymers:Special Applications. Springer,1987.
    [64]景遐斌,唐劲松,王英,等.掺杂态聚苯胺链结构的研究.中国科学B辑,1990,(1):15-20.
    [65]Cao Y., Qiu J. J., Smith P. Effect of solvents and co-solvents on the processibility of polyaniline:I. solubility and conductivity studies. Synthetic Metals,1995,69(1-3):187-190.
    [66]李文连.π-共轭高分子光电性能及聚合物LED.液晶与显示,1997,12(3):215-222.
    [67]蓝立文.双马来酞亚胺压铸树脂的研究.西安:西北工业大学出版社.1995,200-205.
    [68]赵文元,王亦军.功能高分子材料化学.北京:化学工业出版社.1996.
    [69]殷敬华,莫志深.现代高分子物理学(上册).北京:科学出版社.2001.
    [70]王惠忠,王荣顺,赵大成,等.掺杂态聚苯胺能带结构和导电机理的研究.高等学校化学学报,1991,12(9):1229-1233.
    [71]Macdiarmid A. G., Chiang J. C., Halpern M., et al.'Polyaniline':interconversion of metallic and insulating forms. Molecular Crystals and Liquid Crystals,1985,121(1-4):173-180.
    [72]Macdiarmid A. G., Mu S. L., Somasiri N. L. D., et al. Electrochemical characteristics of 'Polyaniline'cathodes and anodes in aqueous electrolytes. Molecular Crystals and Liquid Crystals,1985,121(1-4):187-190.
    [73]Macdiarmid A. G., Chiang J. C., Huang W. S., et al. Polyaniline:protonic acid doping to the metallic regime. Molecular Crystals and Liquid Crystals,1985,125(1):309-318.
    [74]Macdiarmid A. G., Chiang J. C., Richter A. F.'Polyaniline':A new concept in conducting polymers. Synthetic Metals,1987,18(13):285-290.
    [75]Huang W. S., Humphrey B. D., MacDiarmid A. G Polyaniline:a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1986,82:2385-2400.
    [76]Wan M. X. Absorption spectra of thin film of polyaniline. Journal of Polymer Science Part A: Polymer Chemistry,1992,30(4):543-549.
    [77]旷英姿.导电高分子聚苯胺的合成及应用.精细化工中间体,2004,34(4):18-20.
    [78]王杨勇,强军锋,井新利,等.导电高分子聚苯胺及其应用.化工新型材料,2003,31(3):1-3.
    [79]范俊华,万梅香,朱道本.可溶性导电聚苯胺的研究进展.高分子通报,1997,(1):22-28.
    [80]孙再成,李季,王献红,等.苯胺低聚体的合成与表征.高分子通报,2001,(1):16-24.
    [81]周云春,耿建新,陈剑峰,等.苯封端还原态苯胺四聚体结晶形态的研究.高等学校化学学报,2003,24(12):2300-2303.
    [82]Honzl J., Tlusfakova M. Polyaniline compounds. II. The linear oligoaniline derivatives tri-, tetra-, and hexaanilinobenzene and their conductive complexes. Journal of Polymer Science Part C:Polymer Symposia,1968,22(1):451-462.
    [83]Cao Y., Li S. Z., Xue Z. J., et al. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synthetic Metals,1986,16(3):305-315.
    [84]Rebourt E., Joule J. A., Monkman A. P. Polyaniline oligomers:synthesis and characterisation. Synthetic Metals,1997,84(1-3):65-66.
    [85]Sadighi J. P., Singer R. A., Buchwald S. L. Palladium-catalyzed synthesis of Monodisperse, controlled-length, and functionalized oligoanilines. Journal of the American Chemical Society,1998,120(20):4960-4976.
    [86]Wang W., MacDiarmid A. G New synthesis of phenyl/phenyl end-capped tetraaniline in the leucoemeraldine and emeraldine oxidation states. Synthetic Metals,2002,129(2):199-205.
    [87]Bajer I. K., Rozalska I., Kurylek M. Synthesis and spectroscopic properties of aniline tetramers. New Journal of Chemistry,2004,28(6):669-675.
    [88]Wei Y, Yang C. C., Ding T. Z. A one-step method to synthesize N,N'-bis(4'-aminophenyl)-1,4-quinonenediimine and its derivatives. Tetrahedron Letters, 1996,37(6):731-734.
    [89]Wang Z. Y, Yang C., Gao J. P., et al. Electroactive polyimides derived from amino-terminated aniline trimer. Macromolecules,1998,31(8):2702-2704.
    [90]Zhang W. J., Feng J., MacDiarmid A. G, et al. Synthesis of oligomeric anilines. Synthetic Metals,1997,84(1-3):119-120.
    [91]高军波,李科,孙辉,等.改进的假高稀技术合成聚苯胺三聚体和四聚体及其紫外光谱的研究.高等学校化学学报,2000,21(2):315-320.
    [92]Gao J. B., Li K., Zhang W. J., et al. Facile synthesis of phenyl-capped oligoaniilines using pseudo-high dilution technique. Macromolecular Rapid Communicatons,1999,20(10): 560-563.
    [93]Bourlinos A. B., Herrera R., Chalkias N., et al. Surface-functionalized nanoparticles with liquid-like behavior. Advanced Materials,2005,17(2):234-237.
    [94]Peplow Mark. Nanoparticles go with the flow. Nature,2004,432(7018):688.
    [95]Smarsly B., Kaper H. Liquid inorganic-organic nanocomposites:novel electrolytes and ferrofluids. Angewandte Chemie International Edition,2005,44(25):3809-3811.
    [96]Bourlinos A. B., Giannelis E. P., Zhang Q., et al. Surface-functionalized nanoparticles with liquid-like behavior:the role of the constituent components. The European Physical Journal E,2006,20(1):109-117.
    [97]Yu H. Y., Koch D. L. Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir,2010,26(22):16801-16811.
    [98]Jespersen M. L., Mirau P. A., Von Meerwall E., et al. Canopy dynamics in nanoscale ionic materials. ACS Nano,2010,4(7):3735-3742.
    [99]Hong B. B., Chremos A, Panagiotopoulos A. Z. Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discussions,2012,154:29-40.
    [100]Bourlions A. B., Chowdhury S. R., Herrera R., et al. Functionalized nanostructures with liquid-like behavior:expanding the gallery of available nanostructures. Advance Functional Materials,2005,15(8):1285-1290.
    [101]Bourlinos A. B., Stassinopoulos A., Anglos D., et al. Functionalized ZnO nanoparticles with llquidlike behavior and their photoluminescence properties. Small,2006,2(4):513-516.
    [102]Liu D. P., Li G D., Su Y., et al. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angewandte Chemie International Edition,2006,45(44): 7530-7533.
    [103]Warren S. C., Banholzer M. J., Slaughter L. S., et al. Generalized route to metal nanoparticles with liquid behavior. Journal of the American Chemical Society,2006, 128(37):12074-12075.
    [104]Rodriguez R., Herrera R., Archer L. A., et al. Nanoscale ionic materials. Advanced Materials,2008,20(22):4353-4358.
    [105]Feng Q. S., Dong L. J., Huang J., et al. Fluxible monodisperse quantum dots with efficient luminescence. Angewandte Chemie International Edition,2010,122(51):10139-10142.
    [106]Li Q., Dong L. J., Deng W., et al. Solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate. Journal of the American Chemical Society,2009,131(26): 9148-9149.
    [107]Li Q., Dong L. J., Liu Y., et al. A carbon black derivative with liquid behavior. Carbon,2011, 49(3):1047-1051.
    [108]Agarwal P., Qi H. B., Archer L. A. The ages in a self-suspended nanoparticle liquid. Nano Letters,2010,10(1):111-115.
    [109]Mason T. G, Weitz D. A. Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Physical Review Letters,1995,75(14):2770-2773.
    [110]Wyss H. M., Miyazaki K., Mattsson J., et al. Strain-rate frequency superposition:a rheological probe of structural relaxation in soft materials. Physical Review Letters,2007, 98(23):238303.
    [111]Bourlinos A. B., Georgakilas V., Tzitzios V., et al. Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small,2006,2(10):1188-1191.
    [112]Lei Y. A., Xiong C. X., Dong L. J., et al. Ionic liquid of ultralong carbon nanotubes. Small, 2007,3(11):1889-1893.
    [113]Lei Y. A., Xiong C. X., Guo H., et al. Controlled viscoelastic carbon nanotube fluids. Journal of the American Chemical Society,2008,130(11):3256-3257.
    [114]Li Q., Dong L. J., Fang J. F., et al. Property-structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes. ACS Nano,2010,4(10):5797-5806.
    [115]Bourlions A. B., Chowdhury S. R., Jiang D. D., et al. Layered organosilicate nanoparticles with liquidlike behavior. Small,2005,1(1):80-82.
    [116]Li Q., Dong L. J., Sun F., et al. Self-unfolded graphene sheets. Chemistry-A European Journal,2012,18(23):7055-7059.
    [117]Perriman A. W., Colfen H., Hughes R. W., et al. Solvent-free protein liquids and liquid crystals. Angewandte Chemie International Edition,2009,48(34):6242-6246.
    [118]Han B. H., Winnik M. A., Bourlinos A. B., et al. Luminescence quenching of dyes by oxygen in core-shell soft-sphere ionic liquids. Chemistry of Materials,2005,17(15): 4001-4009.
    [119]Li Q., Dong L. J., Li L. B., et al. The effect of the addition of carbon nanotube fluids to a polymeric matrix to produce simultaneous reinforcement and plasticization. Carbon,2012, 50(5):2056-2060.
    [120]Dickey M. D., Lipomi D. J., Bracher P. J., et al. Electrically addressable parallel nanowires with 30 nm spacing from micromolding and nanoskiving. Nano Letters,2008,8(12): 4568-4573.
    [121]Vlad A., Dutu C. A., Guillet P., et al. Highly ordered conjugated polymer nanoarchitectures with three-dimensional structural control. Nano Letters,2009,9(8):2838-2843.
    [122]McDowell J. J., Zacharia N. S., Puzzo D., et al. Electroactuation of alkoxysilane functionalized polyferrocenylsilane microfibers. Journal of the American Chemical Society, 2010,132(10):1021-1022.
    [123]Wei M., Tao Z. H., Xiong X. G., et al. Fabrication of patterned conducting polymers on insulating polymeric Substrates by electric-field-assisted assembly and pattern transfer. Macromolecular Rapid Communications,2006,27(21):1826-1832.
    [124]Huang J. X., Virji S., Weiller B. H., et al. Polyaniline nanofibers:facile synthesis and chemical sensors. Journal of the American Chemical Society,2003,125(2):314-315.
    [125]Huang J. X., Kaner R. B. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society,2004,126(3):851-855.
    [126]Li W., Wang H. L. Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society,2004,126(8):2278-2279.
    [127]Lahav M., Weiss E. A., Xu Q. B., et al. Core-shell and segmented polymer-metal composite nanostructures. Nano Letters,2006,6(9):2166-2171.
    [128]王颖.可流动性聚苯胺的制备与性能研究.武汉理工大学硕士学位论文,2008.
    [129]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200.
    [130]Bolotin K. I., Sikes K. J., Jiang Z., et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications,2008,146(9-10):351-355.
    [131]Lee C., Wei X. D., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321(5887):385-388.
    [132]Stoller M. D., Park S. J., Zhu Y. W., et al. Graphene-based ultracapacitors. Nano Letters, 2008,8(10):3498-3502.
    [133]Balandin A. A., Ghosh S., Bao W. Z., et al. Superior thermal conductivity of single-layer graphene. Nano Letters,2008,8(3):902-907,
    [134]Jang B. Z., Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites:a review. Journal of Material Science,2008,43(15):5092-5101.
    [135]Lin Y. M., Jenkins K. A., Garcia V. A., et al. Operation of graphene transistors at gigahertz frequencies. Nano Letters,2009,9(1):422-426.
    [136]Lin Y. M., Dimitrakopoulos C, Jenkins K. A., et al.100-GHz transistors from wafer-scale epitaxial graphene. Science,2010,327(5966):662.
    [137]Liao L., Lin Y. C., Bao M. Q, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature,2010,467:305-308.
    [138]Dan Y. P., Lu Y, Kybert N. J., et al. Intrinsic response of graphene vapor sensors. Nano Letters,2009,9(4):1472-1475.
    [139]Robinson J. T., Perkins F. K., Snow E. S., et al. Reduced graphene oxide molecular sensors. Nano Letters,2008,8(10):3137-3140.
    [140]Tang L. H., Wang Y., Li Y. M., et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials,2009,19(17):2782-2789.
    [141]Ohno Y, Maehashi K., Yamashiro Y, et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters,2009,9(9):3318-3322.
    [142]Mohanty N., Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters,2008,8(12):4469-4476.
    [143]Becerril H. A., Mao J., Liu Z. F., et al. Evaluation of Solution-processed reduced graphene oxide films as transparent conductors. ACS Nano,2008,2(3):463-470.
    [144]Wang X., Zhi L. J., Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters,2008,8(1):323-327.
    [145]Eda G., Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology,2008,3:270-274.
    [146]Cote L. J., Kim F., Huang J. X. Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society,2009,131(3):1043-1049.
    [147]Yoo E. J., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008,8(8):2277-2282.
    [148]Pan D. Y., Wang S., Zhao B., et al. Li storage properties of disordered graphene nanosheets. Chemistry of Materials,2009,21(14):3136-3142.
    [149]Wang C. Y., Li D., Too C. O., et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials,2009,21(13):2604-2606.
    [150]Lee J. K., Smith K. B., Hayner C. M., et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications,2010,46(12): 2025-2027.
    [151]Novoselov K. S., Geim A. K., Morozov S.V., et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669.
    [152]Li X. S., Cai W. W., An J. H., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324(5932):1312-1314.
    [153]Li X. S., Cai W. W., Colombo L., et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters,2009,9(12):4268-4272.
    [154]Bae S., Kim H., Lee Y. B., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology,2010,5:574-578.
    [155]Berger C., Song Z. M., Li T. B., et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B,2004,108(52):19912-19916.
    [156]Berger C., Song Z. M., Li X. B., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312(5777):1191-1196.
    [157]Geim A. K. Graphene:status and prospects. Science,2009,324(5934):1530-1534.
    [158]Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565.
    [159]Boukhvalov D. W., Katsnelson M. I. Modeling of graphite oxide. Journal of the American Chemical Society,2008,130(32):10697-10701.
    [160]Brodie B. C. Sur le poids atomique du graphite. Annales de Chimie et de Physique,1860, 59:466-472.
    [161]Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Berichte der Deutschen Chemischen Gesellschaft,1898,31(2):1481-1499.
    [162]Hummers W. S., Offeman R. E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80(6):1339.
    [163]He H., Riedl T., Lerf A., et al. Solid-state NMR studies of the structure of graphite oxide. Journal of Physical Chemistry,1996,100(51):19954-19958.
    [164]He H., Klinowski J., Forster M., et al. A new structural model for graphite oxide. Chemical Physics Letters,1998,287(1-2):53-56.
    [165]Lerf, A., He, H., Forster, M., et al. Structure of graphite oxide revisited. Journal of Physical Chemistry B,1998,102(23):4477-4482.
    [166]Cai W. W., Piner R. D., Stadermann F. J., et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008,321(5897):1815-1817.
    [167]Li D., Muller M. B., Gilje S., et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101-105.
    [168]Schniepp H. C., Li J. L., McAllister M. J., et al. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B,2006,110(17): 8535-8539.
    [169]Si Y. C., Samulski E. T. Synthesis of water soluble graphene. Nano Letters,2008,8(6): 1679-1682.
    [170]Xu Y. X., Bai H., Lu G. W., et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 2008,130(18):5856-5857.
    [171]Park S. J., An J. H., Piner R. D., et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials,2008,20(21):6592-6594.
    [172]McAllister M. J., Li J. L., Adamson D. H., et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials,2007,19(18): 4396-4404.
    [173]Park S. J., Ruoff R. S. Chemical methods for the production of graphenes. Nature Nanotechnology,2009,4:217-224.
    [174]Zhang K., Zhang L. L., Zhao X. S., et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials,2010,22(4):1392-1401.
    [175]Wu Q., Xu Y. X., Yao Z. Y., et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano,2010,4(4):1963-1970.
    [176]Kumar N. A., Choi H. J., Shin Y. R., et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano,2012,6(2):1715-1723.
    [177]Zhang Q. M., Li H., Poh M., et al. An all-organic composite actuator material with a high dielectric constant. Nature,2002,419:284-287.
    [178]李琦.石墨烯类流体制备技术及其自展平行为.武汉理工大学博士学位论文,2012.
    [179]Dang Z. M., Lin Y. H., Nan C. W. Novel ferroelectric polymer composites with high dielectric constants. Advanced Materials,2003,15(19):1625-1628.
    [180]Nan C. W. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993,37(1):1-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700