1. [地质云]滑坡
新型样品前处理技术在环境和生物样品分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,微型化样品制备技术越来越受到分析工作者的青睐,一些微型化、无需或仅需使用少量溶剂的样品制备技术得到了迅速的发展,如固相微萃取和液相微萃取。这两种技术克服了传统的样品制备过程中出现的繁琐操作、耗时、消耗大量的样品及有机溶剂等诸多不足,以简便、灵活、易操作、环境友好等特征顺应分析化学发展的要求,通过与各种分析仪器的联用,能有效地应用到多种样品中分析物的分离和富集。随着新型萃取介质和萃取模式、高通量及自动化萃取装置的不断发展,微萃取技术在食品、环境、生物及医药分析等众多分析领域中将发挥越来越重要的作用。
     本论文围绕新型固相微萃取和液相微萃取技术在环境和生物样品分析中的应用开展了一些工作,主要研究内容如下:
     1.介绍了样品前处理技术的发展概况,并从基本理论、萃取模式、影响萃取效率的因素、实际应用及其进展等几个方面分别对固相微萃取和液相微萃取技术进行了全面的综述。
     2.将聚合物整体柱固相微萃取技术与高效液相色谱-质谱联用,建立了在鸡蛋、牛奶、鸡肉和猪肉中苯并咪唑类药物的多残留检测方法。以聚甲基丙烯酸-乙二醇二甲基丙烯酸酯整体柱为萃取材料,在优化的实验条件下,该材料对分析物具有很强的萃取能力,在随后的分析中没有发现杂质峰对定量的影响。最后,该方法成功应用于口饲阿苯达唑的母鸡所产鸡蛋中的阿苯达唑及其代谢物的测定。
     3.以Fe3O4/SiO2/Poly (MAA-co-EDMA)磁性复合材料为萃取介质,构建了磁固相萃取-毛细管电泳联用方法,结合场放大样品堆积技术,实现了对猪组织样品中10种苯并咪唑类药物的快速分析。结果表明,该方法线性关系良好,且具有较好的精密度和准确度。磁固相萃取与毛细管电泳的结合将为兽药多残留检测提供新的实用工具。
     4.建立了一种基于分子络合物-分散液液微萃取技术及其对水溶液中酚类化合物的快速检测方法。与常规分散液液微萃取使用的有机溶剂不同的是,该方法以磷酸三丁酯(路易斯碱)作为萃取剂,与水溶液中酚类化合物(路易斯酸)通过路易斯酸碱作用取得满意的萃取效果。此外,萃取是在廉价的一次性滴管中完成,在滴管细的颈部很方便地收集低密度的萃取剂。该方法的建立为分散液液微萃取应用于极性化合物的萃取提供新的思路。
     5.将固相萃取与分子络合物-分散液液微萃取相结合与高效液相色谱联用,建立了一种测定椰子汁中酸性植物激素的新方法。选择吲哚乙酸、水杨酸、脱落酸和吲哚丁酸为分析物并考察了其萃取性能。在固相萃取与分子络合物-分散液液微萃取联用模式中,椰子汁中分析物首先吸附在C18萃取材料上,解吸完成后,解吸液又可用作分散液液微萃取的分散剂。该方法的富集倍数可达319.1-477.7倍,该方法线性关系良好,且具有良好的精密度和准确度。
Nowadays, more favour has been focused on miniaturated sample preparationtechnique, and some miniaturated, less solvent or solvent-free sample preparationtechnique, such as solid phase microextraction and liquid phase microextraction, havebeen developed rapidly, which conquers some shortcomings of labourious operation,time-consuming, high consumption of sample and reagent, etc. Being possessadvantages including simple, flexible, easily operational, environmental friendly, thetwo extraction techniques meet the development trend in practical application coulpedwith all kinds analytical instruments. With the unceasing development of new extractionmaterials, modes, high throughout, and automated devices in sample preparationtechnique, microextraction technique will play more important role in food,environmental, biological and medical analysis.
     In this dissertation, some applications were developed through two newmicroextrction techniques in environmental and biological analysis. These workinvolved are list below:
     1. The development of sample preparation was introduced, and foundation,extraction modes, influencing factors, the applications and developments of solid phasemicroextraction and liquid phase microextraction were reviewed comprehensively.
     2. A sensitive method has been established for the simultaneous analysis ofbenzimidazole multi-residues in egg, milk, chicken, and pork. This method is based onthe combination of polymer monolith microextraction (PMME) technique with liquidchromatography and electrospray ionization mass spectrometry (LC-ESI/MS). Theextraction was performed with a poly (methacrylic acid-co-ethylene glycoldimethacrylate)(MAA-co-EGDMA) monolithic capillary column. Under the optimizedextraction conditions, good extraction efficiencies for the targets were obtained, and nointerferences from the matrix were observed for the quantification of the analytes in thesubsequent detection. The method was later successfully applied for the determinationof primary and metabolite residues in eggs after oral administration of albendazole tohens.
     3. A simple, rapid, and efficient method for simultaneous determination of tenbenzimidazole drugs in animal tissues samples was developed. This analyticalprocedure involved extracting samples with magnetic solid-phase extraction (MSPE)using magnetite/silica/poly (methacrylic acid-co-ethylene glycol dimethacrylate)(Fe3O4/SiO2/Poly (MAA-co-EGDMA)) magnetic microspheres, and determination bycapillary electrophoresis (CE) with field-amplified sample stacking technique (FASS).The results showed good linearities were obtained for the analytes, and the developedmethod has also good precision and accuracy. The combination of MSPE and CE willpovide new practical tool for veterinary drug multi-residues analysis.
     4. A novel molecular complex-based dispersive liquid-liquid microextraction(DLLME) method was established and applied to fast analysis of phenols in aqueoussolution. In this approach, tri-n-butylphosphate (TBP), a Lewis base, was directly used,instead of the traditional water-immiscible organic solvents, as the extractant forDLLME. The phenols, which are typical Lewis acids, were successfully extracted fromaqueous samples. In addition, extraction was accomplished in a disposable polyethylenepipet with the open and narrow tip upside, for an easy collection of the above extractantlayer, i.e. TBP. The developed approach provides a new way to facilitate DLLME oforganic polar compounds from aqueous solutions.
     5. A new method combined the solid-phase extraction (SPE) and the molecularcomplex-based dispersive liquid-liquid microextraction (MC-DLLME) has beendeveloped for the determination of several acidic phytohormones in natural coconutjuice. Indole-3-acetic acid (IAA), salicylic acid (SA), abscisic acid (ABA) andindolyl-3-butyricacid (IBA) were selected to assess the extraction procedure anddetermined by liquid chromatography with ultraviolet detection (LC-UV). Insolid-phase extraction-dispersive liquid-liquid microextraction (SPE-DLLME), analyteswere firstly adsorbed into C18sorbent from a large volume of coconut juice samples.The eluate containing the desired compounds was outflowed from the sorbent by usingmethanol, which was used as the dispersive solvent in MC-DLLME procedure. The newmethod provided a high enrichment factor (319.1-477.7) for several acidicphytohormones. Good linearities were obtained for the analytes, and the developed method has also good precision and accuracy.
引文
[1] E. Majors R, An overview of sample preparation. LC GC,1991,9,16-20.
    [2] Y. Chen, Z. P. Guo, X. Y. Wang, C. G. Qiu, Sample preparation. J. Chromatogr. A,2008,1184,191-219.
    [3] W. Wardencki, J. Curylo, J. Namiesnik, Trends in solventless sample preparationtechniques for environmental analysis. J. Biochem. Biophys. Methods,2007,70,275-288.
    [4] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorptionusing fused silica optical fibers. Anal. Chem.,1990,62,2145-2148.
    [5] D. Louch, S. Motlagh, J. Pawliszyn, Dynamics of organic compound extractionfrom water using liquid-coated fused silica fibers. Anal. Chem.,1992,64,1187-1199.
    [6] R. Eisert, J. Pawliszyn, Automated in-tube solid-phase microextraction coupledto high-performance liquid chromatography. Anal. Chem.,1997,69,3140-3147.
    [7] E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE),a novel extraction technique for aqueous samples: Theory and principles. J.Microcolumn Sep.,1999,11,737-747.
    [8] D. Vuckovic, E. Cudjoe, D. Hein, J. Pawliszyn, Automation of solid-phasemicroextraction in high-throughput format and applications to drug analysis.Anal. Chem.,2008,80,6870-6880.
    [9] J. Wu, J. Pawliszyn, Preparation and applications of polypyrrole films insolid-phase microextraction. J. Chromatogr. A,2001,909,37-52.
    [10] A. Mohammadi, Y. Yamini, N. Alizadeh, Dodecylsulfate-doped polypyrrole filmprepared by electrochemical fiber coating technique for headspace solid-phasemicroextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. A,2005,1063,1-8.
    [11] N. Alizadeh, H. Zarabadipour, A. Mohammadi, Headspace solid-phasemicroextraction using an electrochemically deposited dodecylsulfate-dopedpolypyrrole film to determine of phenolic compounds in water. Anal. Chim.Acta,2007,605,159-165.
    [12] J. Wu, W. M. Mullett, J. Pawliszyn, Electrochemically controlled solid-phasemicroextraction based on conductive polypyrrole films. Anal. Chem.,2002,74,4855-4859.
    [13] J. G. Hou, Q. Ma, X. Z. Du, H. L. Deng, J. Z. Gao, Inorganic/organicmesoporous silica as a novel fiber coating of solid-phase microextraction.Talanta,2004,62,241-246.
    [14] X. Z. Du, Y. R. Wang, X. J. Tao, H. L. Deng, An approach to application ofmesoporous hybrid as a fiber coating of solid-phase microextraction. Anal.Chim. Acta,2005,543,9-16.
    [15] P. Hashemi, M. Shamizadeh, A. Badiei, P. Z. Poor, A. R. Ghiasvand, A.Yarahmadi, Amino ethyl-functionalized nanoporous silica as a novel fibercoating for solid-phase microextraction. Anal. Chim. Acta,2009,646,1-5.
    [16] W. Yao, Y. Fang, G. L. Z. Gao, Y. Cheng, Adsorption of carbaryl usingmolecularly imprinted microspheres prepared by precipitation polymerization.Polym. Adv. Technol.,2008,19,812-816.
    [17] A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals inwater and wastewater environments. Anal. Bioanal. Chem.,2007,387,1225-1234.
    [18] X. Hu, Y. Hu, G. Li, Development of novel molecularly imprinted solid-phasemicroextraction fiber and its application for the determination of triazines incomplicated samples coupled with high-performance liquid chromatography. J.Chromatogr. A,2007,1147,1-9.
    [19] E. H. M. Koster, C. Crescenzi, W. den Hoedt, K. Ensing, G. J. de Jong, Fiberscoated with molecularly imprinted polymers for solid-phase microextraction.Anal. Chem.,2001,73,3140-3145.
    [20] A. Fernández-González, L. Guardia, R. Badía-Laí o, M. E. Díaz-García,Mimicking molecular receptors for antibiotics-analytical implications. TrAC,Trends Anal. Chem.,2006,25,949-957.
    [21] H. Yan, F. Qiao, K. H. Row, Molecularly imprinted-matrix solid-phasedispersion for selective extraction of five fluoroquinolones in eggs and tissue.Anal. Chem.,2007,79,8242-8248.
    [22] J. Yin, S. Wang, G. Yang, G. Yang, Y. Chen, Molecularly imprinted solid-phaseextraction for rapid screening of mycophenolic acid in human plasma. J.Chromatogr. B,2006,844,142-147.
    [23] X. Shi, A. Wu, S. Zheng, R. Li, D. Zhang, Molecularly imprinted polymermicrospheres for solid-phase extraction of chloramphenicol residues in foods. J.Chromatogr. B,2007,850,24-30.
    [24] H. Yan, K. H. Row, G. Yang, Water-compatible molecularly imprinted polymersfor selective extraction of ciprofloxacin from human urine. Talanta,2008,75,227-232.
    [25] J. Zhang, X. F. Yuan, P. P. Liang, Preparation of molecular imprinted monolithicextraction column and its application to strychnine analysis in Wan Tong JinGu troche by HPLC. J. Liq. Chromatogr. Relat. Technol,2010,33,770-777.
    [26] F. Zhao, Y. Meng, J. L. Anderson, Polymeric ionic liquids as selective coatingsfor the extraction of esters using solid-phase microextraction. J. Chromatogr. A,2008,1208,1-9.
    [27] Y. N. Hsieh, P. C. Huang, I. W. Sun, T. J. Whang, C. Y. Hsu, H. H. Huang, C. H.Kuei, Nafion membrane-supported ionic liquid-liquid phase microextractionfor analyzing ultra trace PAHs in water samples. Anal. Chim. Acta,2006,557,321-328.
    [28] M. Cichna, D. Knopp, R. Niessner, Immunoaffinity chromatography ofpolycyclic aromatic hydrocarbons in columns prepared by the sol-gel method.Anal. Chim. Acta,1997,339,241-250.
    [29] A. Kumar, Gaurav, A. K. Malik, D. K. Tewary, B. Singh, A review ondevelopment of solid phase microextraction fibers by sol-gel methods and theirapplications. Anal. Chim. Acta,2008,610,1-14.
    [30]贾金平,冯雪,王亚林,方能虎,吴旦,活性炭纤维固相微萃取方法分析酱油中的苯甲酸.分析化学,2002,30,121.
    [31] X. Chai, Y. He, D. Ying, J. Jia, T. Sun, Electrosorption-enhanced solid-phasemicroextraction using activated carbon fiber for determination of aniline inwater. J. Chromatogr. A,2007,1165,26-31.
    [32] A. Spietelun, M. Pilarczyk, A. Kloskowski, J. Namiesnik, Current trends insolid-phase microextraction (SPME) fibre coatings. Chem. Soc. Rev.,2010,39,4524-4537.
    [33] A. G. Mayes, K. Mosbach, Molecularly imprinted polymers: useful materials foranalytical chemistry? TrAC, Trends Anal. Chem.,1997,16,321-332.
    [34] H. Yuan, W. M. Mullett, J. Pawliszyn, Biological sample analysis withimmunoaffinity solid-phase microextraction. Analyst,2001,126,1456-1461.
    [35] J. Haginaka, Molecularly imprinted polymers for solid-phase extraction. Anal.Bioanal. Chem.,2004,379,332-334.
    [36] A. Kumar, Gaurav, A. K. Malik, D. K. Tewary, B. Singh, A review ondevelopment of solid phase microextraction fibers by sol-gel methods and theirapplications. Anal. Chim. Acta,2008,610,1-14.
    [37] D. Djozan, T. Baheri, R. Farshbaf, S. Azhari, Investigation of solid-phasemicroextraction efficiency using pencil lead fiber for in vitro and in vivosampling of defensive volatiles from insect's scent gland. Anal. Chim. Acta,2005,554,197-201.
    [38] H. B. Wan, H. Chi, M. K. Wong, C. Y. Mok, Solid-phase microextraction usingpencil lead as sorbent for analysis of organic pollutants in water. Anal. Chim.Acta,1994,298,219-223.
    [39] D. Djozan, Y. Assadi, Modified pencil lead as a new fiber for solid-phasemicroextraction. Chromatographia,2004,60,313-317.
    [40] R. Aranda, P. Kruus, R. C. Burk, Assessment of polycrystalline graphites assorbents for solid-phase microextraction of nonionic surfactants. J.Chromatogr. A,2000,888,35-41.
    [41] F. Luo, Z. Wu, P. Tao, Y. Cong, Preparation by low-temperature nonthermalplasma of graphite fiber and its characteristics for solid-phase microextraction.Anal. Chim. Acta,2009,631,62-68.
    [42] J. X. Wang, D. Q. Jiang, Z. Y. Gu, X. P. Yan, Multiwalled carbon nanotubescoated fibers for solid-phase microextraction of polybrominated diphenylethers in water and milk samples before gas chromatography withelectron-capture detection. J. Chromatogr. A,2006,1137,8-14.
    [43] X. Liu, Y. Ji, Y. Zhang, H. Zhang, M. Liu, Oxidized multiwalled carbonnanotubes as a novel solid-phase microextraction fiber for determination ofphenols in aqueous samples. J. Chromatogr. A,2007,1165,10-17.
    [44] J. Yu, L. Dong, C. Wu, L. Wu, J. Xing, Hydroxyfullerene as a novel coating forsolid-phase microextraction fiber with sol-gel technology. J. Chromatogr. A,2002,978,37-48.
    [45] S. Bigham, J. Medlar, A. Kabir, C. Shende, A. Alli, A. Malik, Sol-gel capillarymicroextraction. Anal. Chem.,2002,74,752-761.
    [46] T. Y. Kim, K. Alhooshani, A. Kabir, D. P. Fries, A. Malik, High pH-resistant,surface-bonded sol-gel titania hybrid organic-inorganic coating for effectiveon-line hyphenation of capillary microextraction (in-tube solid-phasemicroextraction) with high-performance liquid chromatography. J. Chromatogr.A,2004,1047,165-174.
    [47] Y. Fan, Y. Q. Feng, S. L. Da, Z. H. Wang, In-tube solid phase microextractionusing a β-cyclodextrin coated capillary coupled to high performance liquidchromatography for determination of non-steroidal anti-inflammatory drugs inurine samples. Talanta,2005,65,111-117.
    [48] Y. Fan, Y. Q. Feng, Z. G. Shi, J. B. Wang, Ordered mesoporous silica coatedcapillary for in-tube solid phase microextraction coupled to high performanceliquid chromatography. Anal. Chim. Acta,2005,543,1-8.
    [49] K. Jinno, M. Kawazoe, Y. Saito, T. Takeichi, M. Hayashida, Sample preparationwith fiber-in-tube solid-phase microextraction for capillary electrophoreticseparation of tricyclic antidepressant drugs in human urine. Electrophoresis,2001,22,3785-3790.
    [50] Y. Saito, M. Kawazoe, M. Hayashida, K. Jinno, Direct coupling of microcolumnliquid chromatography with in-tube solid-phase microextraction for theanalysis of antidepressant drugs. Analyst,2000,125,807-809.
    [51] W. M. Mullett, P. Martin, J. Pawliszyn, In-tube molecularly imprinted polymersolid-phase microextraction for the selective determination of propranolol.Anal. Chem.,2001,73,2383-2389.
    [52] W. M. Mullett, K. Levsen, D. Lubda, J. Pawliszyn, Bio-compatible in-tubesolid-phase microextraction capillary for the direct extraction andhigh-performance liquid chromatographic determination of drugs in humanserum. J. Chromatogr. A,2002,963,325-334.
    [53] Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycoldimethacrylate) monolithic capillary for in-tube solid phase microextractioncoupled to high performance liquid chromatography and its application todetermination of basic drugs in human serum. Anal. Chim. Acta,2004,523,251-258.
    [54] J. F. Huang, B. Lin, Q. W. Yu, Y. Q. Feng, Determination of fluoroquinolones ineggs using in-tube solid-phase microextraction coupled to high-performanceliquid chromatography. Anal. Bioanal. Chem.,2006,384,1228-1235.
    [55] J. F. Huang, H. J. Zhang, Y. Q. Feng, Chloramphenicol extraction from honey,milk, and eggs using polymer monolith microextraction followed by liquidchromatography-mass spectrometry determination. J. Agric. Food Chem.,2006,54,9279-9286.
    [56] J. F. Huang, H. J. Zhang, B. Lin, Q. W. Yu, Y. Q. Feng, Multiresidue analysis ofbeta-agonists in pork by coupling polymer monolith microextraction toelectrospray quadrupole time-of-flight mass spectrometry. Rapid Commun.Mass Spectrom.,2007,21,2895-2904.
    [57] J. Y. Wu, Z. G. Shi, Y. Q. Feng, Determination of5-hydroxymethylfurfural usingderivatization combined with polymer monolith microextraction by highperformance liquid chromatography. J. Agric. Food Chem.,2009,57,3981-3988.
    [58] M. M. Zheng, M. Y. Zhang, G. Y. Peng, Y. Q. Feng, Monitoring of sulfonamideantibacterial residues in milk and egg by polymer monolith microextractioncoupled to hydrophilic interaction chromatography/mass spectrometry. Anal.Chim. Acta,2008,625,160-172.
    [59] M. M. Zheng, G. D. Ruan, Y. Q. Feng, Hybrid organic-inorganic silica monolithwith hydrophobic/strong cation-exchange functional groups as a sorbent formicro-solid phase extraction. J. Chromatogr. A,2009,1216,7739-7746.
    [60] M. M. Zheng, G. D. Ruan, Y. Q. Feng, Evaluating polymer monolith in-tubesolid-phase microextraction coupled to liquid chromatography/quadrupoletime-of-flight mass spectrometry for reliable quantification and confirmation ofquinolone antibacterials in edible animal food. J. Chromatogr. A,2009,1216,7510-7519.
    [61] B. Bidlingmaier, K. K. Unger, N. von Doehren, Comparative study on thecolumn performance of microparticulate5-μm C18-bonded and monolithicC18-bonded reversed-phase columns in high-performance liquidchromatography. J. Chromatogr. A,1999,832,11-16.
    [62] M. Al-Bokari, D. Cherrak, G. Guiochon, Determination of the porosities ofmonolithic columns by inverse size-exclusion chromatography. J. Chromatogr.A,2002,975,275-284.
    [63] R. M. Heck, S. Gulati, R. J. Farrauto, The application of monoliths for gasphase catalytic reactions. Chem. Eng. J.,2001,82,149-156.
    [64] R. R. Broekhuis, B. M. Budhlall, A. F. Nordquist, Monolith catalytic process forproducing sorbitol: catalyst development and evaluation. Ind. Eng. Chem. Res.,2004,43,5146-5155.
    [65]尹俊发,魏晓奕,杨更亮,有机聚合物整体柱的制备与应用的研究进展.色谱,2007,25,142-149.
    [66] M. M. Zheng, B. Lin, Y. Q. Feng, Hybrid organic-inorganic octyl monolithiccolumn for in-tube solid-phase microextraction coupled to capillaryhigh-performance liquid chromatography. J. Chromatogr. A,2007,1164,48-55.
    [67] M. Zhang, F. Wei, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolithmicroextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate)monolith and its application to simultaneous analysis of several angiotensin IIreceptor antagonists in human urine by capillary zone electrophoresis. J.Chromatogr. A,2006,1102,294-301.
    [68] L. Xu, Z. G. Shi, Y. Q. Feng, Porous monoliths: sorbents for miniaturizedextraction in biological analysis. Anal. Bioanal. Chem.,2011,399,3345-3357.
    [69] M. L. Chen, L. M. Li, B. F. Yuan, Q. Ma, Y. Q. Feng, Preparation andcharacterization of methacrylate-based monolith for capillary hydrophilicinteraction chromatography. J. Chromatogr. A,2012,1230,54-60.
    [70] M. M. Zheng, M. Y. Zhang, Y. Q. Feng, Polymer monolith microextractiononline coupled to hydrophilic interaction chromatography/mass spectrometryfor analysis of β2-agonist in human urine. J. Sep. Sci.,2009,32,1965-1974.
    [71] X. Z. Hu, J. X. Wang, Y. Q. Feng, Determination of benzimidazole residues inedible animal food by polymer monolith microextraction combined with liquidchromatography-mass spectrometry. J. Agric. Food Chem.,2010,58,112-119.
    [72] T. Li, Z. G. Shi, M. M. Zheng, Y. Q. Feng, Multiresidue determination ofsulfonamides in chicken meat by polymer monolith microextraction andcapillary zone electrophoresis with field-amplified sample stacking. J.Chromatogr. A,2008,1205,163-170.
    [73] H. B. He, X. X. Lv, Q. W. Yu, Y. Q. Feng, Multiresidue determination of(fluoro)quinolone antibiotics in chicken by polymer monolith microextractionand field-amplified sample stacking procedures coupled to CE-UV. Talanta,2010,82,1562-1570.
    [74] Z. G. Shi, Y. Q. Feng, L. Xu, S. L. Da, Y. Y. Ren, Synthesis of a silica monolithwith textural pores and ordered mesopores. Microporous Mesoporous Mater.,2004,68,55-59.
    [75] H. Kataoka, S. Narimatsu, H. L. Lord, J. Pawliszyn, Automated in-tubesolid-Phase microextraction coupled with liquid chromatography/electrosprayionization mass spectrometry for the determination of β-blockers andmetabolites in urine and serum samples. Anal. Chem.,1999,71,4237-4244.
    [76] M. M. Zheng, S. T. Wang, W. K. Hu, Y. Q. Feng, In-tube solid-phasemicroextraction based on hybrid silica monolith coupled to liquidchromatography-mass spectrometry for automated analysis of tenantidepressants in human urine and plasma. J. Chromatogr. A,2010,1217,7493-7501.
    [77] Z. Altun, L. G. Blomberg, M. Abdel-Rehim, Increasing sample preparationthroughput using monolithic methacrylate polymer as packing material for96-Tip robotic device. J. Liq. Chromatogr. Relat. Technol.,2006,29,1477-1489.
    [78] L. G. Blomberg, Two new techniques for sample preparation in bioanalysis:Microextraction in packed sorbent (MEPS) and use of a bonded monolith assorbent for sample preparation in polypropylene tips for96-well plates. Anal.Bioanal. Chem.,2009,393,797-807.
    [79] M. Kawaguchi, R. Ito, K. Saito, H. Nakazawa, Novel stir bar sorptive extractionmethods for environmental and biomedical analysis. J. Pharm. Biomed.Anal.,2006,40,500-508.
    [80] Y. B. Luo, Q. Ma, Y. Q. Feng, Stir rod sorptive extraction with monolithicpolymer as coating and its application to the analysis of fluoroquinolones inhoney sample. J. Chromatogr. A,2010,1217,3583-3589.
    [81] F. David, P. Sandra, Stir bar sorptive extraction for trace analysis. J. Chromatogr.A,2007,1152,54-69.
    [82] F. Sánchez-Rojas, C. Bosch-Ojeda, J. Cano-Pavón, A review of stir bar sorptiveextraction. Chromatographia,2009,69,79-94.
    [83] Y. B. Luo, H. B. Zheng, J. X. Wang, Q. Gao, Q. W. Yu, Y. Q. Feng, An anionicexchange stir rod sorptive extraction based on monolithic material for theextraction of non-steroidal anti-inflammatory drugs in environmental aqueoussamples. Talanta,2011,86,103-108.
    [84] Y. B. Luo, J. S. Cheng, Q. Ma, Y. Q. Feng, J. H. Li, Graphene-polymercomposite: Extraction of polycyclic aromatic hydrocarbons from water samplesby stir rod sorptive extraction. Anal. Methods,2011,3,92-98.
    [85] X. Zhu, J. Cai, J. Yang, Q. Su, Y. Gao, Films coated with molecular imprintedpolymers for the selective stir bar sorption extraction of monocrotophos. J.Chromatogr. A,2006,1131,37-44.
    [86] X. Zhu, Q. Zhu, Molecular imprinted Nylon-6stir bar as a novel extractiontechnique for enantioseparation of amino acids. J. Appl. Polym. Sci.,2008,109,2665-2670.
    [87] N. R. Neng, M. L. Pinto, J. Pires, P. M. Marcos, J. M. F. Nogueira,Development, optimisation and application of polyurethane foams as newpolymeric phases for stir bar sorptive extraction. J. Chromatogr. A,2007,1171,8-14.
    [88] X. Huang, N. Qiu, D. Yuan, B. Huang, A novel stir bar sorptive extractioncoating based on monolithic material for apolar, polar organic compounds andheavy metal ions. Talanta,2009,78,101-106.
    [89] L. P. Melo, A. M. Nogueira, F. M. Lan as, M. E. C. Queiroz,Polydimethylsiloxane/polypyrrole stir bar sorptive extraction and liquidchromatography (SBSE/LC-UV) analysis of antidepressants in plasma samples.Anal. Chim. Acta,2009,633,57-64.
    [90] D. D. Perrin, B. Dempsey, Buffers for pH and metal ion control.1974,Chapman and Hall (London and New York).
    [91] S. Balasubramanian, S. Panigrahi, Solid-phase microextraction (SPME)techniques for quality characterization of food products: A Review. FoodBioprocess Technol,2011,4,1-26.
    [92] J. A. Koziel, I. Novak, Sampling and sample-preparation strategies based onsolid-phase microextraction for analysis of indoor air. TrAC, Trends Anal.Chem.,2002,21,840-850.
    [93] M. Jia, J. Koziel, J. Pawliszyn, Fast field sampling/sample preparation andquantification of volatile organic compounds in indoor air by solid-phasemicroextraction and portable gas chromatography. Field Anal. Chem. Technol.,2000,4,73-84.
    [94] L. Jae-Hwan, S. M. HWANG, D. W. LEE, G. S. HEO, Determination of volatileorganic compounds (VOCs) using Tedlar bag/solid-phase microextraction/gaschromatography/mass spectrometry (SPME/GC/MS) in ambient and workplaceair. Bull. Korean Chem. Soc.,2002,23,488-496.
    [95] F. V. Parreira, C. R. de Carvalho, Z. de L. Cardeal, Evaluation of indoorexposition to benzene, toluene, ethylbenzene, xylene, and styrene by passivesampling with a solid-phase microextraction device. J. Chromatogr. Sci.,2002,40,122-126.
    [96] J. Dewulf, H. Van Langenhove, Solid-phase microextraction of volatile organiccompounds in environmental applications. AM. LAB.,2001,33,18-20.
    [97] A. J. King, J. W. Readman, J. L. Zhou, The application of solid-phasemicro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons(PAHs). Environ. Geochem. Health,2003,25,69-75.
    [98] P. Barták, L. Cáp, Determination of phenols by solid-phase microextraction. J.Chromatogr. A,1997,767,171-175.
    [99] P. A. Martos, A. Saraullo, J. Pawliszyn, Estimation of air/coating distributioncoefficients for solid phase microextraction using retention indexes from lineartemperature-programmed capillary gas chromatography. Application to thesampling and analysis of total petroleum hydrocarbons in air. Anal. Chem.,1997,69,402-408.
    [100] L. Pan, J. Pawliszyn, Derivatization/solid-phase microextraction: Newapproach to polar analytes. Anal. Chem.,1997,69,196-205.
    [101] T. Gorecki, R. Mindrup, J. Pawliszyn, Pesticides by solid phasemicroextraction. Results of a round robin test. Analyst,1996,121,1381-1386.
    [102] A. Ramesh, P. E. Ravi, Applications of solid-phase microextraction (SPME) inthe determination of residues of certain herbicides at trace levels inenvironmental samples. J. Environ. Monit.,2001,3,505-508.
    [103] E. B. Razote, R. G. Maghirang, L. M. Seitz, I. J. Jeon, A. USDA,Characterization of volatile organic compounds on airborne dust in a swinefinishing barn. Trans. ASAE,2004,47,1231-1238.
    [104] Alexandre, J.-L. Luisier, A. Fornage, Applicability of a SPME method for therapid determination of VOCs. CHIMIA Int. J. Chem.,2002,56,289-291.
    [105] T. Nilsson, T. O. Larsen, L. Montanarella, J. Madsen, Application ofhead-space solid-phase microextraction for the analysis of volatile metabolitesemitted by Penicillium species. J. Microbiol. Methods,1996,25,245-255.
    [106] E. Matisová, J. Sedláková, M. Slezá ková, T. Welsch, Solid-phasemicroextraction of volatile polar compounds in water. J. High Resolut.Chromatogr.,1999,22,109-115.
    [107] A. A. Boyd-Boland, J. B. Pawliszyn, Solid-phase microextraction coupled withhigh-performance liquid chromatography for the determination of alkylphenolethoxylate surfactants in water. Anal. Chem.,1996,68,1521-1529.
    [108] R. C. Hale, K. M. Aneiro, Determination of coal tar and creosote constituentsin the aquatic environment. J. Chromatogr. A,1997,774,79-95.
    [109] A.-L. Nguyen, J. H. T. Luong, Separation and determination of polycyclicaromatic hydrocarbons by solid phase microextraction cyclodextrin modifiedcapillary electrophoresis. Anal. Chem.,1997,69,1726-1731.
    [110] M. Llompart, K. Li, M. Fingas, Solid-phase microextraction and headspacesolid-phase microextraction for the determination of polychlorinated piphenylsin water samples. Anal. Chem.,1998,70,2510-2515.
    [111] S. A. Barshick, W. H. Griest, Trace analysis of explosives in seawater usingsolid-phase microextraction and gas chromatography/ion trap massspectrometry. Anal. Chem.,1998,70,3015-3020.
    [112] E. Davoli, M. L. Gangai, L. Morselli, D. Tonelli, Characterisation of odorantsemissions from landfills by SPME and GC/MS. Chemosphere,2003,51,357-368.
    [113] B. Zygmunt, J. Namiesnik, Solid-phase microextraction–gas chromatographicdetermination of volatile monoaromatic hydrocarbons in soil. Fresenius' J.Anal. Chem.,2001,370,1096-1099.
    [114] P. Popp, K. Kalbitz, G. Oppermann, Application of solid-phase microextractionand gas chromatography with electron-capture and mass spectrometricdetection for the determination of hexachlorocyclohexanes in soil solutions. J.Chromatogr. A,1994,687,133-140.
    [115] C. M. Barshick, S.-A. Barshick, M. L. Mohill, P. F. Britt, D. H. Smith,Elemental and organometallic analyses of soil using glow discharge massspectrometry and gas chromatography/mass spectrometry. Rapid Commun.Mass Spectrom.,1996,10,341-346.
    [116] K. G. Furton, J. Bruna, J. R. Almirall, A simple, inexpensive, rapid, sensitiveand solventless technique for the analysis of accelerants in fire debris based onSPME. J. High. Resolut. Chromatogr.,1995,18,625-629.
    [117] G. Contarini, M. Povolo, Volatile fraction of milk: Comparison between purgeand trap and solid phase microextraction techniques. J. Agric. Food Chem.,2002,50,7350-7355.
    [118] J. H. Lee, R. Diono, G. Y. Kim, D. B. Min, Optimization of solid phasemicroextraction analysis for the headspace volatile compounds of parmesancheese. J. Agric. Food Chem.,2003,51,1136-1140.
    [119] M. P. Gianelli, M. Flores, F. Toldrá, Optimisation of solid phasemicroextraction (SPME) for the analysis of volatile compounds in dry-curedham. J. Sci. Food Agric.,2002,82,1703-1709.
    [120] A. N. Yu, B. G. Sun, D. T. Tian, W. Y. Qu, Analysis of volatile compounds intraditional smoke-cured bacon(CSCB) with different fiber coatings usingSPME. Food Chem.,2008,110,233-238.
    [121] C. F. Goodridge, R. M. Beaudry, J. J. Pestka, D. M. Smith, Solid phasemicroextraction-gas chromatography for quantifying headspace hexanal abovefreeze-dried chicken myofibrils. J. Agric. Food Chem.,2003,51,4185-4190.
    [122] S. Soncin, L. M. Chiesa, C. Cantoni, P. A. Biondi, Preliminary study of thevolatile fraction in the raw meat of pork, duck and goose. J. Food Comp. Anal,2007,20,436-439.
    [123] Y. Hayasaka, E. J. Bartowsky, Analysis of diacetyl in wine using solid-phasemicroextraction combined with gas chromatography-mass spectrometry. J.Agric. Food Chem.,1999,47,612-617.
    [124] S. Rocha, V. Ramalheira, A. Barros, I. Delgadillo, M. A. Coimbra, Headspacesolid phase microextraction (SPME) analysis of flavor compounds in wines.effect of the matrix volatile composition in the relative response factors in awine model. J. Agric. Food Chem.,2001,49,5142-5151.
    [125] J. J. Rodríguez-Bencomo, J. E. Conde, F. García-Montelongo, J. P.Pérez-Trujillo, Determination of major compounds in sweet wines byheadspace solid-phase microextraction and gas chromatography. J. Chromatogr.A,2003,991,13-22.
    [126] W. Wardencki, P. Sowiński, J. Curyιo, Evaluation of headspace solid-phasemicroextraction for the analysis of volatile carbonyl compounds in spirits andalcoholic beverages. J. Chromatogr. A,2003,984,89-96.
    [127] M. E. Miller, J. D. Stuart, Comparison of gas-sampled and SPME-sampledstatic headspace for the determination of volatile flavor components. Anal.Chem.,1998,71,23-27.
    [128] Z. Penton, Flavor volatiles in a fruit beverage with automated SPME. FoodTest. Anal,1906,2,16-18.
    [129] A. M. Costa Freitas, C. Parreira, L. Vilas-Boas, The use of an electronicaroma-sensing device to assess coffee differentiation-comparison with SPMEgas chromatography-mass spectrometry aroma patterns. J. Food Comp. Anal.,2001,14,513-522.
    [130] M. Reto, M. E. Figueira, H. M. Filipe, C. M. M. Almeida, Analysis of vitaminK in green tea leafs and infusions by SPME-GC-FID. Food Chem.,2007,100,405-411.
    [131] R. A. Pérez, C. Sánchez-Brunete, R. M. Calvo, J. L. Tadeo, Analysis ofvolatiles from spanish honeys by solid-phase microextraction and gaschromatography-mass spectrometry. J. Agric. Food Chem.,2002,50,2633-2637.
    [132] T. Sostaric, M. C. Boyce, E. E. Spickett, Analysis of the volatile components invanilla extracts and flavorings by solid-phase microextraction and gaschromatography. J. Agric. Food Chem.,2000,48,5802-5807.
    [133] X. Fan, K. J. B. Sokorai, Changes in volatile compounds of γ-irradiated freshcilantro leaves during cold storage. J. Agric. Food Chem.,2002,50,7622-7626.
    [134] J. Cai, B. Liu, Q. Su, Comparison of simultaneous distillation extraction andsolid-phase microextraction for the determination of volatile flavor components.J. Chromatogr. A,2001,930,1-7.
    [135] M. Díaz-Maroto, M. Pérez-Coello, M. Cabezudo, Headspace solid-phasemicroextraction analysis of volatile components of spices. Chromatographia,2002,55,723-728.
    [136] S. Vichi, A. I. Castellote, L. Pizzale, L. S. Conte, S. Buxaderas, E.López-Tamames, Analysis of virgin olive oil volatile compounds by headspacesolid-phase microextraction coupled to gas chromatography with massspectrometric and flame ionization detection. J. Chromatogr. A,2003,983,19-33.
    [137] H. Jeleń, S. Mildner-Szkudlarz, I. Jasińska, E. W sowicz, A headspaceSPME/MS method for monitoring rapeseed oil autoxidation. J. Am. Oil Chem.Soc.,2007,84,509-517.
    [138] F. Wei, Y. Q. Feng, Methods of sample preparation for determination ofveterinary residues in food matrices by porous monolith microextraction-basedtechniques. Anal. Methods,2011,3,1246-1256.
    [139] H. L. Lord, J. Pawliszyn, Method optimization for the analysis ofamphetamines in urine by solid-phase microextraction. Anal. Chem.,1997,69,3899-3906.
    [140] C. Battu, P. Marquet, A. L. Fauconnet, E. Lacassie, G. Lachatre, Screeningprocedure for21amphetamine-related compounds in urine using solid-phasemicroextraction and gas chromatography-mass spectrometry. J. Chromatogr.Sci.,1998,36,1-7.
    [141] D. A. Volmer, J. P. M. Hui, Rapid determination of corticosteroids in urine bycombined solid phase microextraction/liquid chromatography/massspectrometry. Rapid Commun. Mass Spectrom.,1997,11,1926-1934.
    [142] M. M der, H. L ster, R. Herzschuh, P. Popp, Determination of urinaryacylcarnitines by ESI-MS coupled with solid-phase microextraction (SPME). J.Mass Spectrom.,1997,32,1195-1204.
    [143] Y. Luo, L. Pan, J. Pawliszyn, Determination of five benzodiazepines inaqueous solution and biological fluids using solid-phase microextraction withcarbowax TM/DVB fiber coating. J. Microcolumn Sep.,1998,10,193-201.
    [144] P. Okeyo, S. M. Rentz, N. H. Snow, Analysis of steroids from human serum bySPME with headspace derivatization and GC/MS. J. High. Resolut.Chromatogr.,1997,20,171-173.
    [145] L. S. DeBruin, P. D. Josephy, J. B. Pawliszyn, Solid-phase microextraction ofmonocyclic aromatic amines from biological fluids. Anal. Chem.,1998,70,1986-1992.
    [146] K. Takekawa, M. Oya, A. Kido, O. Suzuki, Analysis of cyanide in blood byheadspace solid-phase microextraction (SPME) and capillary gaschromatography. Chromatographia,1998,47,209-214.
    [147] N. Fucci, N. De Giovanni, M. Chiarotti, S. Scarlata, SPME-GC analysis ofTHC in saliva samples collected with 'EPITOPE' device. Forensic Sci. Int.,2001,119,318-321.
    [148] B. J. Hall, M. Satterfield-Doerr, A. R. Parikh, J. S. Brodbelt, Determination ofcannabinoids in water and human saliva by solid-phase microextraction andquadrupole ion trap gas chromatography/mass spectrometry. Anal. Chem.,1998,70,1788-1796.
    [149] N. Fucci, N. De Giovanni, M. Chiarotti, Simultaneous detection of some drugsof abuse in saliva samples by SPME technique. Forensic Sci. Int.,2003,134,40-45.
    [150] W. H. Ho, S. J. Hsieh, Solid phase microextraction associated with microwaveassisted extraction of organochlorine pesticides in medicinal plants. Anal. Chim.Acta,2001,428,111-120.
    [151] Y. Cai, J. M. Bayona, Determination of methylmercury in fish and river watersamples using in situ sodium tetraethylborate derivatization following bysolid-phase microextraction and gas chromatography-mass spectrometry. J.Chromatogr. A,1995,696,113-122.
    [152] G. Moneti, F. R. Dani, G. Pieraccini, S. Turillazzi, Solid-phase microextractionof insect epicuticular hydrocarbons for gas chromatographic/massspectrometric analysis. Rapid Commun. Mass Spectrom.,1997,11,857-862.
    [153] C. Malosse, P. Ramirez-Lucas, D. Rochat, J.-P. Morin, Solid-phasemicroextraction, an alternative method for the study of airborne insectpheromones (Metamasius hemipterus, coleoptera, curculionidae). J. High.Resolut. Chromatogr.,1995,18,669-670.
    [154] B. Frérot, C. Malosse, A. H. Cain, Solid-phase microextraction (SPME): Anew tool in pheromone identification in lepidoptera. J. High. Resolut.Chromatogr.,1997,20,340-342.
    [155] F. M. Musteata, J. Pawliszyn, Bioanalytical applications of solid-phasemicroextraction. TrAC, Trends Anal. Chem,2007,26,36-45.
    [156] D. Vuckovic, R. Shirey, Y. Chen, L. Sidisky, C. Aurand, K. Stenerson, J.Pawliszyn, In vitro evaluation of new biocompatible coatings for solid-phasemicroextraction: Implications for drug analysis and in vivo samplingapplications. Anal. Chim. Acta,2009,638,175-185.
    [157] H. L. Lord, R. P. Grant, M. Walles, B. Incledon, B. Fahie, J. B. Pawliszyn,Development and evaluation of a solid-phase microextraction probe for in Vivopharmacokinetic studies. Anal. Chem.,2003,75,5103-5115.
    [158] D. Vuckovic, In vivo solid-phase microextraction sampling: a promising future?Bioanalysis,2011,3,1305-1308.
    [159] D. Vuckovic, S. Risticevic, J. Pawliszyn, In Vivo solid-phase microextractionin metabolomics: Opportunities for the direct investigation of biologicalsystems. Angew. Chem. Int. Ed.,2011,50,5618-5628.
    [160] H. Kataoka, Current developments and future trends in solid-phasemicroextraction techniques for pharmaceutical and biomedical analyses. Anal.Sci.,2011,27,893-905.
    [161] W. Miekisch, P. Fuchs, S. Kamysek, C. Neumann, J. K. Schubert, Assessmentof propofol concentrations in human breath and blood by means ofHS-SPME-GC-MS. Clin. Chim. Acta,2008,395,32-37.
    [162] M. Gallagher, C. J. Wysocki, J. J. Leyden, A. I. Spielman, X. Sun, G. Preti,Analyses of volatile organic compounds from human skin. Br. J.Dermatol.,2008,159,780-791.
    [163] Z. M. Zhang, J. J. Cai, G. H. Ruan, G. K. Li, The study of fingerprintcharacteristics of the emanations from human arm skin using the originalsampling system by SPME-GC/MS. J. Chromatogr. B,2005,822,244-252.
    [164] C. Bicchi, C. Cordero, E. Liberto, P. Rubiolo, B. Sgorbini, P. Sandra, Sorptivetape extraction in the analysis of the volatile fraction emitted from biologicalsolid matrices. J. Chromatogr. A,2007,1148,137-144.
    [165] S. Riazanskaia, G. Blackburn, M. Harker, D. Taylor, C. L. P. Thomas, Theanalytical utility of thermally desorbed polydimethylsilicone membranes forin-vivo sampling of volatile organic compounds in and on human skin. Analyst,2008,133,1020-1027.
    [166] H. L. Lord, X. Zhang, F. M. Musteata, D. Vuckovic, J. Pawliszyn, In vivosolid-phase microextraction for monitoring intravenous concentrations of drugsand metabolites. Nat. Protocols,2011,6,896-924.
    [167] Y. Yang, C. Li, K. H. Lee, H. G. Craighead, Coupling on-chip solid-phaseextraction to electrospray mass spectrometry through an integrated electrospraytip. Electrophoresis,2005,26,3622-3630.
    [168] Y. Yang, C. Li, J. Kameoka, K. H. Lee, H. G. Craighead, A polymericmicrochip with integrated tips and in situ polymerized monolith forelectrospray mass spectrometry. Lab Chip,2005,5,869-876.
    [169] Q. S. Kang, Y. Li, J. Q. Xu, L. J. Su, Y. T. Li, W. H. Huang, Polymermonolith-integrated multilayer poly(dimethylsiloxane) microchip for onlinemicroextraction and capillary electrophoresis. Electrophoresis,2010,31,3028-3034.
    [170] J. Zeng, J. Chen, X. Song, Y. Wang, J. Ha, X. Chen, X. Wang, Anelectrochemically enhanced solid-phase microextraction approach based on amulti-walled carbon nanotubes/Nafion composite coating. J. Chromatogr. A,2010,1217,1735-1741.
    [171] J. Zeng, J. Zou, X. Song, J. Chen, J. Ji, B. Wang, Y. Wang, J. Ha, X. Chen, Anew strategy for basic drug extraction in aqueous medium usingelectrochemically enhanced solid-phase microextraction. J. Chromatogr. A,2011,1218,191-196.
    [172] Q. W. Yu, Q. Ma, Y. Q. Feng, Temperature-response polymer coating forin-tube solid-phase microextraction coupled to high-performance liquidchromatography. Talanta,2011,84,1019-1025.
    [173]张慧娟,吴剑虹,冯钰锜,化学衍生与萃取联用技术在生物样品预处理中的应用.分析科学学报,2008,24,589-595.
    [174] E. E. Stashenko, J. R. Martínez, Derivatization and solid phase microextraction.TrAC, Trends Anal. Chem.,2004,23,553-561.
    [175] A. A. Nuhu, C. Basheer, B. Saad, Liquid-phase and dispersive liquid-liquidmicroextraction techniques with derivatization: Recent applications inbioanalysis. J. Chromatogr. B,2011,879,1180-1188.
    [176] J. Liu, K. Hara, S. Kashimura, M. Kashiwagi, M. Kageura, New method ofderivatization and headspace solid-phase microextraction for gaschromatographic-mass spectrometric analysis of amphetamines in hair. J.Chromatogr.B,2001,758,95-101.
    [177] G. A. Mills, V. Walker, H. Mughal, Headspace solid-phase microextractionwith1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecalshort-chain fatty acids. J. Chromatogr. B,1999,730,113-122.
    [178] E. Stashenko, M. Puertas, J. Martínez, SPME determination of volatilealdehydes for evaluation of in-vitro antioxidant activity. Anal. Bioanal. Chem.,2002,373,70-74.
    [179] M. Kawaguchi, K. Inoue, M. Yoshimura, R. Ito, N. Sakui, N. Okanouchi, H.Nakazawa, Determination of bisphenol A in river water and body fluid samplesby stir bar sorptive extraction with in situ derivatization and thermaldesorption-gas chromatography-mass spectrometry. J. Chromatogr. B,2004,805,41-48.
    [180] M. A. Jeannot, F. F. Cantwell, Solvent microextraction into a single drop. Anal.Chem.,1996,68,2236-2240.
    [181] H. Liu, P. K. Dasgupta, Analytical chemistry in a drop. Solvent extraction in amicrodrop. Anal. Chem.,1996,68,1817-1821.
    [182] L. Zhao, H. K. Lee, Liquid-phase microextraction combined with hollow fiberas a sample preparation technique prior to gas chromatography/massspectrometry. Anal. Chem.,2002,74,2486-2492.
    [183] T. S. Ho, S. Pedersen-Bjergaard, K. E. Rasmussen, Recovery, enrichment andselectivity in liquid-phase microextraction: Comparison with conventionalliquid-liquid extraction. J. Chromatogr. A,2002,963,3-17.
    [184]赵汝松,徐晓白,刘秀芬,液相微萃取技术的研究进展.分析化学,2004,32,1246-1251.
    [185] M. A. Jeannot, F. F. Cantwell, Mass transfer characteristics of solventextraction into a single drop at the tip of a syringe needle. Anal. Chem.,1997,69,235-239.
    [186] M. A. Jeannot, F. F. Cantwell, Solvent microextraction as a speciation tool:Determination of free progesterone in a protein solution. Anal. Chem.,1997,69,2935-2940.
    [187] A. L. Theis, A. J. Waldack, S. M. Hansen, M. A. Jeannot, Headspace solventmicroextraction. Anal. Chem.,2001,73,5651-5654.
    [188] A. Tankeviciute, R. Kazlauskas, V. Vickackaite, Headspace extraction ofalcohols into a single drop. Analyst,2001,126,1674-1677.
    [189] V. Colombini, C. Bancon-Montigny, L. Yang, P. Maxwell, R. E. Sturgeon, Z.Mester, Headspace single-drop microextration for the detection of organotincompounds. Talanta,2004,63,555-560.
    [190] W. Liu, H. K. Lee, Continuous-flow microextraction exceeding1000-foldconcentration of dilute analytes. Anal. Chem.,2000,72,4462-4467.
    [191] Y. He, H. K. Lee, Liquid-phase microextraction in a single drop of organicsolvent by using a conventional microsyringe. Anal. Chem.,1997,69,4634-4640.
    [192] M. Ma, F. F. Cantwell, Solvent Microextraction with simultaneousback-extraction for sample cleanup and preconcentration: Preconcentration intoa single microdrop. Anal. Chem.,1999,71,388-393.
    [193] Y. Lu, Q. Lin, G. Luo, Y. Dai, Directly suspended droplet microextraction.Anal. Chim. Acta.,2006,566,259-264.
    [194] A. Sarafraz-Yazdi, F. Mofazzeli, Z. Es’haghi, Directly suspended droplet threeliquid phase microextraction of diclofenac prior to LC. Chromatographia,2008,67,49-53.
    [195] G. Mingyuan, L. Yangcheng, L. Guangsheng, Directly suspended dropletmicroextraction in a rotating vial. Anal. Chim. Acta,2009,648,123-127.
    [196] H. Farahani, P. Norouzi, A. Beheshti, H. R. Sobhi, R. Dinarvand, M. R.Ganjali, Quantitation of atorvastatin in human plasma using directly suspendedacceptor droplet in liquid-liquid-liquid microextraction and high-performanceliquid chromatography-ultraviolet detection. Talanta,2009,80,1001-1006.
    [197] A. Sarafraz-Yazdi, A. H. Amiri, Z. Es'haghi, Separation and determination ofbenzene, toluene, ethylbenzene and o-xylene compounds in water usingdirectly suspended droplet microextraction coupled with gaschromatography-flame ionization detector. Talanta,2009,78,936-941.
    [198] A. S. Yazdi, F. Mofazzeli, Z. Es'haghi, Determination of3-nitroaniline in watersamples by directly suspended droplet three-phase liquid-phasemicroextraction using18-crown-6ether and high-performance liquidchromatography. J. Chromatogr. A,2009,1216,5086-5091.
    [199] J. F. Peng, J. F. Liu, G. B. Jiang, C. Tai, M. J. Huang, Ionic liquid for hightemperature headspace liquid phase microextraction of chlorinated anilines inenvironmental water samples. J. Chromatogr. A,2005,1072,3-6.
    [200] J. F. Liu, G. B. Jiang, Y. G. Chi, Y. Q. Cai, Q. X. Zhou, J. T. Hu, Use of ionicliquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons.Anal. Chem.,2003,75,5870-5876.
    [201] C. L. Ye, Q. X. Zhou, X. M. Wang, Headspace liquid-phase microextractionusing ionic liquid as extractant for the preconcentration ofdichlorodiphenyltrichloroethane and its metabolites at trace levels in watersamples. Anal. Chim. Acta,2006,572,165-171.
    [202] M. R. Khalili Zanjani, Y. Yamini, S. Shariati, J. A. Jonsson, A new liquid-phasemicroextraction method based on solidification of floating organic drop. Anal.Chim. Acta,2007,585,286-293.
    [203] H. Xu, Y. Liao, J. Yao, Development of a novel ultrasound-assisted headspaceliquid-phase microextraction and its application to the analysis ofchlorophenols in real aqueous samples. J. Chromatogr. A,2007,1167,1-8.
    [204] H. Xu, W. Pan, D. Song, G. Yang, Development of an improved liquid phasemicroextraction technique and its application in the analysis of flumetsulamand its two analogous herbicides in soil. J. Agri. Food Chem.,2007,55,9351-9356.
    [205] W. Pan, H. Xu, Y. Cui, D. Song, Y. Q. Feng, Improved liquid-liquid-liquidmicroextraction method and its application to analysis of four phenoliccompounds in water samples. J. Chromatogr. A,2008,1203,7-12.
    [206] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-liquid-liquid microextractionfor sample preparation of biological fluids prior to capillary electrophoresis.Anal. Chem.,1999,71,2650-2656.
    [207] D. A. Lambropoulou, T. A. Albanis, Application of hollow fiber liquid phasemicroextraction for the determination of insecticides in water. J. Chromatogr.A,2005,1072,55-61.
    [208] S. Andersen, T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, L.Tanum, H. Refsum, Stereospecific determination of citalopram anddesmethylcitalopram by capillary electrophoresis and liquid-phasemicroextraction. J. Pharm. Biomed. Anal.,2003,33,263-273.
    [209] T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phasemicroextraction and capillary electrophoresis of citalopram, an antidepressantdrug. J. Chromatogr. A,2001,909,87-93.
    [210] L. Hou, X. Wen, C. Tu, H. K. Lee, Combination of liquid-phasemicroextraction and on-column stacking for trace analysis of amino alcoholsby capillary electrophoresis. J. Chromatogr. A,2002,979,163-169.
    [211] L. Zhu, K. Huey Ee, L. Zhao, H. K. Lee, Analysis of phenoxy herbicides inbovine milk by means of liquid-liquid-liquid microextraction with ahollow-fiber membrane. J. Chromatogr. A,2002,963,335-343.
    [212] H. M. Jiang, B. Hu, B. B. Chen, W. Q. Zu, Hollow fiber liquid phasemicroextraction combined with graphite furnace atomic absorptionspectrometry for the determination of methylmercury in human hair and sludgesamples. Spectrochim. Acta, Part B,2008,63,770-776.
    [213] P. Li, J. Duan, B. Hu, High-sensitivity capillary electrophoresis for speciationof organomercury in biological samples using hollow fiber-basedliquid-liquid-liquid microextraction combined with on-line preconcentration bylarge-volume sample stacking. Electrophoresis,2008,29,3081-3089.
    [214] L. Xia, B. Hu, Y. Wu, Hollow fiber-based liquid-liquid-liquid microextractioncombined with high-performance liquid chromatography for the speciation oforganomercury. J. Chromatogr. A,2007,1173,44-51.
    [215] X. Jiang, C. Basheer, J. Zhang, H. K. Lee, Dynamic hollow fiber-supportedheadspace liquid-phase microextraction. J. Chromatogr. A,2005,1087,289-294.
    [216] L. Hou, H. K. Lee, Dynamic three-phase microextraction as a samplepreparation technique prior to capillary electrophoresis. Anal. Chem.,2003,75,2784-2789.
    [217] X. Jiang, S. Y. Oh, H. K. Lee, Dynamic liquid-liquid-liquid microextractionwith automated movement of the acceptor phase. Anal. Chem.,2005,77,1689-1695.
    [218] M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, S.Berijani, Determination of organic compounds in water using dispersiveliquid-liquid microextraction. J. Chromatogr. A,2006,1116,1-9.
    [219] L. Kocúrová, I. S. Balogh, J. andrejová, V. Andruch, Recent advances indispersive liquid-liquid microextraction using organic solvents lighter thanwater. A review. Microchem. J.,2012,102,11-17.
    [220] P. Hashemi, S. Beyranvand, R. S. Mansur, A. R. Ghiasvand, Development of asimple device for dispersive liquid-liquid microextraction with lighter thanwater organic solvents: Isolation and enrichment of glycyrrhizic acid fromlicorice. Anal. Chim. Acta,2009,655,60-65.
    [221] M. A. Farajzadeh, S. E. Seyedi, M. S. Shalamzari, M. Bamorowat, Dispersiveliquid-liquid microextraction using extraction solvent lighter than water. J. Sep.Sci.,2009,32,3191-3200.
    [222] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian,Ultrasound-assisted emulsification microextraction method based on applyinglow density organic solvents followed by gas chromatography analysis for thedetermination of polycyclic aromatic hydrocarbons in water samples. J.Chromatogr. A,2009,1216,6673-6679.
    [223] P. P. Zhang, Z. G. Shi, Q. W. Yu, Y. Q. Feng, A new device for magneticstirring-assisted dispersive liquid-liquid microextraction of UV filters inenvironmental water samples. Talanta,2011,83,1711-1715.
    [224] M. I. Leong, S. D. Huang, Dispersive liquid-liquid microextraction methodbased on solidification of floating organic drop combined with gaschromatography with electron-capture or mass spectrometry detection. J.Chromatogr. A,2008,1211,8-12.
    [225] H. Xu, Z. Ding, L. Lv, D. Song, Y. Q. Feng, A novel dispersive liquid-liquidmicroextraction based on solidification of floating organic droplet method fordetermination of polycyclic aromatic hydrocarbons in aqueous samples. Anal.Chim. Acta,2009,636,28-33.
    [226] H. Chen, R. Chen, S. Li, Low-density extraction solvent-based solventterminated dispersive liquid-liquid microextraction combined with gaschromatography-tandem mass spectrometry for the determination of carbamatepesticides in water samples. J. Chromatogr. A,2010,1217,1244-1248.
    [227] A. N. Anthemidis, K. I. G. Ioannou, Development of a sequential injectiondispersive liquid-liquid microextraction system for electrothermal atomicabsorption spectrometry by using a hydrophobic sorbent material:Determination of lead and cadmium in natural waters. Anal. Chim. Acta,2010,668,35-40.
    [228] A. N. Anthemidis, K. I. G. Ioannou, On-line sequential injection dispersiveliquid-liquid microextraction system for flame atomic absorption spectrometricdetermination of copper and lead in water samples. Talanta,2009,79,86-91.
    [229] Z. G. Shi, H. K. Lee, Dispersive liquid-liquid microextraction coupled withdispersive μ-solid-phase extraction for the fast determination of polycyclicaromatic hydrocarbons in environmental water samples. Anal. Chem.,2010,82,1540-1545.
    [230] L. Xu, H. K. Lee, Solvent-bar microextraction-using a silica monolith as theextractant phase holder. J. Chromatogr. A,2009,1216,5483-5488.
    [231] X. Z. Hu, J. H. Wu, Y. Q. Feng, Molecular complex-based dispersiveliquid-liquid microextraction: Analysis of polar compounds in aqueous solution.J. Chromatogr. A,2010,1217,7010-7016.
    [232] L. Zhao, H. K. Lee, Determination of phenols in water using liquid phasemicroextraction with back extraction combined with high-performance liquidchromatography. J. Chromatogr. A,2001,931,95-105.
    [233] S. Pedersen-Bjergaard, K. E. Rasmussen, Electrokinetic migration acrossartificial liquid membranes: New concept for rapid sample preparation ofbiological fluids. J. Chromatogr. A,2006,1109,183-190.
    [234] T. S. Ho, T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen,Liquid-phase microextraction of hydrophilic drugs by carrier-mediatedtransport. J. Chromatogr. A,2003,998,61-72.
    [235] T. S. Ho, J. L. Egge Reubsaet, H. S. Anthonsen, S. Pedersen-Bjergaard, K. E.Rasmussen, Liquid-phase microextraction based on carrier mediated transportcombined with liquid chromatography-mass spectrometry: New concept for thedetermination of polar drugs in a single drop of human plasma. J. Chromatogr.A,2005,1072,29-36.
    [236] J. L. E. Reubsaet, H. Loftheim, A. Gjelstad, Ion-pair mediated transport ofangiotensin, neurotensin, and their metabolites in liquid phase microextractionunder acidic conditions. J. Sep. Sci.,2005,28,1204-1210.
    [237] J. L. E. Reubsaet, J. V. Paulsen, Ion-pair mediated transport of small modelpeptides in liquid phase micro-extraction under acidic conditions. J. Sep. Sci.,2005,28,295-300.
    [238] S. Pedersen-Bjergaard, K. E. Rasmussen, A. Brekke, T. S. Ho, T. Gr nhaugHalvorsen, Liquid-phase microextraction of basic drugs-selection of extractionmode based on computer calculated solubility data. J. Sep. Sci.,2005,28,1195-1203.
    [239] H. Hisamoto, T. Horiuchi, M. Tokeshi, A. Hibara, T. Kitamori, On-chipintegration of neutral ionophore-based ion pair extraction reaction. Anal. Chem.,2001,73,1382-1386.
    [240] M. Sun, W. B. Du, Q. Fang, Microfluidic liquid-liquid extraction system basedon stopped-flow technique and liquid core waveguide capillary. Talanta,2006,70,392-396.
    [241] L. Xia, B. Hu, Z. Jiang, Y. Wu, R. Chen, L. Li, Hollow fiber liquid phasemicroextraction combined with electrothermal vaporization ICP-MS for thespeciation of inorganic selenium in natural waters. J. Anal. At. Spectrom.,2006,21,362-365.
    [242] L. Li, B. Hu, Hollow-fibre liquid phase microextraction for separation andpreconcentration of vanadium species in natural waters and their determinationby electrothermal vaporization-ICP-OES. Talanta,2007,72,472-479.
    [243] L. Xia, Y. Wu, B. Hu, Hollow-fiber liquid-phase microextraction prior tolow-temperature electrothermal vaporization ICP-MS for trace elementanalysis in environmental and biological samples. J. Mass Spectrom.,2007,42,803-810.
    [244] Z. Fan, Determination of antimony(III) and total antimony by single-dropmicroextraction combined with electrothermal atomic absorption spectrometry.Anal. Chim. Acta,2007,585,300-304.
    [245] Z. Fan, W. Zhou, Dithizone-chloroform single drop microextraction systemcombined with electrothermal atomic absorption spectrometry using Ir aspermanent modifier for the determination of Cd in water and biologicalsamples. Spectrochimica Acta Part B,2006,61,870-874.
    [246] M. Shamsipur, M. Ramezani, Selective determination of ultra trace amounts ofgold by graphite furnace atomic absorption spectrometry after dispersiveliquid-liquid microextraction. Talanta,2008,75,294-300.
    [247] M. T. Naseri, M. R. Milani Hosseini, Y. Assadi, A. Kiani, Rapid determinationof lead in water samples by dispersive liquid-liquid microextraction coupledwith electrothermal atomic absorption spectrometry. Talanta,2008,75,56-62.
    [248] E. Zeini Jahromi, A. Bidari, Y. Assadi, M. R. Milani Hosseini, M. R. Jamali,Dispersive liquid-liquid microextraction combined with graphite furnaceatomic absorption spectrometry: Ultra trace determination of cadmium in watersamples. Anal. Chim. Acta,2007,585,305-311.
    [249] A. Bidari, E. Zeini Jahromi, Y. Assadi, M. R. Milani Hosseini, Monitoring ofselenium in water samples using dispersive liquid-liquid microextractionfollowed by iridium-modified tube graphite furnace atomic absorptionspectrometry. Microchem. J.,2007,87,6-12.
    [250] M. Tokeshi, T. Minagawa, T. Kitamori, Integration of a microextraction systemon a glass chip: Ion-Pair solvent extraction of Fe(II) with4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid andtri-n-octylmethylammonium chloride. Anal. Chem.,2000,72,1711-1714.
    [251] L. Zhu, C. B. Tay, H. K. Lee, Liquid-liquid-liquid microextraction of aromaticamines from water samples combined with high-performance liquidchromatography. J. Chromatogr. A,2002,963,231-237.
    [252] L. Zhao, L. Zhu, H. K. Lee, Analysis of aromatic amines in water samples byliquid-liquid-liquid microextraction with hollow fibers and high-performanceliquid chromatography. J. Chromatogr. A,2002,963,239-248.
    [253] A. S. Yazdi, Z. Es' haghi, Two-step hollow fiber-based, liquid-phasemicroextraction combined with high-performance liquid chromatography: Anew approach to determination of aromatic amines in water. J. Chromatogr. A,2005,1082,136-142.
    [254] D. Pardasani, P. K. Kanaujia, A. K. Gupta, V. Tak, R. K. Shrivastava, D. K.Dubey, In situ derivatization hollow fiber mediated liquid phasemicroextraction of alkylphosphonic acids from water. J. Chromatogr. A,2007,1141,151-157.
    [255] M. Y. Lin, C. W. Whang, Microwave-assisted derivatization and single-dropmicroextraction for gas chromatographic determination of chromium(III) inwater. J. Chromatogr. A,2007,1160,336-339.
    [256] S. H. Sun, J. P. Xie, F. W. Xie, Y. L. Zong, Determination of volatile organicacids in oriental tobacco by needle-based derivatization headspace liquid-phasemicroextraction coupled to gas chromatography/mass spectrometry. J.Chromatogr. A,2008,1179,89-95.
    [257] J. S. Chiang, S. D. Huang, Simultaneous derivatization and extraction ofamphetamine and methylenedioxyamphetamine in urine with headspaceliquid-phase microextraction followed by gas chromatography-massspectrometry. J. Chromatogr. A,2008,1185,19-22.
    [258] R. Batlle, P. López, C. Nerín, C. Crescenzi, Active single-drop microextractionfor the determination of gaseous diisocyanates. J. Chromatogr. A,2008,1185,155-160.
    [259] J. S. Chiang, S. D. Huang, Simultaneous derivatization and extraction ofanilines in waste water with dispersive liquid-liquid microextraction followedby gas chromatography-mass spectrometric detection. Talanta,2008,75,70-75.
    [260] Y. C. Fiamegos, C. D. Stalikas, Gas chromatographic determination ofcarbonyl compounds in biological and oil samples by headspace single-dropmicroextraction with in-drop derivatisation. Anal. Chim. Acta,2008,609,175-183.
    [261] K. E. Kramer, A. R. J. Andrews, Screening method for11-nor-△9-tetrahydrocannabinol-9-carboxylic acid in urine using hollow fibermembrane solvent microextraction with in-tube derivatization. J. Chromatogr.Bng,2001,760,27-36.
    [262] Y. C. Fiamegos, C. D. Stalikas, In-drop derivatisation liquid-phase microextractionassisted by ion-pairing transfer for the gas chromatographic determination ofphenolic endocrine disruptors. Anal. Chim. Acta,2007,597,32-40.
    [263] A. Sarafraz Yazdi, Z. Es'aghi, Surfactant enhanced liquid-phasemicroextraction of basic drugs of abuse in hair combined with highperformance liquid chromatography. J. Chromatogr. A,2005,1094,1-8.
    [264] P. R. Sudhir, H. F. Wu, Z. C. Zhou, Identification of peptides using goldnanoparticle-assisted single-drop microextraction coupled with AP-MALDImass spectrometry. Anal. Chem.,2005,77,7380-7385.
    [265] K. Shrivas, H. F. Wu, Modified silver nanoparticle as a hydrophobic affinityprobe for analysis of peptides and proteins in biological samples by usingliquid-liquid microextraction coupled to AP-MALDI-ion trap andMALDI-TOF mass spectrometry. Anal. Chem.,2008,80,2583-2589.
    [1] T. A. M. Msagati, M. M. Nindi. Determination of benzimidazole anthelminticcompounds by supported liquid membrane extraction and liquid chromatography,J. Sep. Sci.,2001,24,606-614.
    [2] G. Balizs. Determination of benzimidazole residues using liquid chromatographyand tandem mass spectrometry, J. Chromatogr.B: Anal. Technol. Biomed. Life Sci.,1999,727,167-177.
    [3] M. Danaher, H. De Ruyck, S. R. H. Crooks, G. Dowling, M. O'Keeffe. Reviewof methodology for the determination of benzimidazole residues in biologicalmatrices, J. Chromatogr.B: Anal. Technol. Biomed. Life Sci.,2007,845,1-37.
    [4] O. Zamora, E. E. Paniagua, C. Cacho, L. E. Vera-Avila, C. Perez-Conde.Determination of benzimidazole fungicides in water samples by on-lineMISPE-HPLC, Anal. Bioanal. Chem.,2009,393,1745-1753.
    [5] Maximum Residue Limits for Veterinary Drugs in Foods, the32ndSession of theCodex Alimentarius Commission, Rome, ITALY, June29-July4,2009;1-36.
    [6] C. Cacho, E. Turiel, C. Perez-Conde. Molecularly imprinted polymers: Ananalytical tool for the determination of benzimidazole compounds in watersamples, Talanta,2009,78,1029-1035.
    [7] L. Moreno, F. Imperiale, L. Mottier, L. Alvarez, C. Lanusse. Comparison of milkresidue profiles after oral and subcutaneous administration of benzimidazoleanthelmintics to dairy cows, Anal. Chim. Acta,2005,536,91-99.
    [8] L. Mottier, L. Alvarez, C. Lanusse. Quantitative chromatographic determinationof several benzimidazole anthelmintic molecules in parasite material, J.Chromatogr.B: Anal. Technol. Biomed. Life Sci.,2003,798,117-125.
    [9] L. Mottier, L. Moreno, L. Alvarez, G. Virkel, C. Lanusse. Measurement oftriclabendazole and its metabolites in liver flukes: Method development and fullvalidation, J. Pharm. Biomed. Anal.,2004,35,991-999.
    [10] A. L. Monzon, D. V. Moreno, M. E. T. Padron, Z. S. Ferrera, J. J. S. Rodriguez.Solid-phase microextraction of benzimidazole fungicides in environmental liquidsamples and HPLC-fluorescence determination,12thInternational Symposium onLuminescence Spectrometry, Lugo, SPAIN, Jul18-21,2006;1957-1963.
    [11] D. J. Fletouris, N. A. Botsoglou, I. E. Psomas, A. I. Mantis. Determination ofthe marker residue of albendazole in milk using ion-pair liquid chromatographyand fluorescence detection, Anal. Chim. Acta,1997,345,111-119.
    [12] D. L. Brandon, A. H. Bates, R. G. Binder, W. C. Montague, L. C. Whitehead, S.A. Barker. Analysis of fenbendazole residues in bovine milk by ELISA, J. Agric.Food Chem.,2002,50,5791-5796.
    [13] D. L. Brandon, R. G. Binder, A. H. Bates, W. C. Montague. A monoclonalantibody-based ELISA for thiabendazole in liver, J. Agric. Food Chem.,1992,40,1722-1726.
    [14] D. L. Brandon, R. G. Binder, A. H. Bates, W. C. Montague. Monoclonalantibody for multiresidue ELISA of benzimidazole anthelmintics in liver, J.Agric. Food Chem.,1994,42,1588-1594.
    [15] T. A. M. Msagati, J. C. Ngila. Voltammetric determination of a benzimidazoleanthelmintic mixture at a poly (3-methylthiophene)-modified glassy carbonelectrode, South Afri. J. Chem.-Suid-Afrika. Tydskrif Vir Chemie,2003,56,5-9.
    [16] V. Cvilink, B. Szotakova, I. Vokral, H. Bartikova, J. Lamka, L. Skalova. Liquidchromatography/mass spectrometric identification of benzimidazoleanthelminthics metabolites formed ex vivo by Dicrocoelium dendriticum, RapidCommun. Mass Spectrom.,2009,23,2679-2684.
    [17] M. Thevis, M. Kohler, A. Thomas, J. Maurer, N. Schlorer, M. Kamber, W.Schanzer. Determination of benzimidazole and bicyclic hydantoin-derivedselective androgen receptor antagonists and agonists in human urine usingLC-MS/MS, Anal. Bioanal. Chem.,2008,391,251-261.
    [18] T. A. M. Msagati, M. M. Nindi. Comparative study of sample preparationmethods; supported liquid membrane and solid phase extraction in thedetermination of benzimidazole anthelmintics in biological matrices by liquidchromatography-electrospray-mass spectrometry, Talanta,2006,69,243-250.
    [19] L. K. Sorensen, H. Hansen. Determination of fenbendazole and its metabolitesin trout by a high-performance liquid chromatographic method,3rdInternationalSymposium on Hormone and Veterinary Drug Residue Analysis, Oud St Jan,Belgium, Jun02-05,1998;2559-2562.
    [20] C. L. Arthur, J. Pawliszyn. Solid phase microextraction with thermal desorptionusing fused silica optical fibers, Anal. Chem,1990,62,2145-2148.
    [21] Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi. Poly (methacrylic acid-ethylene glycoldimethacrylate) monolithic capillary for in-tube solid phase microextractioncoupled to high performance liquid chromatography and its application todetermination of basic drugs in human serum, Anal. Chim. Acta,2004,523,251-258.
    [22] M. M. Zheng, G. D. Ruan, Y. Q. Feng. Evaluating polymer monolith in-tubesolid-phase microextraction coupled to liquid chromatography/quadrupoletime-of-flight mass spectrometry for reliable quantification and confirmation ofquinolone antibacterials in edible animal food, J. Chromatogr. A,2009,1216,7510-7519.
    [23] M. M. Zheng, M. Y. Zhang, G. Y. Peng, Y. Q. Feng. Monitoring ofsulfonamide antibacterial residues in milk and egg by polymer monolithmicroextraction coupled to hydrophilic interaction chromatography/massspectrometry, Anal. Chim. Acta,2008,625,160-172.
    [24] J. Y. Wu, Z. G. Shi, Y. Q. Feng. Determination of5-hydroxymethylfurfuralusing derivatization combined with polymer monolith microextraction byhigh-performance liquid chromatography, J. Agric. Food Chem.,2009,57,3981-3988.
    [25] T. Li, Z. G. Shi, M. M. Zheng, Y. Q. Feng. Multiresidue determination ofsulfonamides in chicken meat by polymer monolith microextraction andcapillary zone electrophoresis with field-amplified sample stacking, J.Chromatogr. A,2008,1205,163-170.
    [26] S. X. ZHANG, J. S. LI, C. F. QIAN. MSPD clean-up and HPLC determinationof benzimidazoles in beef muscle, Chin. J. Vet. Sci,2000,20,569-571.
    [27] P. J. Taylor. Matrix effects: the achilles heel of quantitative high-performanceliquid chromatography-electrospray-tandem mass spectrometry, Clin. Biochem.,2005,38,328-334.
    [1] G. Balizs. Determination of benzimidazole residues using liquid chromatographyand tandem mass spectrometry, J. Chromatogr. B,1999,727,167-177.
    [2] T. A. M. Msagati, M. M. Nindi. Determination of benzimidazole anthelminticcompounds by supported liquid membrane extraction and liquid chromatography,J. Sep. Sci.,2001,24,606-614.
    [3] M. Danaher, H. De Ruyck, S. R. H. Crooks, G. Dowling, M. O'Keeffe. Review ofmethodology for the determination of benzimidazole residues in biologicalmatrices, J. Chromatogr.B: Anal. Technol. Biomed. Life Sci.,2007,845,1-37.
    [4] O. Zamora, E. E. Paniagua, C. Cacho, L. E. Vera-Avila, C. Perez-Conde.Determination of benzimidazole fungicides in water samples by on-lineMISPE-HPLC, Anal. Bioanal. Chem.,2009,393,1745-1753.
    [5] Maximum residue limits for veterinary drugs in foods, the32nd Session of theCodex Alimentarius Commission, Rome, ITALY, June29-July4,2009;1-36.
    [6] Establishment of maximum reside levels of veterinary medical products infoodstuffs of animal origin, Ministry of Agriculture, PR China, Regulation No.235,2002..
    [7] C. Cacho, E. Turiel, C. Perez-Conde. Molecularly imprinted polymers: Ananalytical tool for the determination of benzimidazole compounds in watersamples, Talanta,2009,78,1029-1035.
    [8] X. Z. Hu, J. X. Wang, Y. Q. Feng. Determination of benzimidazole residues inedible animal food by polymer monolith microextraction combined with liquidchromatography-mass spectrometry, J. Agric. Food Chem.,2010,58,112-119.
    [9] T. A. M. Msagati, M. M. Nindi. Comparative study of sample preparation methods:supported liquid membrane and solid phase extraction in the determination ofbenzimidazole anthelmintics in biological matrices by liquid chromatography-electrospray-mass spectrometry, Talanta,2006,69,243-250.
    [10] M. Whelan, B. Kinsella, A. Furey, M. Moloney, H. Cantwell, S. J. Lehotay, M.Danaher. Determination of anthelmintic drug residues in milk using ultra highperformance liquid chromatography-tandem mass spectrometry with rapid polarityswitching, J. Chromatogr. A,2010,1217,4612-4622.
    [11] H. De Ruyck, E. Daeseleire, H. De Ridder, R. Van Renterghem. Developmentand validation of a liquid chromatographic-electrospray tandem massspectrometric multiresidue method for anthelmintics in milk, J. Chromatogr. A,2002,976,181-194.
    [12] H. De Ruyck, E. Daeseleire, K. Grijspeerdt, H. De Ridder, R. Van Renterghem, G.Huyghebaert. Determination of flubendazole and its metabolites in eggs andpoultry muscle with liquid chromatography tandem mass spectrometry. J. Agric.Food Chem.,2001,49,610-617.
    [13] X. Xia, Y. C. Dong, P. J. Luo, X. Wang, X. W. Li, S. Y. Ding, J. Z. Shen.Determination of benzimidazole residues in bovine milk by ultra-highperformance liquid chromatography/tandem mass spectrometry, J. Chromatogr.B,2010,878,3174-3180.
    [14] J. Z. Shen, J. Tong, H. Y. Jiang. Simultaneous determination of fivebenzimidazoles in feeds using high-performance capillary electrophoresis, J.AOAC Int.,2009,92,1009-1015.
    [15] A. Rousseau, F. Gillotin, P. Chiap, J. Crommen, M. Fillet, A. C. Servais.Association of two single-isomer anionic CD in NACE for the chiral and achiralseparation of fenbendazole, its sulphoxide and sulphone metabolites: Applicationto their determination after in vitro metabolism, Electrophoresis,2010,31,1482-1487.
    [16] A. Procházková, M. Chouki, R. Theurillat, W. Thormann. Therapeutic drugmonitoring of albendazole: Determination of albendazole, albendazole sulfoxide,and albendazole sulfone in human plasma using nonaqueous capillaryelectrophoresis, Electrophoresis,2000,21,729-736.
    [17] X. Zhang, Z. Liu, J. Yao, S. Huang. Evaluation for home-made bubble cells incapillary electrophoresis, Chin. J. Anal. Chem,1999,27,485-489.
    [18] N. YAN, X. G. CHEN. Recent progress of on-line sample preconcentration incapillary electrophoresis, ROCK MINER ANAL.,2009,28,351-360.
    [19] H. Xu, Y. Zhu, X. D. Yu, H. Y. Chen. On-line Preconcentration of sample incapillary electrophoresis, PROG. CHEM.,2005,17,377-383.
    [20] T. Li, Z. G. Shi, M. M. Zheng, Y. Q. Feng. Multiresidue determination ofsulfonamides in chicken meat by polymer monolith microextraction and capillaryzone electrophoresis with field-amplified sample stacking, J. Chromatogr. A,2008,1205,163-170.
    [21] H. B. He, X. X. Lv, Q. W. Yu, Y. Q. Feng. Multiresidue determination of(fluoro)quinolone antibiotics in chicken by polymer monolith microextraction andfield-amplified sample stacking procedures coupled to CE-UV, Talanta,2010,82,1562-1570.
    [22] L. Moreno, F. Imperiale, L. Mottier, L. Alvarez, C. Lanusse. Comparison of milkresidue profiles after oral and subcutaneous administration of benzimidazoleanthelmintics to dairy cows, Anal. Chim. Acta,2005,536,91-99.
    [23] M. afaríková, I. afarík. Magnetic solid-phase extraction, J. Magn. Magn. Mater.,1999,194,108-112.
    [24] Q. Gao, D. Luo, J. Ding, Y. Q. Feng. Rapid magnetic solid-phase extractionbased on magnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate)composite microspheres for the determination of sulfonamide in milk samples, J.Chromatogr. A,2010,1217,5602-5609.
    [25] M. L. Chen, L. L. Suo, Q. Gao, Y. Q. Feng. Determination of eight illegal drugsin human urine by combination of magnetic solid-phase extraction with capillaryzone electrophoresis, Electrophoresis.2011,32,2099-2106.
    [26] I. S. Ibarra, J. A. Rodriguez, J. M. Miranda, M. Vega, E. Barrado. Magnetic solidphase extraction based on phenyl silica adsorbent for the determination oftetracyclines in milk samples by capillary electrophoresis, J. Chromatogr. A,2011,1218,2196-2202.
    [1] M. Asensio-Ramos, J. Hernández-Borges, A. Rocco, S. Fanali. Food analysis: Acontinuous challenge for miniaturized separation techniques, J. Sep. Sci.,2009,32,3764-3800.
    [2] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian. Ultrasound-assistedemulsification microextraction method based on applying low density organicsolvents followed by gas chromatography analysis for the determination ofpolycyclic aromatic hydrocarbons in water samples, J. Chromatogr. A,2009,1216,6673-6679.
    [3] C. L. Arthur, J. Pawliszyn. Solid phase microextraction with thermal desorptionusing fused silica optical fibers, Anal. Chem.,1990,62,2145-2148.
    [4] X. Z. Hu, J. X. Wang, Y. Q. Feng. Determination of benzimidazole residues inedible animal food by polymer monolith microextraction combined with Liquidchromatography-mass spectrometry, J. Agric. Food Chem.,2009,58,112-119.
    [5] M. A. Jeannot, F. F. Cantwell. Solvent microextraction into a single drop, Anal.Chem.,1996,68,2236-2240.
    [6] Z. G. Shi, H. K. Lee. Dispersive liquid-liquid microextraction coupled withdispersive μ-solid-phase extraction for the fast determination of polycyclicaromatic hydrocarbons in environmental water samples, Anal. Chem.,2010,82,1540-1545.
    [7] M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani.Determination of organic compounds in water using dispersive liquid-liquidmicroextraction, J. Chromatogr. A,2006,1116,1-9.
    [8] Q. Lu, L. Chen, M. Lu, G. Chen, L. Zhang. Extraction and analysis of auxins inplants using dispersive liquid-liquid microextraction followed by highperformance liquid chromatography with fluorescence detection, J. Agric. FoodChem.,2010,58,2763-2770.
    [9] J. López-Darias, M. Germán-Hernández, V. Pino, A. M. Afonso. Dispersiveliquid-liquid microextraction versus single-drop microextraction for thedetermination of several endocrine-disrupting phenols from seawaters, Talanta,2010,80,1611-1618.
    [10] C. C. Chang, S. D. Huang. Determination of the steroid hormone levels in watersamples by dispersive liquid-liquid microextraction with solidification of afloating organic drop followed by high-performance liquid chromatography, Anal.Chim. Acta,2010,662,39-43.
    [11] H. Xu, Z. Ding, L. Lv, D. Song, Y.-Q. Feng. A novel dispersive liquid-liquidmicroextraction based on solidification of floating organic droplet method fordetermination of polycyclic aromatic hydrocarbons in aqueous samples, Anal.Chim. Acta,2009,636,28-33.
    [12] M. A. Farajzadeh, S. E. Seyedi, M. S. Shalamzari, M. Bamorowat. Dispersiveliquid-liquid microextraction using extraction solvent lighter than water, J. Sep.Sci.,2009,32,3191-3200.
    [13] M. I. Leong, S. D. Huang. Dispersive liquid-liquid microextraction method basedon solidification of floating organic drop combined with gas chromatography withelectron-capture or mass spectrometry detection, J. Chromatogr. A,2008,1211,8-12.
    [14] M. R. Khalili Zanjani, Y. Yamini, S. Shariati, J.. J nsson. A new liquid-phasemicroextraction method based on solidification of floating organic drop, Anal.Chim. Acta,2007,585,286-293.
    [15] H. Chen, P. Du, J. Chen, S. Hu, S. Li, H. Liu. Separation and preconcentrationsystem based on ultrasonic probe-assisted ionic liquid dispersive liquid-liquidmicroextraction for determination trace amount of chromium(VI) byelectrothermal atomic absorption spectrometry, Talanta,2010,81,176-179.
    [16] A. N. Anthemidis, K. I. G. Ioannou. On-line sequential injection dispersiveliquid-liquid microextraction system for flame atomic absorption spectrometricdetermination of copper and lead in water samples, Talanta,2009,79,86-91.
    [17] H. Jiang, Y. Qin, B. Hu. Dispersive liquid phase microextraction (DLPME)combined with graphite furnace atomic absorption spectrometry (GFAAS) fordetermination of trace Co and Ni in environmental water and rice samples,Talanta,2008,74,1160-1165.
    [18] M. Gharehbaghia, F. Shemirani, M. Baghdadia. Dispersive liquid-liquidmicroextraction and spectrophotometric determination of cobalt in water samples,Inter. J. Envir. Anal. Chem.,2008,88,513-523
    [19] M. A. Farajzadeh, M. Bahram, B. G. Mehr, J.. J nsson. Optimization ofdispersive liquid-liquid microextraction of copper (II) by atomic absorptionspectrometry as its oxinate chelate: Application to determination of copper indifferent water samples, Talanta,2008,75,832-840.
    [20] Federal Register, EPA Method604, Phenols, Part VIII,40CFR part136,Environmental Protection Agency, Washington, DC,26, October1984,58.
    [21] N. N. Dutta, S. Borthakur, R. Baruah. A novel process for recovery of phenolfrom alkaline wastewater: Laboratory study and predesign cost estimate, WaterEnviron. Res.,1998,70,4-9.
    [22] Y. C. Fan, M. L. Chen, C. Shen-Tu, Y. Zhu. An ionic liquid for dispersiveliquid-liquid microextraction of phenols, J. Anal. Chem.,2009,64,1017-1022.
    [23] M. Saraji, M. Marzban. Determination of11priority pollutant phenols inwastewater using dispersive liquid-liquid microextraction followed by highperformance liquid chromatography-diode-array detection, Anal. Bioanal. Chem.,2010,396,2685–2693.
    [24] A. Zgola-Grzeskowiak. Dispersive liquid-liquid microextraction applied toisolation and concentration of alkylphenols and their short-chained ethoxylates inwater samples, J. Chromatogr. A,2010,1217,1761-1766.
    [25] M. Bernardo, M. Goncalves, N. Lapa, B. Mendes. Determination of alkylphenolsin eluates from pyrolysis solid residues using dispersive liquid-liquidmicroextraction, Chemosphere,2010,79,1026-1032.
    [26] J. Patsias, E. Papadopoulou-Mourkidou. Development of an automated on-linesolid-phase extraction-high-performance liquid chromatographic method for theanalysis of aniline, phenol, caffeine and various selected substituted aniline andphenol compounds in aqueous matrices, J. Chromatogr. A,2000,904,171-188.
    [27] H. Bagheri, A. Mohammadi, A. Salemi. On-line trace enrichment of phenoliccompounds from water using a pyrrole-based polymer as the solid-phaseextraction sorbent coupled with high-performance liquid chromatography, Anal.Chim. Acta,2004,513,445-449.
    [28] R. Wissiack, E. Rosenberg. Universal screening method for the determination ofUS Environmental Protection Agency phenols at the lower ng/L level in watersamples by on-line solid-phase extraction high performance liquidchromatography-atmospheric pressure chemical ionization mass spectrometrywithin a single run, J. Chromatogr. A,2002,963,149-157.
    [29] E. González-Toledo, M. D. Prat, M. F. Alpendurada. Solid-phase microextractioncoupled to liquid chromatography for the analysis of phenolic compounds in water,J. Chromatogr. A,2001,923,45-52.
    [30] W. Pan, H. Xu, Y. Cui, D. Song, Y. Q. Feng. Improved liquid-liquid-liquidmicroextraction method and its application to analysis of four phenoliccompounds in water samples, J. Chromatogr. A,2008,1203,7-12.
    [31] S. Q. Dong, L. Z. Chi, Z. Y. Yang, P. A. He, Q. J. Wang, Y. Z. Fang.Simultaneous determination of dihydroxybenzene and phenylenediaminepositional isomers using capillary zone electrophoresis coupled withamperometric detection, J. Sep. Sci.,2009,32,3232-3238.
    [32] S. Q. Dong, L. Z. Chi, S. Zhang, P. G. He, Q. J. Wang, Y. Z. Fang. Simultaneousdetermination of phenylenediamine isomers and dihydroxybenzene isomers in hairdyes by capillary zone electrophoresis coupled with amperometric detection, Anal.Bioanal. Chem.,2008,391,653-659.
    [33] L. Han, X. L. Hang. Simultaneous voltammetry determination ofdihydroxybenzene isomers by nanogold modified electrode, Electroanalysis,2009,21,124-129.
    [34] D. W. Li, Y. T. Li, W. Song, Y. T. Long. Simultaneous determination ofdihydroxybenzene isomers using disposable screen-printed electrode modified bymultiwalled carbon nanotubes and gold nanoparticles, Anal. Methods,2010,2,837-843.
    [35] Z. H. Wang, S. J. Li, Q. Z. Lv. Simultaneous determination of dihydroxybenzeneisomers at single-wall carbon nanotube electrode, Sens. Actuators B,2007,127,420-425.
    [36] N. Fattahi, S. Samadi, Y. Assadi, M. R. M. Hosseini. Solid-phase extractioncombined with dispersive liquid-liquid microextraction-ultra preconcentration ofchlorophenols in aqueous samples, J. Chromatogr. A,2007,1169,63-69.
    [37] N. Fattahi, Y. Assadi, M. R. M. Hosseini, E. Z. Jahromi. Determination ofchlorophenols in water samples using simultaneous dispersive liquid-liquidmicroextraction and derivatization followed by gas chromatography-electroncapture detection, J. Chromatogr. A,2007,1157,23-29.
    [38] S. F. Shen, K. H. Smith, S. Cook, S. E. Kentish, J. M. Perera, T. Bowser, G. W.Stevens. Phenol recovery with tributyl phosphate in a hollow fiber membranecontactor: Experimental and model analysis, Sep. Purif. Technol.,2009,69,48-56.
    [39] P. Markl. Extraction of aromatic carboxylic acids and phenols by stronglysolvating organophosphorus compounds and sulfoxides, Microchim. Acta,1981,75,107-118.
    [40] J. D. MacGlashan, J. L. Bixby, C. J. King. Separation of phenols from diluteaqueous solution by use of tri-o-octyl phosphine oxides as extractant, Solvent Extr.Ion Exch.,1985,3,1-25.
    [41] K. Igarashi, Y. Yamada, K. I. Kurumada. Removal of phenol from an aqueoussolution using hydrogel incorporated with extractant tributyl phosphate, J. Chem.Eng. Jpn.,2004,37,1279-1283.
    [1] Y. H. Li, F. Wei, X. Y. Dong, J. H. Peng, S. Y. Liu, H. Chen, Simultaneousanalysis of multiple endogenous plant hormones in leaf tissue of oilseed rape bysolid phase extraction coupled with high-performance liquidchromatography–electrospray ionisation tandem mass spectrometry, Phytochem.Anal.,2011,22,442-449.
    [2] P. J. Davies, The Plant Hormones: Their nature, occurrence, and functions, PlantHormones. In Springer Netherlands:2010;1-15.
    [3] D. P. Oulkar, K. Banerjee, M. S. Ghaste, S. D. Ramteke, D. G. Naik, S. B. Patil, M.R. Jadhav, P. G. Adsule, Multiresidue analysis of multiclass plant growthregulators in grapes by liquid chromatography/tandem mass spectrometry, J.AOAC Int.,2011,94.
    [4] J. H. Fu, X. H. Sun, J. D. Wang, J. F. Chu, C. Y. Yan, Progress in quantitativeanalysis of plant hormones, Chinese Sci. Bull,2011,56,355-366.
    [5] M. L. Chen, Y. Q. Huang, J. Q. Liu, B. F. Yuan, Y. Q. Feng, Highly sensitiveprofiling assay of acidic plant hormones using a novel mass probe by capillaryelectrophoresis-time of flight-mass spectrometry, J. Chromatogr.B,2011,879,938-944.
    [6] Y. L. Wu, B. Hu, Simultaneous determination of several phytohormones in naturalcoconut juice by hollow fiber-based liquid-liquid-liquid microextraction-highperformance liquid chromatography, J. Chromatogr. A,2009,1216,7657-7663.
    [7] G. E. Gudesblat, E. Russinova, Plants grow on brassinosteroids, Curr. Opin. PlantBiol,2011,14,530-537.
    [8] A. Piotrowska, A. Bajguz, Conjugates of abscisic acid, brassinosteroids, ethylene,gibberellins, and jasmonates, Phytochemistry,2011,72,2097-2112.
    [9] E. A. Schmelz, J. Engelberth, J. H. Tumlinson, A. Block, H. T. Alborn, The use ofvapor phase extraction in metabolic profiling of phytohormones and othermetabolites, Plant J.,2004,39,790-808.
    [10] J. Engelberth, E. A. Schmelz, H. T. Alborn, Y. J. Cardoza, J. Huang, J. H.Tumlinson, Simultaneous quantification of jasmonic acid and salicylic acid inplants by vapor-phase extraction and gas chromatography-chemicalionization-mass spectrometry, Anal. Biochem.,2003,312,242-250.
    [11] M. Kowalczyk, G. Sandberg, Quantitative analysis of indole-3-acetic acidmetabolites in arabidopsis, Plant Physiol,2001,127,1845-1853.
    [12] C. Birkemeyer, A. Kolasa, J. Kopka, Comprehensive chemical derivatization forgas chromatography-mass spectrometry-based multi-targeted profiling of themajor phytohormones, J. Chromatogr. A,2003,993,89-102.
    [13] H. T. Liu, Y. F. Li, T. G. Luan, C. Y. Lan, W. S. Shu, Simultaneousdetermination of phytohormones in plant extracts using SPME and HPLC,Chromatographia,2007,66,515-520.
    [14] J. H. Fu, J. F. Chu, J. D. Wang, C. Y. Yan, Determination of auxin in arabidopsisthaliana by solid phase extraction and high performance liquid chromatographywith fluorescence detection, Chinese J. Anal. Chem.,2009,37,1324-1327.
    [15] G. L. Gambino, P. Pagano, M. Scordino, L. Sabatino, E. Scollo, P. Traulo, G.Gagliano, Determination of plant hormones in fertilizers by high performanceliquid chromatography with photodiode array detection: method development andsingle-laboratory validation, J. AOAC Int.,2008,91,1245-1256.
    [16] H. Chen, Z. X. Zhang, G. M. Zhang, X. F. Guo, H. S. Zhang, H. Wang, Liquidchromatographic determination of endogenous phytohormones in vegetablesamples based on chemical derivatization with6-oxy(acetylpiperazine)fluorescein, J. Agric. Food Chem.,58,4560-4564.
    [17] Q. Lu, L. Chen, M. Lu, G. Chen, L. Zhang, Extraction and analysis of auxins inplants using dispersive liquid-liquid microextraction followed by fighperformance liquid chromatography with fluorescence detection, J. Agric. FoodChem.,2010,58,2763-2770.
    [18] X. Q. Pan, R. Welti, X. M. Wang, Quantitative analysis of major plant hormonesin crude plant extracts by high-performance liquid chromatography-massspectrometry, nat. protoc.,2010,5,986-992.
    [19] F. Vilaro, A. Canela-Xandri, R. Canela, Quantification of abscisic acid ingrapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatography-massspectrometry, Anal. Bioanal. Chem.,2006,386,306-312.
    [20] S. Hou, J. Zhu, M. Ding, G. Lv, Simultaneous determination of gibberellic acid,indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extractionand liquid chromatography-electrospray tandem mass spectrometry, Talanta,2008,76,798-802.
    [21] Z. Ma, L. Ge, A. S. Y. Lee, J. W. H. Yong, S. N. Tan, E. S. Ong, Simultaneousanalysis of different classes of phytohormones in coconut (Cocos nucifera L.)water using high-performance liquid chromatography and liquidchromatography-tandem mass spectrometry after solid-phase extraction, Anal.Chim. Acta,2008,610,274-281.
    [22] A. Durgbanshi, V. Arbona, O. Pozo, O. Miersch, J. V. Sancho, A.Gomez-Cadenas, Simultaneous determination of multiple phytohormones in plantextracts by liquid chromatography-electrospray tandem mass spectrometry, J.Agric. Food Chem.,2005,53,8437-8442.
    [23] M. I. A. Flores, R. Romero-González, A. G. Frenich, J. L. M. Vidal,QuEChERS-based extraction procedure for multifamily analysis ofphytohormones in vegetables by UHPLC-MS/MS, J. Sep. Sci.,34,1517-1524.
    [24] X. Q. Pan, R. Welti, X. M. Wang, Simultaneous quantification of majorphytohormones and related compounds in crude plant extracts by liquidchromatography-electrospray tandem mass spectrometry, Phytochemistry,2008,69,1773-1781.
    [25] M. Kojima, T. Kamada-Nobusada, H. Komatsu, K. Takei, T. Kuroha, M.Mizutani, M. Ashikari, M. Ueguchi-Tanaka, M. Matsuoka, K. Suzuki, H.Sakakibara, Highly sensitive and high-throughput analysis of plant hormonesusing MS-probe modification and liquid chromatography tandem massspectrometry: An application for hormone profiling in Oryza sativa, Plant CellPhysiol.,2009,50,1201-1214.
    [26] S. D. S. Chiwocha, S. R. Abrams, S. J. Ambrose, A. J. Cutler, M. Loewen, A. R.S. Ross, A. R. Kermode, A method for profiling classes of plant hormones andtheir metabolites using liquid chromatography-electrospray ionization tandemmass spectrometry: an analysis of hormone regulation of thermodormancy oflettuce (Lactuca sativa L.) seeds, Plant J.,2003,35,405-417.
    [27] M. Lopez-Carbonell, M. Gabasa, O. Jauregui, Enhanced determination ofabscisic acid (ABA) and abscisic acid glucose ester (ABA-GE) in cistus albidusplants by liquid chromatography-mass spectrometry in tandem mode. PlantPhysiol. Biochem.,2009,47,256-261.
    [28] S. J. Hou, J. Zhu, M. Y. Ding, G. H. Lv, Simultaneous determination ofgibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts bysolid-phase extraction and liquid chromatography-electrospray tandem massspectrometry, Talanta,2008,76,798-802.
    [29] E. Psillakis, N. Kalogerakis, Developments in liquid-phase microextraction,TrAC, Trends in Anal. Chem.,2003,22,565-574.
    [30] X. Z. Hu, J. H. Wu, Y. Q. Feng, Molecular complex-based dispersiveliquid-liquid microextraction: Analysis of polar compounds in aqueous solution, J.Chromatogr. A,2010,1217,7010-7016.
    [31] L. Berrueta, B. Gallo, F. Vicente, A review of solid phase extraction: Basicprinciples and new developments, Chromatographia,1995,40,474-483.
    [32] N. Fattahi, S. Samadi, Y. Assadi, M. R. M. Hosseini, Solid-phase extractioncombined with dispersive liquid liquid microextraction-ultra preconcentration ofchlorophenols in aqueous samples, J. Chromatogr. A,2007,1169,63-69.
    [33] B. Liu, H. Yan, F. Qiao, Y. Geng, Determination of clenbuterol in porcine tissuesusing solid-phase extraction combined with ultrasound-assisted dispersiveliquid-liquid microextraction and HPLC-UV detection, J. Chromatogr. B,2011,879,90-94.
    [34] X. Liu, J. Li, Z. Zhao, W. Zhang, K. Lin, C. Huang, X. Wang, Solid-phaseextraction combined with dispersive liquid-liquid microextraction for thedetermination for polybrominated diphenyl ethers in different environmentalmatrices, J. Chromatogr. A,2009,1216,2220-2226.
    [35] R. Montes, I. Rodríguez, M. Ramil, E. Rubí, R. Cela, Solid-phase extractionfollowed by dispersive liquid-liquid microextraction for the sensitivedetermination of selected fungicides in wine, J. Chromatogr. A,2009,1216,5459-5466.
    [36] L. Ge, J. W. H. Yong, S. N. Tan, X. H. Yang, E. S. Ong, Analysis of somecytokinins in coconut (Cocos nucifera L.) water by micellar electrokineticcapillary chromatography after solid-phase extraction, J. Chromatogr. A,2004,1048,119-126.
    [37] L. Ge, J. W. H. Yong, N. K. Goh, L. S. Chia, S. N. Tan, E. S. Ong, Identificationof kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using acombined approach of liquid chromatography tandem mass spectrometry, highperformance liquid chromatography and capillary electrophoresis, J. Chromatogr.B,2005,829,26-34.
    [38] L. Ge, J. W. H. Yong, S. N. Tan, E. S. Ong, Determination of cytokinins incoconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandemmass spectrometry, Electrophoresis,2006,27,2171-2181.