用户名: 密码: 验证码:
新型碳基复合材料的制备及其光催化制氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以石墨烯(graphene)系及碳包镍(Ni@C)为起始碳材料,制备了一系列碳基氧化物或硫化物复合光催化材料,并较系统、深入地研究了材料的组成、微结构、形貌和光吸收性能等对光催化制氢效率和反应机理的影响。其主要研究内容和结论归纳如下:
     (1)采用改进的Hummer法制备了氧化石墨(GTO),然后以GTO和Ti(SO_4)_2为原料,水热法制备了GTO-TiO_2纳米复合材料。该复合材料中平均粒径约为20nm的TiO_2纳米颗粒紧密附着在GTO表面,边沿或插入GTO层间,形成了较紧密的联结。不同复合比例的GTO-TiO_2均显示出了可见光催化制氢活性,其中2wt%GTO-TiO_2制氢效率最高,负载1wt%Pt后达到380μmol h~(-1),与单纯的GTO相比提高了91.7倍。GTO-TiO_2在350-550nm波长范围的单色光照下均表现出可观的光催化制氢活性,在420nm的单色光照下的表观量子效率为8.2%,并显示出良好的光稳定性。本体系中GTO起到了类似染料敏化剂的作用,可将体系的光谱响应范围从紫外光区拓展到可见光区,并可实现GTO的光生电子向TiO_2的定向迁移,抑制光生载流子的复合,从而极大地提高体系的光催化制氢活性。因此,我们认为GTO-TiO_2复合材料是一种宽光谱响应、高效、稳定的光催化材料,具有潜在的应用前景。
     (2)以石墨烯系碳材料(GT,GO,RGO)为原料,采用沉淀和溶剂热法分别制备了石墨烯系碳-CdS纳米复合材料。溶剂热过程导致GO还原形成RGO-CdS(S),而共沉淀过程仍形成GO-CdS(P)。两类复合材料中CdS的团聚均受到抑制,但溶剂热制备的RGO-CdS(S)中复合组员间形成了更紧密的结合。与CdS相比,石墨烯系碳-CdS都表现出更优良的可见光催化制氢活性和长效稳定性。其中,共沉淀制备的复合物中5wt%GO-CdS(P)具有最佳的可见光催化制氢效率(314μmol h~(-1)),而溶剂热法制备的复合物中10wt%RGO-CdS有最高的光催化活性(420μmol h~(-1))。GO-CdS(P)和RGO-CdS(S)在420nm处的表观量子效率均分别为4.8%和10.4%。石墨烯系碳材料一方面作为支持物抑制光腐蚀,另一方面又作为电子导体促进载流子的分离。RGO-CdS(S)的复合组员间形成了更紧密的结合,有利于发挥协同效应,具有更高的光催化活性,因而更具应用前景。
     (3)以Ni@C为原料,水热法制备了Ni@C/TiO_2复合材料。该复合材料中TiO_2为长在40-120nm之间、宽约10nm的锐钛矿相纳米棒结构,且Ni@C仍保持原有结构。Ni@C结构是复合材料显示出可见光催化活性的前提,但是Ni@C本身的光催化制氢能力有限,Ni@C/TiO_2比Ni@C高一个数量级,达到300μmol h~(-1),并表现出优良的长效稳定性。在350-550nm波长范围内的单色光光照时均显示出可观的光催化活性,其在420和520nm单色光照时的表观量子效率分别达12%和7%,且不需要负载Pt等贵金属,因而本体系具有更好的实际应用前景。虽然Ni@C/TiO_2体系的详细的光激发及其电子转移机制尚需进一步证据,但是这种由廉价Ni@C组成的碳基材料在与TiO_2复合后显示出了良好的可见光催化制氢活性与长效稳定性,为开发新型、廉价、高效的可见光响应的光催化材料提供了一条新的思路。
     (4)以Ni@C为原料,溶剂热法制备了Ni@C/CdS复合材料。该复合材料中Ni@C的粒径约为50nm,CdS的粒径约为5-10nm。不同复合比例的Ni@C/CdS均表现出增强的光催化活性和长效稳定性。其中,5wt%Ni@C/CdS的光催化活性最高,达到610μmol h~(-1),与单纯的CdS相比,制氢效率提高了2.2倍。在420nm单色光照下的表观量子效率高达20.5%,远高于上述的GTO-TiO_2、RGO-CdS以及Ni@C/TiO_2,且不需要负载Pt等贵金属。Ni@C/CdS复合材料光催化制氢体系中Ni@C与CdS紧密接触,形成类似于Pt/CdS的Schottky能垒,有利于促进光生载流子的分离,从而提高体系的效率。这种复合材料的制备为开发无贵金属负载的高效、廉价光催化体系提供了一条新思路。
Graphene-based carbon materials and carbon-coated nickel (Ni@C) were chosen asinitial materials, and composited with the well-known photocatalyst: TiO_2and CdS. Thus, weprepared a series of graphite oxide (GTO)-TiO_2, graphene oxide (GO)-CdS, reduced grapheneoxide (RGO)-CdS, Ni@C/TiO_2and Ni@C/CdS nanocomposites, and studied theirphotocatalytic H2production. Moreover, we proposed the possible mechanism ofphotocataytic H2production over these composite materials under visible light irradiation.The main contents and conclusion were as follows:
     (1). Graphite Oxide (GTO) was prepared by a modified Hummer’s method firstly. Then,a series of GTO-TiO_2nanocomposite was successfully fabricated through a facilehydrothermal process. TiO_2nanocomposites are attached to ptharet isculerfsa cwe iothf GaTvOer aagned/opr airntitcelrec alsaitzeed inotfo~2th0e innmte rlainy ert hoefGTO. The obtained products showed highly visible-light-driven photocatalytic activity in thepresence of triethanolamine (TEOA).2wt%GTO-TiO_2showed the maximum H2evolutionrate of6.8μmol h~(-1)under visible light (≥420nm) irradiation and photocatalytic H2evolutionefficiency was significantly enhanced after loading1wt%Pt, reaching380μmol h~(-1), whichwas about91.7times higher than that of GTO. Furthermore, the composite showed anexcellent stability during a long time photoreaction test.2wt%GTO-TiO_2also showed awide photoresponse under monochromatic light wavelength ranged from350to550nm. TheAQY under420nm monochromatic light irradiation was ca.8.2%. The GTO could serve as aphotosensitizer in the present GTO-TiO_2system and expand the spectral responsive range ofTiO_2to visible light. Moreover, the photogenerated electron could transfer from GTO to TiO_2in this system. Therefore, we believed that GTO-TiO_2composite was a widely spectralresponsive, efficient and stable photocatalyst. It showed a potential application prospect inphotocatalytic H2production under visible light irradiation.
     (2). Graphene-based carbon materials (GT, GO and RGO) were used raw materials, aseries of RGO-CdS and GO-CdS were prepared by dimethylsulfoxide (DMSO) solvothermalprocess and precipitation process, respectively. The aggregation was suppressed afterimplanting carbon materials. It was found that all carbon-based CdS composites, includingGraphite-CdS, GO-CdS, and RGO-CdS, showed enhancement of photoactivity compared to CdS.10wt%RGO-CdS showed the maximum H2evolution rate of420μmol h~(-1)in thepresence of sacrificial reagents (Na2S+Na2SO3) under visible light irradiation. Besides,5wt%GO-CdS prepared by a precipitation process showed the maximum H2evolution rate of314μmol h~(-1)in this condition.5wt%GO-CdS and10wt%RGO-CdS without Pt-loading bothshowed an excellent photoactivity with AQY of ca.4.8%and10.4%at420nmmonochromatic light irradiation, respectively. The implanted graphene-based carbonmaterials could enhance the photoactivity and photostability of CdS, and played twoimportant roles such as suppressing the photogenerated carrier recombination as anelectron-transfer channel and acceptor, and support of CdS in aqueous solution.
     (3). Carbon-coated Ni (Ni@C)/TiO_2(anatase phase) composite was prepared through ahydrothermal process. The resultant Ni@C/TiO_2composite was composed of nanorods withan average diameter of ca.10nm and length in the range of40-100nm. Controllableexperiment demonstrated that Ni@C structure was the key point to the highly photocatalyticacvitity over Ni@C/TiO_2, although Ni@C showed limited photoactivites. A H2generationrate of up to300μmol h~(-1)over150mg5wt%Ni@C/TiO_2without Pt-loading in the presenceof10vol%TEOA was achieved under visible light≥(420nm) irradiation. In addition, theAQY under420and520nm monochromatic light irradiation was ca.12%and7%,respectively. Ni@C/TiO_2could be regarded as a new class, highly efficient and visible lightresponsive photocatalytic material, ahthough further investigations on its systematiccharacterization and photocatalytic mechanism are under progress.
     (4). Ni@C/CdS composite was prepared by a DMSO solvothermal process. Thecomposite was composed of Ni@C nanoparticles with an average diameter of ca.50nm andCdS with an average diameter of ca.5-10nm. All the Ni@C/CdS with different Ni@Ccontents showed enhancement of photocatalyic H2production efficiency as compared topristine CdS.5wt%Ni@C/CdS showed a maximum H2evolution rate of610μmol h~(-1)undervisible light (≥420nm) irradiation, and the AQY under420nm even reached ca.20.5%, muchhigher than that of GTO-TiO_2、RGO-CdS and Ni@C/TiO_2system. An effective combinationbetween Ni@C and CdS was achieved by the solvothermal process and the Schottky barrierbetween each other was formed which was similar to Pt/CdS system.
引文
[1].M. Kitano and M. Hara. Heterogeneous photocatalytic cleavage of water [J]. Journal of MaterialsChemistry,2010,20(4):627-641.
    [2].杰瑞米里夫金.氢经济[B],海南出版社,海口,2003
    [3].A. Kudo and Y. Miseki. Heterogeneous photocatalyst materials for water splitting [J]. ChemicalSociety Reviews,2009,38(1):253-278.
    [4].X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao. Semiconductor-based photocatalytic hydrogengeneration [J]. Chemical Reviews,2010,110(11):6503-6570.
    [5].金振声,李庆霖.关于利用太阳能光解水制氢的研究.化学进展[J]1992,(1):130-138
    [6].刘恢.可见光响应光催化剂及其分解水的研究[博士学位论文].上海:上海交通大学,2008
    [7].柯丁宁.新型光催化材料的制备及其可见光催化制氢或氧性能研究[博士学位论文].武汉:武汉大学,2010
    [8].戴珂.富勒碳改性二氧化钛纳米材料的制备及其光催化性能研究[博士学位论文].武汉:武汉大学,2010
    [9].J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, and G.J. Hutchings. Directsynthesis of hydrogen peroxide from H2and O2using TiO2-supported Au-Pd catalysts [J]. Journal ofCatalysis,2005,236(1):69-79.
    [10]. D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe,C.J. Kiely, D.W. Knight, and G.J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydesusing Au-Pd/TiO2catalysts [J]. Science,2006,311(5759):362-365.
    [11]. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, and V. Murugesan.Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiencyof Pt, Au and Pd deposited on TiO2catalyst [J]. Water Research,2004,38(13):3001-3008.
    [12]. Z.G. Zou, J.H. Ye, K. Sayama, and H. Arakawa. Photocatalytic hydrogen and oxygen formation undervisible light irradiation with M-doped InTaO4(M=Mn, Fe, Co, Ni and Cu) photocatalysts [J].Journal of Photochemistry and Photobiology A-Chemistry,2002,148(1-3):65-69.
    [13]. Y. Miseki, H. Kato and A. Kudo. Water splitting into H2and O2over Cs2Nb4O11photocatalyst [J].Chemistry Letters,2005,34(1):54-55.
    [14]. J.G. Yu, Y. Hai and B. Cheng. Enhanced Photocatalytic H2-Production Activity of TiO2by Ni(OH)2Cluster Modification [J]. Journal of Physical Chemistry C,2011,115(11):4953-4958.
    [15]. Y. Xu and M.A.A. Schoonen. The absolute energy positions of conduction and valence bands ofselected semiconducting minerals [J]. American Mineralogist,2000,85(3-4):543-556.
    [16]. M. Machida, X.W. Ma, H. Taniguchi, J. Yabunaka, and T. Kijima. Pillaring and photocatalyticproperty of partially substituted layered titanates, Na2Ti3-xMxO7and K2Ti4-xMxO9(M=Mn, Fe, Co, Ni,Cu)[J]. Journal of Molecular Catalysis A-Chemical,2000,155(1-2):131-142.
    [17]. T. Sasaki. Fabrication of nanostructured functional materials using exfoliated nanosheets as a buildingblock [J]. Journal of the Ceramic Society of Japan,2007,115(1337):9-16.
    [18]. O.C. Compton, C.H. Mullet, S. Chiang, and F.E. Osterloh. A building block approach tophotochemical water-splitting catalysts based on layered niobate nanosheets [J]. Journal of PhysicalChemistry C,2008,112(15):6202-6208.
    [19]. S.O. Alfaro and A. Martinez-de la Cruz. Synthesis, characterization and visible-light photocatalyticproperties of Bi2WO6and Bi2W2O9obtained by co-precipitation method [J]. Applied CatalysisA-General,2010,383(1-2):128-133.
    [20]. S. Oishi, N. Endo and M. Itoh. High-temperature solution gro wth of Na2W4O13crystals and theiroptical properties [J]. Journal of Crystal Growth,2001,229(1):477-481.
    [21]. S. Lee, K. Teshima, M. Fujisawa, S. Fujii, M. Endo, and S. Oishi. Fabrication of highly ordered,macroporous Na2W4O13arrays by spray pyrolysis using polystyrene colloidal crystals as templates [J].Physical Chemistry Chemical Physics,2009,11(19):3628-3633.
    [22]. T. Takata, S. Ikeda, A. Tanaka, M. Hara, J.N. Kondo, and K. Domen. Mechano-catalytic overall watersplitting on some oxides (II)[J]. Applied Catalysis A-General,2000,200(1-2):255-262.
    [23]. T. Bielz, H. Lorenz, P. Amann, B. Klotzer, and S. Penner. Water-gas shift and formaldehyde reformingactivity determined by defect chemistry of polycrystalline In2O3[J]. Journal of Physical ChemistryC,2011,115(14):6622-6628.
    [24]. R. Abe, H. Takami, N. Murakami, and B. Ohtani. Pristine simple oxides as visible light drivenphotocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungstenoxide [J]. Journal of the American Chemical Society,2008,130(25):7780-7781.
    [25]. J. Yu, J. Xiong, B. Cheng, Y. Yu, and J. Wang. Hydrothermal preparation and visible-lightphotocatalytic activity of Bi2WO6powders [J]. Journal of Solid State Chemistry,2005,178(6):1968-1972.
    [26]. Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, and A. Kudo. Energy structure and photocatalyticactivity of niobates and tantalates containing Sn(II) with a5s2electron configuration [J]. ChemistryLetters,2004,33(1):28-29.
    [27]. F. Amano, K. Nogami, R. Abe, and B. Ohtani. Facile hydrothermal preparation and photocatalyticactivity of bismuth tungstate polycrystalline flake-ball particles [J]. Chemistry Letters,2007,36(11):1314-1315.
    [28]. H. Fu, C. Pan, W. Yao, and Y. Zhu. Visible-light-induced degradation of rhodamine B by nanosizedBi2WO6[J]. The Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [29]. S. Zhu, T. Xu, H. Fu, J. Zhao, and Y. Zhu. Synergetic effect of Bi2WO6photocatalyst with C60andenhanced photoactivity under visible irradiation [J]. Environmental Science&Technology,2007,41(17):6234-6239.
    [30]. T. Ishii, H. Kato and A. Kudo. H2evolution from an aqueous methanol solution on SrTiO3photocatalysts codoped with chromium and tantalum ions under visible light irradiation [J]. Journalof Photochemistry and Photobiology A: Chemistry,2004,163(1-2):181-186.
    [31]. H. Kato and A. Kudo. Visible-light-response and photocatalytic activities of TiO2and SrTiO3photocatalysts codoped with antimony and chromium [J]. The Journal of Physical Chemistry B,2002,106(19):5029-5034.
    [32]. R. Niishiro, H. Kato and A. Kudo. Nickel and either tantalum or niobium-codoped TiO2and SrTiO3photocatalysts with visible-light response for H2or O2evolution from aqueous solutions [J]. PhysicalChemistry Chemical Physics,2005,7(10):2241-2245.
    [33]. D.W. Hwang, H.G. Kim, J.S. Jang, S.W. Bae, S.M. Ji, and J.S. Lee. Photocatalytic decomposition ofwater–methanol solution over metal-doped layered perovskites under visible light irradiation [J].Catalysis Today,2004,93-95(0):845-850.
    [34]. Y. Hosogi, H. Kato and A. Kudo. Synthesis of SnNb2O6nanoplates and their photocatalytic properties[J]. Chemistry Letters,2006,35(6):578-579.
    [35]. A. Kudo, K. Ueda, H. Kato, and I. Mikami. Photocatalytic O2evolution under visible light irradiationon BiVO4in aqueous AgNO3solution [J]. Catalysis Letters,1998,53(3):229-230.
    [36]. S. Tokunaga, H. Kato and A. Kudo. Selective preparation of monoclinic and tetragonal BiVO4withscheelite structure and their photocatalytic properties [J]. Chemistry of Materials,2001,13(12):4624-4628
    [37]. J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, and A. Tanaka. Visible light-induced photocatalyticbehavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10[J]. The Journal ofPhysical Chemistry,1993,97(9):1970-1973
    [38]. H.G. Kim, D.W. Hwang and J.S. Lee. An undoped, single-phase oxide photocatalyst working undervisible light [J]. Journal of the American Chemical Society,2004,126(29):8912-8913
    [39]. A. Kudo, K. Omori and H. Kato. A novel aqueous process for preparation of crystal form-controlledand highly crystalline BiVO4powder from layered vanadates at room temperature and itsphotocatalytic and photophysical properties [J]. Journal of the American Chemical Society,1999,121(49):11459-11467.
    [40]. R. Konta, H. Kato, H. Kobayashi, and A. Kudo. Photophysical properties and photocatalytic activitiesunder visible light irradiation of silver vanadates [J]. Physical Chemistry Chemical Physics,2003,5(14):3061-3065.
    [41]. I. Tsuji, H. Kato and A. Kudo. Visible-light-induced H2evolution from an aqueous solution containingsulfide and sulfite over a ZnS-CuInS2-AgInS2solid-solution photocatalyst [J]. AngewandteChemie-International Edition,2005,44(23):3565-3568.
    [42]. C. Xing, Y. Zhang, W. Yan, and L. Guo. Band structure-controlled solid solution of photocatalyst forhydrogen production by water splitting [J]. International Journal of Hydrogen Energy,2006,31(14):2018-2024.
    [43]. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo. Photocatalytic H2evolution under visible-lightirradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2solid solutions [J]. Journal of PhysicalChemistry B,2005,109(15):7323-7329.
    [44]. D. Chen and J.H. Ye. Photocatalytic H2evolution under visible light irradiation on AgIn5S8photocatalyst [J]. Journal of Physics and Chemistry of Solids,2007,68(12):2317-2320.
    [45]. J.S. Jang, S.H. Choi, N. Shin, C.J. Yu, and J.S. Lee. AgGaS2-type photocatalysts for hydrogenproduction under visible light: effects of post-synthetic H2S treatment [J]. Journal of Solid StateChemistry,2007,180(3):1110-1118.
    [46]. A. Kudo. Photocatalyst materials for water splitting [J]. Catalysis Surveys from Asia,2003,7(1):31-38.
    [47]. S.H. Shen, L. Zhao and L.J. Guo. Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermalsynthesis of ZnIn2S4as an efficient visible-light-driven photocatalyst for hydrogen production [J].International Journal of Hydrogen Energy,2008,33(17):4501-4510.
    [48]. X.L. Fu, X.X. Wang, Z.X. Chen, Z.Z. Zhang, Z.H. Li, D.Y.C. Leung, L. Wu, and X.Z. Fu.Photocatalytic performance of tetragonal and cubic beta-In2S3for the water splitting under visiblelight irradiation [J]. Applied Catalysis B-Environmental,2010,95(3-4):393-399.
    [49]. A. Kudo and M. Sekizawa. Photocatalytic H2evolution under visible light irradiation on Zn1-xCuxSsolid solution [J]. Catalysis Letters,1999,58(4):241-243.
    [50]. A. Kudo and M. Sekizawa. Photocatalytic H2evolution under visible light irradiation on Ni-dopedZnS photocatalyst [J]. Chemical Communications,2000,(15):1371-1372.
    [51]. A. Kudo, I. Tsuji and H. Kato. AgInZn7S9solid solution photocatalyst for H2evolution from aqueoussolutions under visible light irradiation [J]. Chemical Communications,2002,(17):1958-1959.
    [52]. F. del Valle, A. Ishikawa, K. Domen, J.A.V. de la Mano, M.C. Sanchez-Sanchez, I.D. Gonzalez, S.Herreras, N. Mota, M.E. Rivas, M.C.A. Galvan, J.L.G. Fierro, and R.M. Navarro. Influence of Znconcentration in the activity of Cd1-xZnxS solid solutions for water splitting under visible light [J].Catalysis Today,2009,143(1-2):51-56.
    [53]. T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata. Emission quench of water-solubleZnS-AgInS2solid solution nanocrystals and its application to chemosensors [J]. ChemicalCommunications,2009,(48):7485-7487.
    [54]. L.J. Guo, C.J. Xing, Y.J. Zhang, and W. Yan. And structure-controlled solid solution of Cd1-xZnxSphotocatalyst for hydrogen production by water splitting [J]. International Journal of HydrogenEnergy,2006,31(14):2018-2024.
    [55]. X.H. Zhang, Y.C. Du, Z.H. Zhou, and L.J. Guo. A simplified method for synthesis ofband-structure-controlled (CuIn)(x)Zn2(1-x)S2solid solution photocatalysts with high activity ofphotocatalytic H2evolution under visible-light irradiation [J]. International Journal of HydrogenEnergy,2010,35(8):3313-3321.
    [56]. A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen.Photoreactions on LaTiO2N under visible light irradiation [J]. The Journal of Physical Chemistry A,2002,106(29):6750-6753.
    [57]. M. Hara, G. Hitoki, T. Takata, J.N. Kondo, H. Kobayashi, and K. Domen. TaON and Ta3N5as newvisible light driven photocatalysts [J]. Catalysis Today,2003,78(1–4):555-560.
    [58]. M. Hara, T. Takata, J.N. Kondo, and K. Domen. Photocatalytic reduction of water by TaON undervisible light irradiation [J]. Catalysis Today,2004,90(3-4):313-317.
    [59]. G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen. An oxynitride, TaON, as anefficient water oxidation photocatalyst under visible light irradiation [J]. Chemical Communications,2002,(16):1698-1699.
    [60]. G. Hitoki, A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, and K. Domen. Ta3N5as a novel visiblelight-driven photocatalyst [J]. Chemistry Letters,2002,31(7):736-737.
    [61]. Y. Lee, K. Nukumizu, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen. Effect of10MPa ammonia treatment on the activity of visible light responsive Ta3N5photocatalyst [J]. ChemistryLetters,2006,35(4):352-353.
    [62]. A. Ishikawa, T. Takata, T. Matsumura, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen.Oxysulfides Ln2Ti2S2O5as stable photocatalysts for water oxidation and reduction under visible-lightirradiation [J]. The Journal of Physical Chemistry B,2004,108(8):2637-2642.
    [63]. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo. Photocatalytic H2evolution under visible-lightirradiation over band-structure-controlled (CuIn)xZn2(1-x)S2solid solutions [J]. The Journal ofPhysical Chemistry B,2005,109(15):7323-7329.
    [64]. A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen. Novelsynthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5[J]. Chemistry of Materials,2003,15(23):4442-4446.
    [65]. K. Maeda and K. Domen. New non-oxide photocatalysts designed for overall water splitting undervisible light [J]. The Journal of Physical Chemistry C,2007,111(22):7851-7861.
    [66]. N. Koriche, A. Bouguelia, A. Aider, and M. Trari. Photocatalytic hydrogen evolution over delafossite[J]. International Journal of Hydrogen Energy,2005,30(7):693-699.
    [67]. S. Saadi, A. Bouguelia and M. Trari. Photoassisted hydrogen evolution over spinel CuM2O4(M=Al,Cr, Mn, Fe and Co)[J]. Renewable Energy,2006,31(14):2245-2256.
    [68]. S. Shen and L. Guo. Structural, textural and photocatalytic properties of quantum-sizedIn2S3-sensitized Ti-MCM-41prepared by ion-exchange and sulfidation methods [J]. Journal of SolidState Chemistry,2006,179(8):2629-2635.
    [69]. M. Younsi, S. Saadi, A. Bouguelia, A. Aider, and M. Trari. Synthesis and characterization ofoxygen-rich delafossite CuYO2+x--application to H2-photo production [J]. Solar Energy Materialsand Solar Cells,2007,91(12):1102-1109.
    [70]. Y. Bessekhouad and M. Trari. Photocatalytic hydrogen production from suspension of spinel powdersAMn2O4(A=Cu and Zn)[J]. International Journal of Hydrogen Energy,2002,27(4):357-362.
    [71]. H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li. Visible-light-driven hydrogenproduction with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst [J]. Journal ofCatalysis,2009,266(2):165-168.
    [72]. B. Zieli ska, E. Borowiak-Palen and R.J. Kalenczuk. Photocatalytic hydrogen generation overalkaline-earth titanates in the presence of electron donors [J]. International Journal of HydrogenEnergy,2008,33(7):1797-1802.
    [73]. A. Galińska and J. Walendziewski. Photocatalytic water splitting over Pt-TiO2in the presence ofsacrificial reagents [J]. Energy&Fuels,2005,19(3):1143-1147.
    [74]. G.R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta. Photoassisted hydrogen production from awater-ethanol solution: a comparison of activities of TAiuO2and PtTiO2[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1995,89(2):177-189.
    [75]. Y.X. Li, G.X. Lu and S.B. Li. Photocatalytic production of hydrogen in single component and mixturesystems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy [J].Chemosphere,2003,52(5):843-850.
    [76]. Y.J. Zhang and L. Zhang. Photocatalytic degradation of formic acid with simultaneous production ofhydrogen over Pt and Ru-loaded CdS/Al-HMS photocatalysts [J]. Desalination,2009,249(3):1017-1021.
    [77]. G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, and C. Li. Direct splitting of H2S into H2and S on CdS-basedphotocatalyst under visible light irradiation [J]. Journal of Catalysis,2008,260(1):134-140.
    [78]. X. J. Zheng, L. F. Wei, Z. H. Zhang, Q. J. Jiang, Y. J. Wei, B. Xie, and M.-B. Wei. Research onphotocatalytic H2production from acetic acid solution by Pt/TiO2nanoparticles under UV irradiation[J]. International Journal of Hydrogen Energy,2009,34(22):9033-9041.
    [79]. A. Patsoura, D.I. Kondarides and X.E. Verykios. Photocatalytic degradation of organic pollutants withsimultaneous production of hydrogen [J]. Catalysis Today,2007,124(3-4):94-102.
    [80]. S. Shen and L. Guo. Hydrothermal synthesis, characterization, and photocatalytic performances of Crincorporated, and Cr and Ti co-incorporated MCM-41as visible light photocatalysts for watersplitting [J]. Catalysis Today,2007,129(3-4):414-420.
    [81]. V.M. Daskalaki and D.I. Kondarides. Efficient production of hydrogen by photo-induced reforming ofglycerol at ambient conditions [J]. Catalysis Today,2009,144(1-2):75-80.
    [82]. Y. Huang, J. Li, Y. Wei, Y. Li, J. Lin, and J. Wu. Fabrication and photocatalytic property ofPt-intercalated layered perovskite niobates H1xLaNb2xMoxO7[J]. Journal of Hazardous Materials,2009,166(1):103-108.
    [83]. M.H. Zhou, Y.X. Li, S.Q. Peng, G.X. Lu, and S.B. Li. Effect of epimerization of d-glucose onphotocatalytic hydrogen generation over Pt/TiO2[J]. Catalysis Communications,2012,18:21-25.
    [84]. Y.X. Li, D. Gao, S.Q. Peng, G.X. Lu, and S.B. Li. Photocatalytic hydrogen evolution overPt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: an investigation of the influence ofelectrolyte NaCl [J]. International Journal of Hydrogen Energy,2011,36(7):4291-4297.
    [85]. Y.X. Li, G.X. Lu and S.B. Li. Photocatalytic hydrogen generation and decomposition of oxalic acidover platinized TiO2[J]. Applied Catalysis A-General,2001,214(2):179-185.
    [86]. T. Hirai, Y. Bando and I. Komasawa. Immobilization of CdS nanoparticles formed in reverse micellesonto alumina particles and their photocatalytic properties [J]. The Journal of Physical Chemistry B,2002,106(35):8967-8970.
    [87]. D. Ke, S. Liu, K. Dai, J. Zhou, L. Zhang, and T. Peng. CdS/Regenerated cellulose nanocompositefilms for highly efficient photocatalytic H2production under visible light irradiation [J]. The Journalof Physical Chemistry C,2009,113(36):16021-16026.
    [88]. J.S. Jang, W. Li, S.H. Oh, and J.S. Lee. Fabrication of CdS/TiO2nano-bulk composite photocatalystsfor hydrogen production from aqueous H2S solution under visible light [J]. Chemical Physics Letters,2006,425(4-6):278-282.
    [89]. S.Y. Ryu, J. Choi, W. Balcerski, T.K. Lee, and M.R. Hoffmann. Photocatalytic production of H2onnanocomposite catalysts [J]. Industrial&Engineering Chemistry Research,2007,46(23):7476-7488.
    [90]. T. Kida, G. Guan and A. Yoshida. LaMnO3/CdS nanocomposite: a new photocatalyst for hydrogenproduction from water under visible light irradiation [J]. Chemical Physics Letters,2003,371(5-6):563-567.
    [91]. J. Choi, S.Y. Ryu, W. Balcerski, T.K. Lee, and M.R. Hoffmann. Photocatalytic production of hydrogenon Ni/NiO/KNbO3/CdS nanocomposites using visible light [J]. Journal of Materials Chemistry,2008,18(20):2371-2378.
    [92]. L.F. Qi, J.G. Yu and M. Jaroniec. Preparation and enhanced visible-light photocatalytic H2-productionactivity of CdS-sensitized Pt/TiO2nanosheets with exposed (001) facets [J]. Physical ChemistryChemical Physics,2011,13(19):8915-8923.
    [93]. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka. All-solid-state Z-scheme in CdS-Au-TiO2three-component nanojunction system [J]. Nature Materials,2006,5(10):782-786.
    [94]. H. Park, W. Choi and M.R. Hoffmann. Effects of the preparation method of the ternary CdS/TiO2/Pthybrid photocatalysts on visible light-induced hydrogen production [J]. Journal of MaterialsChemistry,2008,18(20):2379-2385.
    [95]. Y. Liu, L. Guo, W. Yan, and H. Liu. A composite visible-light photocatalyst for hydrogen production[J]. Journal of Power Sources,2006,159(2):1300-1304.
    [96]. H. Yang, L. Guo, W. Yan, and H. Liu. A novel composite photocatalyst for water splitting hydrogenproduction [J]. Journal of Power Sources,2006,159(2):1305-1309.
    [97]. Y. Ou, J.D. Lin, S.M. Fang, and D.W. Liao. MWNT-TiO2: Ni composite catalyst: a new class ofcatalyst for photocatalytic H2evolution from water under visible light illumination [J]. ChemicalPhysics Letters,2006,429(1-3):199-203.
    [98]. L.A. Silva, S.Y. Ryu, J. Choi, W. Choi, and M.R. Hoffmann. Photocatalytic hydrogen production withvisible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS [J]. TheJournal of Physical Chemistry C,2008,112(32):12069-12073.
    [99]. L. Amirav and A.P. Alivisatos. Photocatalytic hydrogen production with tunable nanorodheterostructures [J]. The Journal of Physical Chemistry Letters,2010,1(7):1051-1054.
    [100]. J.H. Wu, Y.H. Cheng, J.M. Lin, Y.F. Huang, M.L. Huang, and S.C. Hao. Fabrication andphotocatalytic properties of HLaNb2O7/(Pt, Fe2O3) pillared nanomaterial [J]. Journal of PhysicalChemistry C,2007,111(9):3624-3628.
    [101]. J.S. Jang, H.G. Kim, V.R. Reddy, S.W. Bae, S.M. Ji, and J.S. Lee. Photocatalytic water splitting overiron oxide nanoparticles intercalated in HTiNb(Ta)O5layered compounds [J]. Journal of Catalysis,2005,231(1):213-222.
    [102]. W.F. Shangguan and A. Yoshida. Photocatalytic hydrogen evolution from water on nanocompositesincorporating cadmium sulfide into the interlayer [J]. Journal of Physical Chemistry B,2002,106(47):12227-12230.
    [103]. G.Q. Guan, T. Kida, K. Kusakabe, K. Kimura, E. Abe, and A. Yoshida. Photocatalytic activity of USnanoparticles incorporated in titanium silicate molecular sieves of ETS-4and ETS-10[J]. AppliedCatalysis A-General,2005,295(1):71-78.
    [104]. G.Q. Guan, T. Kida, K. Kusakabe, K. Kimura, X.M. Fang, T.L. Ma, E. Abe, and A. Yoshida.Photocatalytic H2evolution under visible light irradiation on CdS/ETS-4composite [J]. ChemicalPhysics Letters,2004,385(3-4):319-322.
    [105]. S. Saadi, A. Bouguelia and M. Trari. Photocatalytic hydrogen evolution over CuCrO2[J]. SolarEnergy,2006,80(3):272-280.
    [106]. A. Derbal, S. Omeiri, A. Bouguelia, and M. Trari. Characterization of new heterosystemCuFeO2/SnO2application to visible-light induced hydrogen evolution [J]. International Journal ofHydrogen Energy,2008,33(16):4274-4282.
    [107]. R. Brahimi, Y. Bessekhouad, A. Bouguelia, and M. Trari. CuAlO2TiO2heterojunction applied tovisible light H2production [J]. Journal of Photochemistry and Photobiology a-Chemistry,2007,186(2-3):242-247.
    [108]. J.S. Jang, D.W. Hwang and J.S. Lee. CdS-AgGaS2photocatalytic diodes for hydrogen productionfrom aqueous Na2S/Na2SO3electrolyte solution under visible light (λ≥420nm)[J]. CatalysisToday,2007,120(2):174-181.
    [109]. H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, and J.S. Lee. Fabrication ofCaFe2O4/MgFe2O4bulk heterojunction for enhanced visible light photocatalysis [J]. ChemicalCommunications,2009,(39):5889-5891.
    [110]. T.S. Teets and D.G. Nocera. Photocatalytic hydrogen production [J]. Chemical Communications,2011,47(33):9268-9274.
    [111]. T. Lazarides, T. McCormick, P.W. Du, G.G. Luo, B. Lindley, and R. Eisenberg. Making hydrogenfrom water using a homogeneous system without noble metals [J]. Journal of the AmericanChemical Society,2009,131(26):9192-9193
    [112]. J.I. Goldsmith, W.R. Hudson, M.S. Lowry, T.H. Anderson, and S. Bernhard. Discovery andhigh-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production[J]. Journal of the American Chemical Society,2005,127(20):7502-7510.
    [113]. P. Jarosz, P.W. Du, J. Schneider, S.H. Lee, D. McCamant, and R. Eisenberg. Platinum(II) terpyridylacetylide complexes on platinized TiO2: toward the photogeneration of H2in aqueous media [J].Inorganic Chemistry,2009,48(20):9653-9663.
    [114]. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li. P25-graphene composite as a high performancephotocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [115]. K. Woan, G. Pyrgiotakis and W. Sigmund. Photocatalytic carbon-nanotube-TiO2composites [J].Advanced Materials,2009,21(21):2233-2239.
    [116]. W.S. Hummers. Preparation of graphitic oxide [J]. Journal of the American Chemical Society1958,80:1339-1340.
    [117]. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, and H.S. Teng. Graphite oxide as a photocatalyst forhydrogen production from water [J]. Advanced Functional Materials,2010,20(14):2255-2262.
    [118]. P.V. Kamat. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticleson a two-dimensional carbon support [J]. Journal of Physical Chemistry Letters,2010,1(2):520-527.
    [119]. Q. Xiang, J. Yu and M. Jaroniec. Graphene-based semiconductor photocatalysts [J]. ChemicalSociety Reviews,2012,41(2):782-796.
    [120]. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff. Graphene andgraphene oxide: synthesis, properties, and applications [J]. Advanced Materials,2010,22(35):3906-3924.
    [121]. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff. The chemistry of graphene oxide [J].Chemical Society Reviews,2010,39(1):228-240.
    [122]. X.Y. Zhang, H.P. Li, X.L. Cui, and Y.H. Lin. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting [J].Journal of Materials Chemistry,2010,20(14):2801-2806.
    [123]. W.Q. Fan, Q.H. Lai, Q.H. Zhang, and Y. Wang. Nanocomposites of TiO2and reduced grapheneoxide as efficient photocatalysts for hydrogen evolution [J]. Journal of Physical Chemistry C,2011,115(21):10694-10701.
    [124]. Y. Park, S.H. Kang and W. Choi. Exfoliated and reorganized graphite oxide on titania nanoparticlesas an auxiliary co-catalyst for photocatalytic solar conversion [J]. Physical Chemistry ChemicalPhysics,2011,13(20):9425-9431.
    [125]. Y.H. Ng, A. Iwase, A. Kudo, and R. Amal. Reducing graphene oxide on a visible-light BiVO4photocatalyst for an enhanced photoelectrochemical water splitting [J]. Journal of PhysicalChemistry Letters,2010,1(17):2607-2612.
    [126]. A. Mukherji, B. Seger, G.Q. Lu, and L.Z. Wang. Nitrogen doped Sr2Ta2O7coupled with graphenesheets as photocatalysts for increased photocatalytic hydrogen production [J]. Acs Nano,2011,5(5):3483-3492.
    [127]. L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, and H.Q. Yu. Highly durable N-doped graphene/CdSnanocomposites with enhanced photocatalytic hydrogen evolution from water under visible lightirradiation [J]. Journal of Physical Chemistry C,2011,115(23):11466-11473.
    [128]. Q.J. Xiang, J.G. Yu and M. Jaroniec. Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites [J]. Journal of Physical Chemistry C,2011,115(15):7355-7363.
    [129]. L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero. Embeddedphases: a way to active and stable catalysts [J]. Chemsuschem,2010,3(1):24-42.
    [130]. R.W.J. Scott, O.M. Wilson and R.M. Crooks. Titania-supported Au and Pd composites synthesizedfrom dendrimer-encapsulated metal nanoparticle precursors [J]. Chemistry of Materials,2004,16(26):5682-5688.
    [131]. B.J. Auten, H.F. Lang and B.D. Chandler. Dendrimer templates for heterogeneous catalysts:bimetallic Pt-Au nanoparticles on oxide supports [J]. Applied Catalysis B-Environmental,2008,81(3-4):225-235.
    [132]. I. Pastoriza-Santos, D.S. Koktysh, A.A. Mamedov, M. Giersig, N.A. Kotov, and L.M. Liz-Marzan.One-pot synthesis of Ag@TiO2core-shell nanoparticles and their layer-by-layer assembly [J].Langmuir,2000,16(6):2731-2735.
    [133]. T. Hirakawa and P.V. Kamat. Charge separation and catalytic activity of Ag@TiO2core-shellcomposite clusters under UV-irradiation [J]. Journal of the American Chemical Society,2005,127(11):3928-3934.
    [134]. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T.Watanabe. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titaniumdioxide [J]. Journal of the American Chemical Society,2008,130(5):1676-1680.
    [135]. E.R. Leite, N.L.V. Carreno, E. Longo, A. Valentini, and L.F.D. Probst. Synthesis of mesoporoussilica with embedded nickel nanoparticles for catalyst applications [J]. Journal of Nanoscience andNanotechnology,2002,2(1):89-94.
    [136]. J.K. Lee, B.I. An, D. Kim, S.H. Min, J.S. Jung, and S.H. Lee. Catalytic behavior of nickel particlesembedded in three-dimensional mesoporous SBA15[J]. Bulletin of the Korean Chemical Society,2007,28(1):121-124.
    [137]. N.L.V. Carreno, I.T.S. Garcia, C.W. Raubach, M. Krolow, C.C.G. Santos, L.F.D. Probst, and H.V.Fajardo. Nickel-carbon nanocomposites prepared using castor oil as precursor: a novel catalyst forethanol steam reforming [J]. Journal of Power Sources,2009,188(2):527-531.
    [138]. Y.H. Zhang, Z.R. Tang, X.Z. Fu, and Y.J. Xu. TiO2-graphene nanocomposites for gas-phasephotocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from otherTiO2-carbon composite materials?[J]. Acs Nano,2010,4(12):7303-7314.
    [139]. J.C. Liu, H.W. Bai, Y.J. Wang, Z.Y. Liu, X.W. Zhang, and D.D. Sun. Self-assembling TiO2nanorodson large graphene oxide sheets at a two-phase interface and their anti-recombination inphotocatalytic applications [J]. Advanced Functional Materials,2010,20(23):4175-4181.
    [140]. Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, and P.V. Kamat. To what extent do graphenescaffolds improve the photovoltaic and photocatalytic response of TiO2nanostructured films?[J].Journal of Physical Chemistry Letters,2010,1(15):2222-2227.
    [141].K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, and C.Z. Li. Preparation of graphene-TiO2compositeswith enhanced photocatalytic activity [J]. New Journal of Chemistry,2011,35(2):353-359.
    [142]. C. Chen, W.M. Cai, M.C. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, and Y.J. Feng. Synthesis ofvisible-light responsive graphene oxide/TiO2composites with p/n heterojunction [J]. Acs Nano,2010,4(11):6425-6432.
    [143]. J. Du, X.Y. Lai, N.L. Yang, J. Zhai, D. Kisailus, F.B. Su, D. Wang, and L. Jiang. Hierarchicallyordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced chargerecombination, and their enhanced photocatalytic activities [J]. Acs Nano,2011,5(1):590-596.
    [144]. Y.H. Zhang, Z.R. Tang, X. Fu, and Y.J. Xu. Engineering the unique2D mat of graphene to achievegraphene-TiO2nanocomposite for photocatalytic selective transformation: what advantage doesgraphene have over its forebear carbon nanotube?[J]. Acs Nano,2011,5(9):7426-7435.
    [145]. J.T. Zhang, Z.G. Xiong and X.S. Zhao. Graphene-metal-oxide composites for the degradation of dyesunder visible light irradiation [J]. Journal of Materials Chemistry,2011,21(11):3634-3640.
    [146]. G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, and H.Q. Tang. TiO2nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removalof pollutants [J]. Carbon,2011,49(8):2693-2701.
    [147]. E.P. Gao, W.Z. Wang, M. Shang, and J.H. Xu. Synthesis and enhanced photocatalytic performance ofgraphene-Bi2WO6composite [J]. Physical Chemistry Chemical Physics,2011,13(7):2887-2893.
    [148]. T.G. Xu, L.W. Zhang, H.Y. Cheng, and Y.F. Zhu. Significantly enhanced photocatalytic performanceof ZnO via graphene hybridization and the mechanism study [J]. Applied CatalysisB-Environmental,2011,101(3-4):382-387.
    [149]. M.S. Zhu, P.L. Chen and M.H. Liu. Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocompositeas a highly efficient visible-light plasmonic photocatalyst [J]. Acs Nano,2011,5(6):4529-4536.
    [150]. X.F. Zhang, X. Quan, S. Chen, and H.T. Yu. Constructing graphene/InNbO4composite withexcellent adsorptivity and charge separation performance for enhanced visible-light-drivenphotocatalytic ability [J]. Applied Catalysis B-Environmental,2011,105(1-2):237-242.
    [151]. Y.S. Fu and X. Wang. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalyticperformance under visible light irradiation [J]. Industrial&Engineering Chemistry Research,2011,50(12):7210-7218.
    [152]. N. Li, G. Liu, C. Zhen, F. Li, L.L. Zhang, and H.M. Cheng. Battery performance and photocatalyticactivity of mesoporous anatase TiO2nanospheres/graphene composites by template-freeself-assembly [J]. Advanced Functional Materials,2011,21(9):1717-1722.
    [153]. Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, and J.R. Gong. Highly efficientvisible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphenenanosheets [J]. Journal of the American Chemical Society,2011,133(28):10878-10884.
    [154]. O. Akhavan and E. Ghaderi. Photocatalytic reduction of graphene oxide nanosheets on TiO2thinfilm for photoinactivation of bacteria in solar light irradiation [J]. Journal of Physical Chemistry C,2009,113(47):20214-20220.
    [155] Q. Xiang, J. Yu and M. Jaroniec. Enhanced photocatalytic H2production activity ofgraphene-modified titania nanosheets [J]. Nanoscale,2011,3(9):3670-3678.
    [156]. X.J. Lv, W.F. Fu, H.X. Chang, H. Zhang, J.S. Cheng, G.J. Zhang, Y. Song, C.Y. Hu, and J.H. Li.Hydrogen evolution from water using semiconductor nanoparticle/graphene compositephotocatalysts without noble metals [J]. Journal of Materials Chemistry,2012,22(4):1539-1546.
    [1]. H., S Ohkita, Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson,D.D.C. Bradley, and J.R. Durrant. Charge carrier formation in polythiophene/fullerene blend filmsstudied by transient absorption spectroscopy [J]. Journal of the American Chemical Society,2008,130(10):3030-3042.
    [2]. A.K.Geim, and K.S. Novoselov. The rise of graphene [J]. Nature Materials,2007,6(3):183-191.
    [3]. K.P.Gong, F. Du, Z.H. Xia, M. Durstock, and L.M. Dai. Nitrogen-doped carbon nanotube arrays withhigh electrocatalytic activity for oxygen reduction [J]. Science,2009,323(5915):760-764.
    [4]. A.K. Geim, Graphene: status and prospects [J]. Science,2009,324(5934):1530-1534.
    [5]. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff. The chemistry of graphene oxide [J]. ChemicalSociety Reviews,2010,39(1):228-240.
    [6]. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff. Graphene and grapheneoxide: synthesis, properties, and applications [J]. Advanced Materials,2010,22(35):3906-3924.
    [7]. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, and H.S. Teng. Graphite oxide as a photocatalyst forhydrogen production from water [J]. Advanced Functional Materials,2010,20(14):2255-2262.
    [8]. W.S. Hummers, Preparation of graphitic oxide [J]. Journal of the American Chemical Society1958,80:1339-1340.
    [9]. C.C. Che, W.M.;Long,M.C. Synthesis of visible-light responsive graphene oxide/TiO2compositeswith p/n heterojunction [J]. Acs Nano,2010,4(11):6425-6432.
    [10].H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li. P25-graphene composite as a high performancephotocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [11]. X.Y. Zhang, H.P. Li, X.L. Cui, and Y.H. Lin. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting [J]. Journalof Materials Chemistry,2010,20(14):2801-2806.
    [12].Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen,L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee. Incorporation of graphenes innanostructured TiO2films via molecular grafting for dye-sensitized solar cell application [J]. AcsNano,2010,4(6):3482-3488.
    [13].D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G.Zhang, I.A. Aksay, and J. Liu. Self-assembled TiO2-graphene hybrid nanostructures for nnhancedLi-ion insertion [J]. Acs Nano,2009,3(4):907-914.
    [14].W.G. Su, J. Zhang, Z.C. Feng, T. Chen, P.L. Ying, and C. Li. Surface phases of TiO2nanoparticlesstudied by UV raman spectroscopy and FT-IR spectroscopy [J]. Journal of Physical Chemistry C,2008,112(20):7710-7716.
    [15].X.Q. Fu, F.L. Bei, X. Wang, S. O'Brien, and J.R. Lombardi. Excitation profile of surface-enhancedraman scattering in graphene-metal nanoparticle based derivatives [J]. Nanoscale,2010,2(8):1461-1466.
    [16].J.A. Yan, L.D. Xian and M.Y. Chou. Structural and electronic properties of oxidized graphene [J].Physical Review Letters,2009,103(8):086802-086805.
    [17].O.Akhavan, M. Abdolahad, A. Esfandiar, and M. Mohatashamifar. Photodegradation of grapheneoxide sheets by TiO2nanoparticles after a photocatalytic reduction [J]. Journal of PhysicalChemistry C,2010,114(30):12955-12959.
    [18].O. Akhavan, and E. Ghaderi. Photocatalytic reduction of graphene oxide nanosheets on TiO2thin filmfor photoinactivation of bacteria in solar light irradiation [J]. Journal of Physical Chemistry C,2009,113(47):20214-20220.
    [19].Y.Y. Lian, H.L. Wang, H.S. Casalongue, Z. Chen, and H.J. Dai. TiO2nanocrystals grown on grapheneas advanced photocatalytic hybrid materials [J]. Nano Research,2010,3(10):701-705.
    [20].L.W. Zhang, H.B. Fu and Y.F. Zhu. Efficient TiO2photocatalysts from surface hybridization of TiO2particles with graphite-like carbon [J]. Advanced Functional Materials,2008,18(15):2180-2189.
    [21].C.Z. Zhu, S.J. Guo, P. Wang, L. Xing, Y.X. Fang, Y.M. Zhai, and S.J. Dong. One-pot, water-phaseapproach to high-quality graphene/TiO2composite nanosheets [J]. Chemical Communications,2010,46(38):7148-7150.
    [22].G. Williams, B. Seger and P.V. Kamat. TiO2-graphene nanocomposites. UV-assisted photocatalyticreduction of graphene oxide [J]. Acs Nano,2008,2(7):1487-1491.
    [23].D.L. Zhao, G.D. Sheng, C.L. Chen, and X.K. Wang. Enhanced photocatalytic degradation ofmethylene blue under visible irradiation on graphene@TiO2dyade structure [J]. Applied CatalysisB-Environmental,2012,111:303-308.
    [24].K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, and C.Z. Li. Preparation of graphene-TiO2composites withenhanced photocatalytic activity [J]. New Journal of Chemistry,2011,35(2):353-359.
    [25].Y. Ou, J.D. Lin, S.M. Fang, and D.W. Liao. MWNT-TiO2: Ni composite catalyst: a new class ofcatalyst for photocatalytic H2evolution from water under visible light illumination [J]. ChemicalPhysics Letters,2006,429(1-3):199-203.
    [26].K. Woan, G. Pyrgiotakis and W. Sigmund. Photocatalytic carbon-nanotube-TiO2composites [J].Advanced Materials,2009,21(21):2233-2239.
    [27].K. Dai, T.Y. Peng, D.N. Ke, and B.Q. Wei. Photocatalytic hydrogen generation using a nanocompositeof multi-walled carbon nanotubes and TiO2nanoparticles under visible light irradiation [J].Nanotechnology,2009,20(12):125603-125608.
    [28].G.M. An, W.H. Ma, Z.Y. Sun, Z.M. Liu, B.X. Han, S.D. Miao, Z.J. Miao, and K.L. Ding. Preparationof titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity forphenol degradation under visible light irradiation [J]. Carbon,2007,45(9):1795-1801.
    [29].W.D. Wang, P. Serp, P. Kalck, and J.L. Faria. Visible light photodegradation of phenol onMWNT-TiO2composite catalysts prepared by a modified sol-gel method [J]. Journal of MolecularCatalysis A-Chemical,2005,235(1-2):194-199.
    [30].Y.H. Zhang, Z.R. Tang, X.Z. Fu, and Y.J. Xu. TiO2-graphene nanocomposites for gas-phasephotocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from otherTiO2-carbon composite materials?[J]. Acs Nano,2010,4(12):7303-7314.
    [1]. A. Kudo and Y. Miseki. Heterogeneous photocatalyst materials for water splitting [J]. ChemicalSociety Reviews,2009,38(1):253-278.
    [2]. J.G. Yu, J. Zhang and M. Jaroniec. Preparation and enhanced visible-light photocatalytic H2productionactivity of CdS quantum dots-sensitized Zn1-xCdxS solid solution [J]. Green Chemistry,2010,12(9):1611-1614.
    [3]. L.J. Guo, M.T. Li and J.G. Jiang. Synthesis, characterization, and photoelectrochemical study ofCd1-xZnxS solid solution thin films deposited by spray pyrolysis for water splitting [J]. InternationalJournal of Hydrogen Energy,2010,35(13):7036-7042.
    [4]. L.J. Guo, X.H. Zhang and D.W. Jing. Effects of anions on the photocatalytic H2productionperformance of hydrothermally synthesized Ni-doped Cd0.1Zn0.9S photocatalysts [J]. InternationalJournal of Hydrogen Energy,2010,35(13):7051-7057.
    [5]. R. Xu and W. Zhang. Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1-xSnanospheres by one-step synthesis [J]. International Journal of Hydrogen Energy,2009,34(20):8495-8503.
    [6]. W. Zhang, Y.B. Wang, Z. Wang, Z.Y. Zhong, and R. Xu. Highly efficient and noble metal-freeNiS/CdS photocatalysts for H2evolution from lactic acid sacrificial solution under visible light [J].Chemical Communications,2010,46(40):7631-7633.
    [7]. H.J. Yan, J.H. Yang, G.J. Ma, G.P. Wu, X. Zong, Z.B. Lei, J.Y. Shi, and C. Li. Visible-light-drivenhydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst [J]. Journalof Catalysis,2009,266(2):165-168.
    [8]. X. Zong, J.F. Han, G.J. Ma, H.J. Yan, G.P. Wu, and C. Li. Photocatalytic H2evolution on CdS loadedwith WS2as cocatalyst under visible light irradiation [J]. Journal of Physical Chemistry C,2011,115(24):12202-12208.
    [9]. X. Zong, G.P. Wu, H.J. Yan, G.J. Ma, J.Y. Shi, F.Y. Wen, L. Wang, and C. Li. Photocatalytic H2evolution on MoS2/CdS catalysts under visible light irradiation [J]. Journal of Physical Chemistry C,2010,114(4):1963-1968.
    [10].X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, L. Wang, and C. Li. Enhancement of photocatalytic H2evolution on CdS by loading MOS2as cocatalyst under visible light irradiation [J]. Journal of theAmerican Chemical Society,2008,130(23):7176-7178.
    [11]. Y.K. Kim and H. Park. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: applicationto photocatalytic H2production [J]. Energy&Environmental Science,2011,4(3):685-694.
    [12].T.Y. Peng, P. Zeng, D.N. Ke, X.J. Liu, and X.H. Zhang. Hydrothermal preparation of multiwalledcarbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen productionunder visible light irradiation [J]. Energy&Fuels,2011,25(5):2203-2210.
    [13].Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff. Graphene and grapheneoxide: synthesis, properties, and applications [J]. Advanced Materials,2010,22(35):3906-3924.
    [14].D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff. The chemistry of graphene oxide [J]. ChemicalSociety Reviews,2010,39(1):228-240.
    [15].Q. Xiang, J. Yu and M. Jaroniec. Graphene-based semiconductor photocatalysts [J]. Chemical SocietyReviews,2012,41(2):782-796.
    [16].P.V. Kamat. Graphene-based nanoarchitectures anchoring Semiconductor and Metal Nanoparticles ona Two-Dimensional Carbon Support [J]. Journal of Physical Chemistry Letters,2010,1(2):520-527.
    [17].P.V. Kamat. Graphene-based nanoassemblies for energy conversion [J]. Journal of PhysicalChemistry Letters,2011,2(3):242-251.
    [18].A.N. Cao, Z. Liu, S.S. Chu, M.H. Wu, Z.M. Ye, Z.W. Cai, Y.L. Chang, S.F. Wang, Q.H. Gong, and Y.F.Liu. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promisingoptoelectronic materials [J]. Advanced Materials,2010,22(1):103-107.
    [19].Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, and J.R. Gong. Highly efficientvisible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. Journal of the American Chemical Society,2011,133(28):10878-10884.
    [20].M. Feng, R.Q. Sun, H.B. Zhan, and Y. Chen. Lossless synthesis of graphene nanosheets decoratedwith tiny cadmium sulfide quantum dots with excellent nonlinear optical properties [J].Nanotechnology,2010,21(7):075601-075608.
    [21].T.A. Pham, B.C. Choi and Y.T. Jeong. Facile covalent immobilization of cadmium sulfide quantumdots on graphene oxide nanosheets: preparation, characterization, and optical properties [J].Nanotechnology,2010,21(46):465603-465612.
    [22].K. Wang, Q.A. Liu, X.Y. Wu, Q.M. Guan, and H.N. Li. Graphene enhanced electrochemiluminescenceof CdS nanocrystal for H2O2sensing [J]. Talanta,2010,82(1):372-376.
    [23].W.S. Hummers. Preparation of graphitic oxide [J]. Journal of the American Chemical Society1958,80:1339-1340.
    [24].T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, and H.S. Teng. Graphite oxide as a photocatalyst forhydrogen production from water [J]. Advanced Functional Materials,2010,20(14):2255-2262.
    [25].J.G. Radich, R. Dwyer and P.V. Kamat. Cu2S reduced graphene oxide composite for high-efficiencyquantum dot solar cells overcoming the redox limitations of S2-/Sn2-at the counter electrode [J]. Journalof Physical Chemistry Letters,2011,2(19):2453-2460.
    [26].G.J. Ma, H.J. Yan, J.Y. Shi, X. Zong, Z.B. Lei, and C. Li. Direct splitting of H2S into H2and S onCdS-based photocatalyst under visible light [J]. Journal of Catalysis,2008,260(1):134-140.
    [27].P. Gao, J.C. Liu, S. Lee, T. Zhang, and D.D. Sun. High quality graphene oxide-CdS-Ptnanocomposites for efficient photocatalytic hydrogen evolution [J]. Journal of Materials Chemistry,2012,22(5):2292-2298.
    [28].X.W. Wang, H.W. Tian, Y. Yang, H. Wang, S.M. Wang, W.T. Zheng, and Y.C. Liu. Reduced grapheneoxide/CdS for efficiently photocatalystic degradation of methylene blue [J]. Journal of Alloys andCompounds,2012,524:5-12.
    [29].X.J. Liu, L.K. Pan, T. Lv, G. Zhu, Z. Sun, and C.Q. Sun. Microwave-assisted synthesis of CdS-reducedgraphene oxide composites for photocatalytic reduction of Cr(VI)[J]. Chemical Communications,2011,47(43):11984-11986.
    [30].X.J. Lv, W.F. Fu, H.X. Chang, H. Zhang, J.S. Cheng, G.J. Zhang, Y. Song, C.Y. Hu, and J.H. Li.Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalystswithout noble metals [J]. Journal of Materials Chemistry,2012,22(4):1539-1546.
    [31].L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, and H.Q. Yu. Highly durable N-doped graphene/CdSnanocomposites with enhanced photocatalytic hydrogen evolution from water under visible lightirradiation [J]. Journal of Physical Chemistry C,2011,115(23):11466-11473.
    [32].W.O. Milligan. The color and crystal structure of precipitated cadmium sulfide [J]. The Journal ofPhysical Chemistry,1933,38(6):797-800.
    [33].M. Barbeni, E. Pelizzetti, E. Borgarello, N. Serpone, M. Gr tzel, L. Balducci, and M. Visca. Hydrogenfrom hydrogen sulfide cleavage improved efficiencies via modification of semiconductor particulates [J].International Journal of Hydrogen Energy,1985,10(4):249-253.
    [34].N. Zhang, Y.H. Zhang, X.Y. Pan, X.Z. Fu, S.Q. Liu, and Y.J. Xu. Assembly of CdS nanoparticles onthe two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organictransformation under ambient conditions [J]. Journal of Physical Chemistry C,2011,115(47):23501-23511.
    [35].D.M. Basko. Effect of inelastic collisions on multiphonon raman scattering in graphene [J]. PhysicalReview B,2007,76(8).081405-081408.
    [36].P. Wang, T.F. Jiang, C.Z. Zhu, Y.M. Zhai, D.J. Wang, and S.J. Dong. One-step, solvothermal synthesisof graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaicproperties [J]. Nano Research,2010,3(11):794-799.
    [37].X.J. Lv, W.F. Fu, H.X. Chang, H. Zhang, J.S. Cheng, G.J. Zhang, Y. Song, C.Y. Hu, and J.H. Li.Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalystswithout noble metals [J]. Journal of Materials Chemistry,2012,22(4):1539-1546.
    [38].J.L. Wu, S. Bai, X.P. Shen, and L. Jiang. Preparation and characterization of graphene/CdSnanocomposites [J]. Applied Surface Science,2010,257(3):747-751.
    [39].J. Chu, X. Li and J.Y. Qi. Hydrothermal synthesis of CdS microparticles-graphene hybrid and itsoptical properties [J]. Crystengcomm,2012,14(5):1881-1884.
    [40].X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao. Semiconductor-based photocatalytic hydrogengeneration [J]. Chemical Reviews,2010,110(11):6503-6570.
    [41].B. Chai, T.Y. Peng, P. Zeng, X.H. Zhang, and X.J. Liut. Template-free hydrothermal synthesis ofZnIn2S4floriated microsphere as an efficient photocatalyst for H2production under visible-lightirradiation [J]. Journal of Physical Chemistry C,2011,115(13):6149-6155.
    [42].N.Z. Bao, L.M. Shen, T. Takata, and K. Domen. Self-templated synthesis of nanoporous CdSnanostructures for highly efficient photocatalytic hydrogen production under visible [J]. Chemistry ofMaterials,2008,20(1):110-117.
    [43].H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li. P25-graphene composite as a high performancephotocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [44].J.C. Liu, H.W. Bai, Y.J. Wang, Z.Y. Liu, X.W. Zhang, and D.D. Sun. Self-assembling TiO2nanorodson large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalyticapplications [J]. Advanced Functional Materials,2010,20(23):4175-4181.
    [45].X.Y. Zhang, H.P. Li, X.L. Cui, and Y.H. Lin. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting [J]. Journalof Materials Chemistry,2010,20(14):2801-2806.
    [46].Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen,L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee. Incorporation of graphenes in nanostructuredTiO2films via molecular grafting for DSSC application [J]. Acs Nano,2010,4(6):3482-3488.
    [1]. X. Chen and S.S. Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications [J]. Chemical Reviews,2007,107(7):2891-2959.
    [2]. F.E. Osterloh. Inorganic materials as catalysts for photochemical splitting of water [J]. Chemistry ofMaterials,2008,20(1):35-54.
    [3]. R.M.N. Yerga, M.C.A. Galvan, F. del Valle, J.A.V. de la Mano, and J.L.G. Fierro. Water splitting onsemiconductor catalysts under visible-light irradiation [J]. Chemsuschem,2009,2(6):471-485.
    [4]. C.M. Visinescu, R. Sanjines, F. Levy, and V.I. Parvulescu. Photocatalytic degradation of acetone byNi-doped titania thin films prepared by dc reactive sputtering [J]. Applied CatalysisB-Environmental,2005,60(3-4):155-162.
    [5]. D.H. Kim, H.S. Park, S.J. Kim, and K.S. Lee. Characteristics of Ni8wt%-doped titanium dioxidephotocatalyst synthesized by mechanical alloying [J]. Catalysis Letters,2005,100(1-2):49-52.
    [6]. S. Onsuratoom, T. Puangpetch and S. Chavadej. Comparative investigation of hydrogen productionover Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2-ZrO2mixed oxide nanocrystalphotocatalysts [J]. Chemical Engineering Journal,2011,173(2):667-675.
    [7]. D.W. Jing, Y.J. Zhang and L.J. Guo. Study on the synthesis of Ni doped mesoporous TiO2and itsphotocatalytic activity for hydrogen evolution in aqueous methanol solution [J]. Chemical PhysicsLetters,2005,415(1-3):74-78.
    [8]. V. Subramanian, E.E. Wolf and P.V. Kamat. Catalysis with TiO2/gold nanocomposites effect of metalparticle size on the Fermi level equilibration [J]. Journal of the American Chemical Society,2004,126(15):4943-4950.
    [9]. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li. P25-graphene composite as a high performancephotocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [10].L.W. Zhang, H.B. Fu and Y.F. Zhu. Efficient TiO2photocatalysts from surface hybridization of TiO2particles with graphite-like carbon [J]. Advanced Functional Materials,2008,18(15):2180-2189.
    [11]. Y.C. Qiu, K.Y. Yan, S.H. Yang, L.M. Jin, H. Deng, and W.S. Li. Synthesis of size-tunable anatase TiO2nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphenenanocomposites for rechargeable lithium Ion batteries with high cycling performance [J]. Acs Nano,2010,4(11):6515-6526.
    [12].Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen,L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee. Incorporation of graphenes innanostructured TiO2films via molecular grafting for dye-sensitized solar cell application [J]. AcsNano,2010,4(6):3482-3488.
    [13].D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G.Zhang, I.A. Aksay, and J. Liu. Self-assembled TiO2-graphene hybrid nanostructures for enhancedLi-ion insertion [J]. Acs Nano,2009,3(4):907-914.
    [14].J.C. Liu, H.W. Bai, Y.J. Wang, Z.Y. Liu, X.W. Zhang, and D.D. Sun. Self-assembling TiO2nanorodson large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalyticapplications [J]. Advanced Functional Materials,2010,20(23):4175-4181.
    [15].W.D. Wang, P. Serp, P. Kalck, and J.L. Faria. Visible light photodegradation of phenol onMWNT-TiO2composite catalysts prepared by a modified sol-gel method [J]. Journal of MolecularCatalysis A-Chemical,2005,235(1-2):194-199.
    [16].L.L. Zhang, Z.G. Xiong and X.S. Zhao. Pillaring chemically exfoliated graphene oxide with carbonnanotubes for photocatalytic degradation of dyes under visible light irradiation [J]. Acs Nano,2010,4(11):7030-7036.
    [17].Y. Ou, J.D. Lin, S.M. Fang, and D.W. Liao. MWNT-TiO2: Ni composite catalyst: a new class ofcatalyst for photocatalytic H2evolution from water under visible light illumination [J]. ChemicalPhysics Letters,2006,429(1-3):199-203.
    [18].C.C. Hu and H.S. Teng. Structural features of p-type semiconducting NiO as a co-catalyst forphotocatalytic water splitting [J]. Journal of Catalysis,2010,272(1):1-8.
    [19].B. Tryba, A.W. Morawski, M. Inagaki, and M. Toyoda. Effect of the carbon coating in Fe-C-TiO2photocatalyst on phenol decomposition under UV irradiation via photo-fenton process [J].Chemosphere,2006,64(7):1225-1232.
    [20].B. Tryba, A.W. Morawski, M. Inagaki, and M. Toyoda. The kinetics of phenol decomposition underUV irradiation with and without H2O2on TiO2, Fe-TiO2and Fe-C-TiO2photocatalysts [J]. AppliedCatalysis B-Environmental,2006,65(1-2):86-92.
    [21].B. Tryba, A.W. Morawski, M. Inagaki, and M. Toyoda. Mechanism of phenol decomposition onFe-C-TiO2and Fe-TiO2photocatalysts via photo-fenton process [J]. Journal of Photochemistry andPhotobiology A-Chemistry,2006,179(1-2):224-228.
    [22].B. Tryba, M. Piszcz, B. Grzmil, A. Pattek-Janczyk, and A.W. Morawski. Photodecomposition of dyeson Fe-C-TiO2photocatalysts under UV radiation supported by photo-fenton process [J]. Journal ofHazardous Materials,2009,162(1):111-119.
    [23].T. Puangpetch, T. Sreethawong and S. Chavadej. Hydrogen production over metal-loadedmesoporous-assembled SrTiO3nanocrystal photocatalysts: effects of metal type and loading [J].International Journal of Hydrogen Energy,2010,35(13):6531-6540.
    [24].L. Ma, A.P. Chen, J.D. Lu, H.B. He, and C.Z. Li. Synthesis and photocatalytic properties ofCNT/Fe-Ni/TiO2by fluidized bed-chemical vapor deposition method [J]. Journal of InorganicMaterials,2012,27(1):33-37.
    [25].D.F. Zhang. Chemical synthesis of Ni/TiO2nanophotocatalyst for UV/visible light assisteddegradation of organic dye in aqueous solution [J]. Journal of Sol-Gel Science and Technology,2011,58(1):312-318.
    [26].G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, and J.O. Baeg. Hydrothermally derivednanosized Ni-doped TiO2a visible light driven photocatalyst for methylene blue degradation [J].Materials Chemistry and Physics,2010,124(2-3):976-981.
    [27].J. Ling, Y. Liu, G.M. Hao, and X.G. Zhang. Preparation of carbon-coated Co and Ni nanocrystallitesby a modified AC arc discharge method [J]. Materials Science and Engineering B-Solid StateMaterials for Advanced Technology,2003,100(2):186-190.
    [28].K. Woan, G. Pyrgiotakis and W. Sigmund. Photocatalytic carbon-nanotube-TiO2composites [J].Advanced Materials,2009,21(21):2233-2239.
    [29].P.V. Kamat. Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on atwo-dimensional carbon support [J]. Journal of Physical Chemistry Letters,2010,1(2):520-527.
    [30].P.V. Kamat. Graphene-based nanoassemblies for energy conversion [J]. Journal of PhysicalChemistry Letters,2011,2(3):242-251.
    [31].Y.H. Zhang, Z.R. Tang, X.Z. Fu, and Y.J. Xu. TiO2-graphene nanocomposites for gas-phasephotocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from otherTiO2-carbon composite materials?[J]. Acs Nano,2010,4(12):7303-7314.
    [32].K. Dai, T.Y. Peng, D.N. Ke, and B.Q. Wei. Photocatalytic hydrogen generation using a nanocompositeof multi-walled carbon nanotubes and TiO2nanoparticles under visible light irradiation [J].Nanotechnology,2009,20(12):125603-125608.
    [33].P. Zeng, Q.G. Zhang, X.G. Zhang, and T.Y. Peng. Graphite oxide-TiO2nanocomposite and its efficientvisible-light-driven photocatalytic hydrogen production [J]. Journal of Alloys and Compounds,2012,516:85-90.
    [34].Y. Liu, J. Ling, U. Wei, and X.G. Zhang. Effective synthesis of carbon-coated Co and Ninanocrystallites with improved magnetic properties by AC arc discharge under an N2atmosphere [J].Nanotechnology,2004,15(1):43-47.
    [35].D. Zhao, T.Y. Peng, L.L. Lu, P. Cai, P. Jiang, and Z.Q. Bian. Effect of annealing temperature on thephotoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2nanoparticles [J]. Journal of Physical Chemistry C,2008,112(22):8486-8494.
    [36].S.V. Pol, V.G. Pol, A. Frydman, G.N. Churilov, and A. Gedanken. Fabrication and magnetic propertiesof Ni nanospheres encapsulated in a fullerene-like carbon [J]. Journal of Physical Chemistry B,2005,109(19):9495-9498.
    [37].H. Kato and A. Kudo. Water splitting into H2and O2on alkali tantalate photocatalysts ATaO3(A=Li,Na, and K)[J]. Journal of Physical Chemistry B,2001,105(19):4285-4292.
    [38].H. Kato, K. Asakura and A. Kudo. Highly efficient water splitting into H2and O2overlanthanum-doped NaTaO3photocatalysts with high crystallinity and surface nanostructure [J].Journal of the American Chemical Society,2003,125(10):3082-3089.
    [39].M. Tian, W.F. Shangguan, J. Yuan, S.J. Wang, and Z. Ouyang. Promotion effect of nanosized Pt, RuO2and NiOx loading on visible light-driven photocatalysts K4Ce2M10O30(M=Ta, Nb) for hydrogenevolution from water decomposition [J]. Science and Technology of Advanced Materials,2007,8(1-2):82-88.
    [40].Y.J. Lu, X.Q. Li and J. Mu. Effect of CuO-NiO as co-catalyst on photocatalytic activity of TiO2(P25)[J]. Chinese Journal of Inorganic Chemistry,2009,25(7):1149-1152.
    [41].L.W. Zhang, H.B. Fu and Y.F. Zhu. Efficient TiO2photocatalysts from surface hybridization of TiO2particles with graphite-like carbon [J]. Advanced Functional Materials,2008,18(15):2180-2189.
    [42].Q. Xiang, J. Yu and M. Jaroniec. Graphene-based semiconductor photocatalysts [J]. Chemical SocietyReviews,2012,41(2):782-796.
    [43].B. Chai, T.Y. Peng, P. Zeng, X.H. Zhang, and X.J. Liut. Template-free hydrothermal synthesis ofZnIn2S4floriated microsphere as an efficient photocatalyst for H2production under visible-lightirradiation [J]. Journal of Physical Chemistry C,2011,115(13):6149-6155.
    [44].A. Kibria, Y.H. Mo, K.S. Nahm, and M.J. Kim. Synthesis of narrow-diameter carbon nanotubes fromacetylene decomposition over an iron-nickel catalyst supported on alumina [J]. Carbon,2002,40(8):1241-1247.
    [45].M. Laskoski, T.M. Keller and S.B. Qadri. Solid-phase synthesis of multi-walled carbon nanotubesfrom butadiynyl-ferrocene-containing compounds [J]. Carbon,2007,45(2):443-448.
    [46].D. Eder and A.H. Windle. Carbon-inorganic hybrid materials: the carbon-nanotube/TiO2interface [J].Advanced Materials,2008,20(9):1787-1790
    [47].T. Tsubota, A. Ono, N. Murakami, and T. Ohno. Characterization and photocatalytic performance ofcarbon nanotube material-modified TiO2synthesized by using the hot CVD process [J]. AppliedCatalysis B-Environmental,2009,91(1-2):533-538.
    [48].M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann. Environmental applications ofsemiconductor photocatalysis [J]. Chemical Reviews,1995,95(1):69-96.
    [1].R.W.J. Scott, O.M. Wilson and R.M. Crooks. Titania-supported Au and Pd composites synthesized fromdendrimer-encapsulated metal nanoparticle precursors [J]. Chemistry of Materials,2004,16(26):5682-5688.
    [2].O.M. Wilson, R.W.J. Scott, J.C. Garcia-Martinez, and R.M. Crooks. Synthesis, characterization, andstructure-selective extraction of1-3nm diameter Au-Ag dendrimer-encapsulated bimetallicnanoparticles [J]. Journal of the American Chemical Society,2005,127(3):1015-1024.
    [3].B.J. Auten, H.F. Lang and B.D. Chandler. Dendrimer templates for heterogeneous catalysts: bimetallicPt-Au nanoparticles on oxide supports [J]. Applied Catalysis B-Environmental,2008,81:225-235.
    [4].I. Pastoriza-Santos, D.S. Koktysh, A.A. Mamedov, M. Giersig, N.A. Kotov, and L.M. Liz-Marzan.One-pot synthesis of Ag@TiO2core-shell nanoparticles and their layer-by-layer assembly [J].Langmuir,2000,16(6):2731-2735.
    [5].T. Hirakawa and P.V. Kamat. Charge separation and catalytic activity of Ag@TiO2core-shell compositeclusters under UV-irradiation [J]. Journal of the American Chemical Society,2005,127(11):3928-3934.
    [6].T. Hirakawa and P.V. Kamat. Photoinduced electron storage and surface plasmon modulation inAg@TiO2clusters [J]. Langmuir,2004,20(14):5645-5647.
    [7].K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T.Watanabe. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society,2008,130(5):1676-1680.
    [8].E.R. Leite, N.L.V. Carreno, E. Longo, A. Valentini, and L.F.D. Probst. Synthesis of mesoporous silicawith embedded nickel nanoparticles for catalyst applications [J]. Journal of Nanoscience andNanotechnology,2002,2(1):89-94.
    [9].J.K. Lee, B.I. An, D. Kim, S.H. Min, J.S. Jung, and S.H. Lee. Catalytic behavior of nickel particlesembedded in three-dimensional mesoporous SBA15[J]. Bulletin of the Korean Chemical Society,2007,28(1):121-124.
    [10]. N.L.V. Carreno, I.T.S. Garcia, C.W. Raubach, M. Krolow, C.C.G. Santos, L.F.D. Probst, and H.V.Fajardo. Nickel-carbon nanocomposites prepared using castor oil as precursor: a novel catalyst forethanol steam reforming [J]. Journal of Power Sources,2009,188(2):527-531.
    [11]. H.Y. Lin, H.C. Yang and W.L. Wang. Synthesis of mesoporous Nb2O5photocatalysts with Pt, Au, Cuand NiO cocatalyst for water splitting [J]. Catalysis Today,2011,174(1):106-113.
    [12]. T.Y. Peng, P. Zeng, D.N. Ke, X.J. Liu, and X.H. Zhang. Hydrothermal preparation of multiwalledcarbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogenproduction under visible light irradiation [J]. Energy&Fuels,2011,25(5):2203-2210.
    [13]. P. Zeng, Q.G. Zhang, T.Y. Peng, and X.H. Zhang. One-pot synthesis of reduced grapheneoxide-cadmium sulfide nanocomposite and its photocatalytic hydrogen production [J]. PhysicalChemistry Chemical Physics,2011,13(48):21496-21502.
    [14]. P. Zeng, X.G. Zhang, X.H. Zhang, B. Chai, and T.Y. Peng. Efficient photocatalytic hydrogenproduction over Ni@C/TiO2nanocomposite under visible light irradiation [J]. Chemical PhysicsLetters,2011,503(4-6):262-265.
    [15].A.N. Cao, Z. Liu, S.S. Chu, M.H. Wu, Z.M. Ye, Z.W. Cai, Y.L. Chang, S.F. Wang, Q.H. Gong, and Y.F.Liu. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promisingoptoelectronic materials [J]. Advanced Materials,2010,22(1):103-107.
    [16]. Y.K. Kim and H. Park. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: applicationto photocatalytic H2[J]. Energy&Environmental Science,2011,4(3):685-694.
    [17]. J. Ling, Y. Liu, G.M. Hao, and X.G. Zhang. Preparation of carbon-coated Co and Ni nanocrystallitesby a modified AC arc discharge method [J]. Materials Science and Engineering B-Solid StateMaterials for Advanced Technology,2003,100(2):186-190.
    [18]. T.A. Pham, B.C. Choi and Y.T. Jeong. Facile covalent immobilization of cadmium sulfide quantumdots on graphene oxide nanosheets: preparation, characterization, and optical properties [J].Nanotechnology,2010,21(46):465603-465612.
    [19]. Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, and J.R. Gong. Highly efficientvisible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. Journal of the American Chemical Society,2011,133(28):10878-10884.
    [20]. M. Feng, R.Q. Sun, H.B. Zhan, and Y. Chen. Lossless synthesis of graphene nanosheets decoratedwith tiny cadmium sulfide quantum dots with excellent nonlinear optical properties [J].Nanotechnology,2010,21(7):075601-075608.
    [21]. P. Wang, T.F. Jiang, C.Z. Zhu, Y.M. Zhai, D.J. Wang, and S.J. Dong. One-step, solvothermal synthesisof graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaicproperties [J]. Nano Research,2010,3(11):794-799.
    [22]. H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li. Visible-light-driven hydrogenproduction with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst [J]. Journal ofCatalysis,2009,266(2):165-168.
    [23]. X.J. Liu, P. Zeng, T.Y. Peng, X.H. Zhang, and K.J. Deng. Preparation of multiwalled carbonnanotubes/Cd0.8Zn0.2S nanocomposite and its photocatalytic hydrogen production under visible-light[J]. International Journal of Hydrogen Energy,2012,37(2):1375-1384.
    [24]. J.G. Yu, B. Yang and B. Cheng. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for highvisible-light photocatalytic H2production performance [J]. Nanoscale,2012,4(8):2670-2677.
    [25]. W.X. Zhao, Z.P. Bai, A.L. Ren, B. Guo, and C. Wu. Sunlight photocatalytic activity of CdS modifiedTiO2loaded on activated carbon fibers [J]. Applied Surface Science,2010,256(11):3493-3498.
    [26]. Y. Hu, Y. Liu, H.S. Qian, Z.Q. Li, and J.F. Chen. Coating colloidal carbon spheres with CdSnanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity [J]. Langmuir,2010,26(23):18570-18575.
    [27]. X.W. Wang, H.W. Tian, Y. Yang, H. Wang, S.M. Wang, W.T. Zheng, and Y.C. Liu. Reduced grapheneoxide/CdS for efficiently photocatalystic degradation of methylene blue [J]. Journal of Alloys andCompounds,2012,524:5-12.
    [28]. L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, and H.Q. Yu. Highly durable N-doped graphene/CdSnanocomposites with enhanced photocatalytic hydrogen evolution from water under visible lightirradiation [J]. Journal of Physical Chemistry C,2011,115(23):11466-11473.
    [29]. B. Chai, T.Y. Peng, P. Zeng, and X.H. Zhang. Preparation of a MWCNTs/ZnIn2S4composite and itsenhanced photocatalytic hydrogen production under visible-light irradiation [J]. Dalton Transactions,2012,41(4):1179-1186.
    [30]. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, and M. Rajamathi.Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting fromgraphite oxide [J]. Carbon,2009,47(8):2054-2059.
    [31]. H. Park and W. Choi. Photoelectrochemical investigation on electron transfer mediating behaviors ofpolyoxometalate in UV-illuminated suspensions of TiO2and Pt/TiO2[J]. Journal of PhysicalChemistry B,2003,107(16):3885-3890.
    [32]. C.C. Hu and H.S. Teng. Structural features of p-type semiconducting NiO as a co-catalyst forphotocatalytic water splitting [J]. Journal of Catalysis,2010,272(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700