用户名: 密码: 验证码:
肺炎链球菌Ap_nA水解酶SapH和酵母Ap_4A磷酸化酶Apa2的结构酶学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二腺苷多聚磷酸(diadenosine polyphosphate, ApnAs)是一种核苷酸衍生物,主要由氨酰tRNA合成酶催化合成,是蛋白质合成过程的副产物。它广泛存在于各种生物中,作为细胞内和细胞外的调控分子发挥着重要的生理功能。这种核苷酸的在体内的积累会对一些关键酶如腺苷酸激酶和蛋白激酶等的活性有抑制作用,因此,生物体内ApnA的降解途径对保持细胞内这类核苷酸的稳态是非常重要的。
     从原核到真核生物都存在着特异性的酶催化ApnA的降解,但在不同的物种中有所差别。降解ApnA的酶主要分为以下几大类:Nudix (nucleoside diphosphate linked to x)超家族蛋白,H·IT(histidine triad)超家族蛋白以及金属磷酸二酯酶超家族蛋白(metallophosphodiesterase, MPP)。我们选取肺炎链球菌(Streptococcus pneumoniae)R6菌株的SapH/Spr1479以及酿酒酵母(Saccharomyces cerevisiae)Apa2为研究目标,其分别属于MPP超家族和HIT超家族蛋白,均具有降解ApnA的功能,认为在参与ApnA的代谢过程有重要作用。
     SapH是肺炎链球菌R6菌株中的一个分子量为33kDa的功能未知的蛋白。我们通过X-射线晶体学的方法解析了其apo-form,以及结合无机磷酸和AMP的复合物结构,分辨率分别为1.90A,2.30A和2.20A。SapH的核心结构采用四层的α-β-β-α折叠模式,这与MPP超家族蛋白类似。我们通过原子吸收和X-射线反常散射的方法鉴定出其活性中心的双金属为Fe3+和Mn2+,并且其与周围配位的残基形成正八面体的构象。酶活实验显示SapH除了具有典型的磷酸二酯酶的通用底物bis-(p-nitrophenyl) phosphate的水解活性外,还具有水解ApnA以及ATP的活性。突变试验表明金属配位的残基对于以上两种活性都是必须的。然而在复合物的结构中结合磷酸的Trp67仅在链球菌中保守,而且仅对ApnA和ATP的水解活性是不可或缺的。同时序列分析表明AMP的结合残基仅在链球菌中是保守的,因此(?)SapH是链球菌特有的一个双功能酶。
     酿酒酵母降解Ap4A主要由两个同源性60%的Ap4A磷酸化酶(Apal和Apa2)完成。Apal和Apa2能可逆地催化Ap4A磷酸解为ATP和ADP,单独缺失apal, apa2以及双缺失apal和apa2虽然对酿酒酵母的生长没有太大影响,但都会导致细胞内的Ap4A浓度升高。我们通过X-射线晶体学的方法解析了Apa2的结构以及H161A突变体与Ap4A复合物的结构,分辨率分别为2.3A和(?)2.6A. Apa2采用a/p折叠模式,核心的β-sheet类似HIT超家族中的GalT(galactose-1-phosphate uridylyltransferase)家族蛋白,然而额外的亚结构域在Apa2中是特有的,同时也参与形成Ap4A的结合口袋。Ap4A的结合口袋可以分为AMP和ATP两个部分,二者在α-磷酸基团处以互相垂直的方式形成转角,进而将α-磷酸基团暴露给亲核攻击的催化残基His161,因此Apa2采用类似的GalT家族的双底物乒乓反应催化机制。活性检测显示Apal对Ap4A的相对活性仅为Apa2的1/7。其较低的活性主要是由于Apa2中稳定AMP部分的腺嘌呤的Phe68被Apal的Leu67取代。通过活性分析发现Apa2对Ap4A的活性最高,kcat/Km为21.0s-1μM-1。Apa2也具有磷酸解Ap3A和Ap5A的活性,但相对活性仅为Ap4A的1/12和1/3。由于Apa2的活性口袋能刚好容纳下Ap4A,所以Ap4A为其最适底物。序列比对表明Apa2在进化上代表了GalT家族的一个新的分支。我们不仅解析了HIT超家族中的第一个典型的Ap4A磷酸化酶的结构,而且是第一个HIT超家族中与Ap4A复合物的晶体结构。
Diadenosine polyphosphates (ApnAs) are a class of nucleotide derivatives distributed in all types of organisms. They are mainly produced by aminoacyl-tRNA synthetases as by-products during protein synthesis. They have emerged as intracellular and extracellular signal molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. The accumulation of these molecules could inhibit the activity of several key enzymes such as adenylate kinases and protein kinases. Thus ApnAs metabolism, especially the degradation of these molecules is crucial for maintaining their intracellular homoestasis.
     Specific enzymes for degrading ApnAs have been found in all kingdoms of life, and they could be generally classified into three categories, Nudix (nucleoside diphosphate linked to x) superfamily, HIT (histidine triad) superfamily and MPP (metallophosphodiesterase) superfamily. We selected Streptococcus pneumonia R6ApnA hydrolase Sprl479/SapH and Saccharomyces cerevisiae Ap4A phosphorylase Apa2as our targets. They belong to MPP and HIT superfamily, respectively, which are considered to be important for the homoestasis of ApnAs.
     Sprl479from S. pneumoniae R6is a33-kDa hypothetical protein of unknown function. Here, we determined the crystal structures of its apo-form at1.90A, and complex forms with inorganic phosphate and AMP at2.30A and2.20A, respectively. The core structure of Sprl479adopts a four-layered α-β-β-α sandwich fold, with Fe3+and Mn2+coordinated at the binuclear center of the active site (similar to metallophosphoesterases). Enzymatic assays show that in addition to phosphodiesterase activity towards bis-(p-nitrophenyl) phosphate, Spr1479has hydrolase activity towards ApnA and ATP. Residues that coordinate with the two metals are indispensable for both activities. By contrast, the Strepttococci-specific residue Trp67, which binds to phosphate in the two complex structures, is indispensable for the ATP/ApnA hydrolase activity only. Moreover, the AMP-binding pocket is exclusively conserved in all Streptococci. Therefore, we named the protein SapH, for Streptococcal ATP/ApnA and phosphodiester hydrolase.
     The degradation of Ap4A in S. cerevisiae is mainly catalyzed by two Ap4A phosphorylases (Apal and Apa2) with60%sequence identity. They could reversely catalyze the degradation of Ap4A into ADP and ATP. The disruption of apal alone, apa2alone, and both genes did not affect cell viability, whereas the absence of both genes could increase the intracellular concentration of Ap4A dramatically. Here we report the crystal structures of Apa2apo-form and Ap4A-complex form at2.3and2.6A, respectively. Apa2adopts an α/β fold, with the core structure of seven-stranded β-sheet resembling the GalT (galactose-1-phosphate uridylyltransferase) members of HIT superfamily. The additional sub-domain which is unique in Apa2forms a part of Ap4A-binding pocket. The AMP and ATP moiety of Ap4A is perpendicular to each other, thus exposing the a-phosphate group to the catalytic residue His161for nucleophilic attack. Similar to other GalT members, Apa2also adopts a ping-pong catalytic mechanism and forms the nucleotide-His intermediate. Enzymatic assays show that the relative activity of Apal towards Ap4A is only about one seventh of Apa2, which mainly results from the substitution of Leu67of Apal to Phe68of Apa2. In addition to Ap4A phosphorylase activity (kcat/Km of21.0s-1μM-1), Apa2also shows activity towards Ap3A and Ap5A, with the relative activity of one twelfth and one third to that of Ap4A, respectively. Ap4A is the favorable substrate because the binding pocket is perfectly complementary to a molecule of Ap4A. Multiple-sequence alignment reveals that Apa2evolves independently and represents a new branch of GalT family. This is also the first structure of a classic Ap4A phosphorylase in HIT superfamily.
引文
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213-221
    Aguiar SI, Serrano I, Pinto FR, Melo-Cristino J, Ramirez M (2008) Changes in Streptococcus pneumoniae serotypes causing invasive disease with non-universal vaccination coverage of the seven-valent conjugate vaccine. Clin Microbiol Infect 14:835-843
    Alonso A, Narisawa S, Bogetz J, Tautz L, Hadzic R, Huynh H, Williams S, Gjorloff-Wingren A, Bremer MC, Holsinger LJ, Millan JL, Mustelin T (2004a) VHY, a novel myristoylated testis-restricted dual specificity protein phosphatase related to VHX. The Journal of biological chemistry 279:32586-32591
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004b) Protein tyrosine phosphatases in the human genome. Cell 117:699-711
    Badger JL, Wass CA, Kim KS (2000) Identification of Escherichia coli Kl genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol Microbiol 36:174-182
    Baker JC, Jacobson MK (1986) Alteration of adenyl dinucleotide metabolism by environmental stress. Proceedings of the National Academy of Sciences of the United States of America 83: 2350-2352
    Barik S (1993) Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda. Proceedings of the National Academy of Sciences of the United States of America 90:10633-10637
    Bellinzoni M, Wehenkel A, Shepard W, Alzari PM (2007) Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme. Structure 15:863-872
    Bessman MJ, Frick DN, O'Handley SF (1996) The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 271:25059-25062
    Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN (1984) AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37:225-232
    Brodersen DE, de La Fortelle E, Vonrhein C, Bricogne G, Nyborg J, Kjeldgaard M (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56:431-441
    Cartwright JL, Britton P, Minnick MF, McLennan AG (1999) The IalA invasion gene of Bartonella bacilliformis encodes a (de)nucleoside polyphosphate hydrolase of the MutT motif family and has homologs in other invasive bacteria. Biochem Biophys Res Commun 256:474-479
    Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological reviews 84:1-39
    Chen S, Yakunin AF, Kuznetsova E, Busso D, Pufan R, Proudfoot M, Kim R, Kim SH (2004) Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii. J Biol Chem 279:31854-31862
    Cohen PT (2002) Protein phosphatase 1-targeted in many directions. Journal of cell science 115: 241-256
    Cohen PT, Cohen P (1989) Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221. The Biochemical journal 260:931-934
    Collaborative Computational Project N (1994) The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763
    Conyers GB, Wu G, Bessman MJ, Mildvan AS (2000) Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis:magnetic resonance and kinetic studies of the role of Mn2+. Biochemistry 39:2347-2354
    Das AK, Helps NR, Cohen PTW, Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 angstrom resolution. Embo Journal 15:6798-6809
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB,3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity:all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-383
    Egloff MP, Cohen PT, Reinemer P, Barford D (1995) Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. Journal of molecular biology 254:942-959
    Emsley P, Cowtan K (2004) Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
    Erdem H, Pahsa A (2005) Antibiotic resistance in pathogenic Streptococcus pneumoniae isolates in Turkey. J Chemother 17:25-30
    Flores NA, Stavrou BM, Sheridan DJ (1999) The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc Res 42:15-26
    Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM (2001) The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 8:467-472
    Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376: 745-753
    Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281-299
    Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96:99-110
    Guranowski A (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 87:117-139
    Guranowski A, Jakubowski H, Holler E (1983) Catabolism of diadenosine 5',5'"-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5',5'"-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J Biol Chem 258:14784-14789
    Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718-2726
    Hinds TD, Jr., Sanchez ER (2008) Protein phosphatase 5. The international journal of biochemistry & cell biology 40:2358-2362
    Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mrell nuclease and Rad50-ATPase. Cell 105:473-485
    Ismail TM, Hart CA, McLennan AG (2003) Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J Biol Chem 278:32602-32607
    Iwai T, Kuramitsu S, Masui R (2004) The Nudix hydrolase Ndxl from Thermus thermophilus HB8 is a diadenosine hexaphosphate hydrolase with a novel activity. J Biol Chem 279: 21732-21739
    Iwanicki A, Herman-Antosiewicz A, Pierechod M, Seror SJ, Obuchowski M (2002) PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity. Biochem J 366: 929-936
    Jakubowski H (1986) Sporulation of the yeast Saccharomyces cerevisiae is accompanied by synthesis of adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. Proceedings of the National Academy of Sciences of the United States of America 83:2378-2382
    Jankowski J, Tepel M, van der Giet M, Tente IM, Henning L, Junker R, Zidek W, Schluter H (1999) Identification and characterization of P(1), P(7)-Di(adenosine-5')-heptaphosphate from human platelets. The Journal of biological chemistry 274:23926-23931
    Janssens V, Goris J (2001) Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal 353:417-439
    Janssens V, Goris J, Van Hoof C (2005) PP2A:the expected tumor suppressor. Current opinion in genetics & development 15:34-41
    Johnstone DB, Farr SB (1991) AppppA binds to several proteins in Escherichia coli, including the heat shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. The EMBO journal 10:3897-3904
    Keppetipola N, Shuman S (2006a) Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase. J Biol Chem 281:19251-19259
    Keppetipola N, Shuman S (2006b) Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase. RNA12:73-82
    Keppetipola N, Shuman S (2007) Characterization of the 2',3'cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase. Nucleic acids research 35:7721-7732
    Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity. J Biol Chem 283:30942-30949
    Khalid MF, Damha MJ, Shuman S, Schwer B (2005) Structure-function analysis of yeast RNA debranching enzyme (Dbrl), a manganese-dependent phosphodiesterase. Nucleic acids research 33:6349-6360
    Kisselev LL, Justesen J, Wolfson AD, Frolova LY (1998) Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS letters 427:157-163
    Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, et al. (1995) Crystal structures of human calcineurin and the human FKBP 12-FK506-calcineurin complex. Nature 378:641-644
    Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol 259:737-748
    Knofel T, Strater N (2001) Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. J Mol Biol 309:239-254
    Kostyukova NN, Volkova MO, Ivanova VV, Kvetnaya AS (1995) A study of pathogenic factors of Streptococcus pneumoniae strains causing meningitis. FEMS Immunol Med Microbiol 10: 133-137
    Lammers T, Lavi S (2007) Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Critical reviews in biochemistry and molecular biology 42:437-461
    Laskowski R, Macarthur M, Moss D, Thornton J (1993) Procheck-a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26:283-291
    Lee PC, Bochner BR, Ames BN (1983a) AppppA, heat-shock stress, and cell oxidation. Proceedings of the National Academy of Sciences of the United States of America 80: 7496-7500
    Lee PC, Bochner BR, Ames BN (1983b) Diadenosine 5',5'"-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. The Journal of biological chemistry 258:6827-6834
    Lienhard GE, Secemski, II (1973) P 1,P 5-Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. The Journal of biological chemistry 248: 1121-1123
    Lu G, Wang Y (2008) Functional diversity of mammalian type 2C protein phosphatase isoforms: new tales from an old family. Clinical and experimental pharmacology & physiology 35: 107-112
    Luo J, Jankowski J, Knobloch M, Van der Giet M, Gardanis K, Russ T, Vahlensieck U, Neumann J, Schmitz W, Tepel M, Deng MC, Zidek W, Schluter H (1999) Identification and characterization of diadenosine 5',5'"-P1,P2-diphosphate and diadenosine 51,5'"-P1,P3-triphosphate in human myocardial tissue. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 13:695-705
    Martins A, Shuman S (2005) An end-healing enzyme from Clostridium thermocellum with 5' kinase,2',3'phosphatase, and adenylyltransferase activities. RNA 11:1271-1280
    McLennan AG (2000) Dinucleoside polyphosphates-friend or foe? Pharmacol Ther 87:73-89
    Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM (2005) Structures and mechanisms of Nudix hydrolases. Archives of biochemistry and biophysics 433:129-143
    Miller DJ, Shuvalova L, Evdokimova E, Savchenko A, Yakunin AF, Anderson WF (2007) Structural and biochemical characterization of a novel Mn2+-dependent phosphodiesterase encoded by the yfcE gene. Protein Sci 16:1338-1348
    Mitchell SJ, Minnick MF (1995) Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect Immun 63: 1552-1562
    Monds RD, Newell PD, Wagner JC, Schwartzman JA, Lu W, Rabinowitz JD, OToole GA (2010) Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. J Bacteriol 192:3011-3023
    Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nature reviews Molecular cell biology 8:234-244
    Murshudov. GN, Vagin. AA, Dodson. EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255
    O'Handley SF, Frick DN, Dunn CA, Bessman MJ (1998) Orf186 represents a new member of the Nudix hydrolases, active on adenosine(5')iphospho(5')adenosine, ADP-ribose, and ADH. J Biol Chem 273:3192-3197
    Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode Macromolecular Crystallography 276:307-326
    Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MC, Nahm MH (2007) Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 45:1225-1233
    Pintor J, Diaz-Hernandez M, Gualix J, Gomez-Villafuertes R, Hernando F, Miras-Portugal MT (2000) Diadenosine polyphosphate receptors, from rat and guinea-pig brain to human nervous system. Pharmacol Ther 87:103-115
    Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS (2009) A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J Biol Chem 284:32846-32857
    Purich DL, Fromm HJ (1972) Inhibition of rabbit skeletal muscle adenylate kinase by the transition state analogue, P 1,P 4-di(adenosine-5')tetraphosphate. Biochimica et biophysica acta 276:563-567
    Rapaport E, Zamecnik PC (1976) Presence of diadenosine 5',5'"-P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue:a possible positive "pleiotypic activator". Proceedings of the National Academy of Sciences of the United States of America 73:3984-3988
    Richter SS, Heilmann KP, Coffman SL, Huynh HK, Brueggemann AB, Pfaller MA, Doern GV (2002) The molecular epidemiology of penicillin-resistant Streptococcus pneumoniae in the United States,1994-2000. Clin Infect Dis 34:330-339
    Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates--Ap4A and ApsA--in bovine adrenal medulla:presence in chromaffin granules. Journal of neurochemistry 51:1696-1703
    Rusnak F, Mertz P (2000) Calcineurin:form and function. Physiological reviews 80:1483-1521
    Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW (2005) Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci U S A 102:273-278
    Schluter H, Offers E, Bruggemann G, van der Giet M, Tepel M, Nordhoff E, Karas M, Spieker C, Witzel H, Zidek W (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367:186-188
    Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J Mol Biol 365:211-225
    Shi L (2004) Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front Biosci 9:1382-1397
    Shi Y (2009) Serine/threonine phosphatases:mechanism through structure. Cell 139:468-484
    Sillero MA, Del Valle M, Zaera E, Michelena P, Garcia AG, Sillero A (1994) Diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells. Biochimie 76:404-409
    Stavrou BM (2003) Diadenosine polyphosphates:postulated mechanisms mediating the cardiac effects. Curr Med Chem Cardiovasc Hematol Agents 1:151-169
    Swarbrick JD, Buyya S, Gunawardana D, Gayler KR, McLennan AG, Gooley PR (2005) Structure and substrate-binding mechanism of human Ap4A hydrolase. J Biol Chem 280:8471-8481
    Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BEW, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426:299-302
    Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochern 140: 1-22
    Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22-25
    Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L (1997) Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 415: 160-162
    Voegtli WC, White DJ, Reiter NJ, Rusnak F, Rosenzweig AC (2000) Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 39:15365-15374
    Wang D, Guo M, Liang Z, Fan J, Zhu Z, Zang J, Li X, Teng M, Niu L, Dong Y, Liu P (2005) Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J Biol Chem 280:22962-22967
    Wang QH, Hu WX, Gao W, Bi RC (2006) Crystal structure of the diadenosine tetraphosphate hydrolase from Shigella flexneri 2a. Proteins 65:1032-1035
    White DJ, Reiter NJ, Sikkink RA, Yu L, Rusnak F (2001) Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase:effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities. Biochemistry 40:8918-8929
    Xu W, Gauss P, Shen J, Dunn CA, Bessman MJ (2002) The gene e.l (nudE.l) of T4 bacteriophage designates a new member of the Nudix hydrolase superfamily active on flavin adenine dinucleotide, adenosine 5'-triphospho-5'-adenosine, and ADP-ribose. J Biol Chem 277: 23181-23185
    Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D (2005) Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. The EMBO journal 24: 1-10
    Zhang W, Shi L (2004) Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology 150:4189-4197
    Zhang Y, Kim Y, Genoud N, Gao J, Kelly JW, Pfaff SL, Gill GN, Dixon JE, Noel JP (2006) Determinants for dephosphorylation of the RNA polymerase Ⅱ C-terminal domain by Scpl. Molecular cell 24:759-770
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213-221
    Aicardi J, Barbosa C, Andermann E, Andermann F, Morcos R, Ghanem Q, Fukuyama Y, Awaya Y, Moe P (1988) Ataxia-ocular motor apraxia:a syndrome mimicking ataxia-telangiectasia. Annals of neurology 24:497-502
    Arabshahi A, Brody RS, Smallwood A, Tsai TC, Frey PA (1986) Galactose-1-phosphate uridylyltransferase. Purification of the enzyme and stereochemical course of each step of the double-displacement mechanism. Biochemistry 25:5583-5589
    Bessman MJ, Frick DN, O'Handley SF (1996) The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 271:25059-25062
    Bieganowski P, Garrison PN, Hodawadekar SC, Faye G, Barnes LD, Brenner C (2002) Adenosine monophosphoramidase activity of Hint and Hntl supports function of Kin28, Cell, and Tfb3. The Journal of biological chemistry 277:10852-10860
    Booth JW, Guidotti G (1995) An alleged yeast polyphosphate kinase is actually diadenosine-51, 5"'-Pl,P4-tetraphosphate alpha,beta-phosphorylase. The Journal of biological chemistry 270: 19377-19382
    Brenner C (2002) Hint, Fhit, and GalT:function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41:9003-9014
    Brenner C, Bieganowski P, Pace HC, Huebner K (1999) The histidine triad superfamily of nucleotide-binding proteins. Journal of cellular physiology 181:179-187
    Brenner C, Garrison P, Gilmour J, Peisach D, Ringe D, Petsko GA, Lowenstein JM (1997) Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. Nat Struct Biol 4:231-238
    Brevet A, Plateau P, Cirakoglu B, Pailliez JP, Blanquet S (1982) Zinc-dependent synthesis of 5',5'-diadenosine tetraphosphate by sheep liver lysyl-and phenylalanyl-tRNA synthetases. The Journal of biological chemistry 257:14613-14615
    Brodersen DE, de La Fortelle E, Vonrhein C, Bricogne G, Nyborg J, Kjeldgaard M (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56:431-441
    Bruser T, Selmer T, Dahl C (2000) "ADP sulfurylase" from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. The Journal of biological chemistry 275:1691-1698
    Collaborative Computational Project N (1994) The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763
    Cowtan K (2006) The Buccaneer software for automated model building.1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002-1011
    Elsas LJ,2nd, Lai K (1998) The molecular biology of galactosemia. Genetics in medicine:official journal of the American College of Medical Genetics 1:40-48
    Emsley P, Cowtan K (2004) Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
    Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM (2001) The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 8:467-472
    Hao Q, Gu YX, Zheng CD, Fan HF (2000) OASIS:a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data. Journal of Applied Crystallography 33:980-981
    Huang Y, Garrison PN, Barnes LD (1995) Cloning of the Schizosaccharomyces pombe gene encoding diadenosine 5',5"'-P1,P4-tetraphosphate (AP4A) asymmetrical hydrolase:sequence similarity with the histidine triad (HIT) protein family. The Biochemical journal 312 (Pt 3): 925-932
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686-691
    Lazewska D, Guranowski A (1990) P alpha-chiral phosphorothioate analogues of bis(5'-adenosyl)tetraphosphate (AP4A); their enzymatic synthesis and degradation. Nucleic acids research 18:6083-6088
    Lienhard GE, Secemski, Ⅱ (1973) P 1,P 5-Di(adenosine-5')pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. The Journal of biological chemistry 248: 1121-1123
    Lima CD, Klein MG, Weinstein IB, Hendrickson WA (1996) Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proceedings of the National Academy of Sciences of the United States of America 93: 5357-5362
    McCoy JG, Arabshahi A, Bitto E, Bingman CA, Ruzicka FJ, Frey PA, Phillips GN (2006) Structure and mechanism of an ADP-glucose phosphorylase from Arabidopsis thaliana. Biochemistry 45:3154-3162
    Mori S, Shibayama K, Wachino J, Arakawa Y (2011) Structural insights into the novel diadenosine 5',5'"-P(1),P-tetraphosphate phosphorylase from Mycobacterium tuberculosis H37Rv. Journal of molecular biology 410:93-104
    Murshudov. GN, Vagin. AA, Dodson. EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255
    Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM, Huebner K (1996) The FHIT gene, spanning the chromosome 3pl4.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84:587-597
    Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode Macromolecular Crystallography 276:307-326
    Plateau P, Fromant M, Schmitter JM, Blanquet S (1990) Catabolism of bis(5'-nucleosidyl) tetraphosphates in Saccharomyces cerevisiae. J Bacteriol 172:6892-6899
    Plateau P, Fromant M, Schmitter JM, Buhler JM, Blanquet S (1989) Isolation, Characterization, and Inactivation of the Apal Gene Encoding Yeast Diadenosine 5',5'"-Pl,P4-Tetraphosphate Phosphorylase. Journal of Bacteriology 171:6437-6445
    Purich DL, Fromm HJ (1972) Inhibition of rabbit skeletal muscle adenylate kinase by the transition state analogue, P 1,P 4-di(adenosine-5')tetraphosphate. Biochimica et biophysica acta 276:563-567
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112-122
    Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, Tornielli S, Sard L, Huebner K, Pierotti MA, Croce CM, Pilotti S (1998) Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer research 58:5032-5037
    Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59:38-44
    Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55:849-861
    Vartanian A, Alexandrov I, Prudowski I, McLennan A, Kisselev L (1999) AP4A induces apoptosis in human cultured cells. FEBS letters 456:175-180
    Wang QH, Hu WX, Gao W, Bi RC (2006) Crystal structure of the diadenosine tetraphosphate hydrolase from Shigella flexneri 2a. Proteins 65:1032-1035
    Wedekind JE, Frey PA, Rayment I (1995) Three-dimensional structure of galactose-1-phosphate uridylyltransferase from Escherichia coli at 1.8 A resolution. Biochemistry 34:11049-11061
    Abbott DW, Macauley MS, Vocadlo DJ, Boraston AB (2009) Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. The Journal of biological chemistry 284:11676-11689
    Black TA, Cai Y, Wolk CP (1993) Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9:77-84
    Buikema WJ, Haselkorn R (1991) Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes & development 5:321-330
    Burnaugh AM, Frantz LJ, King SJ (2008) Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190:221-230
    Espinosa J, Forchhammer K, Burillo S, Contreras A (2006) Interaction network in cyanobacterial nitrogen regulation:PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PⅡ and NtcA. Mol Microbiol 61:457-469
    Fadi Aldehni M, Sauer J, Spielhaupter C, Schmid R, Forchhammer K (2003) Signal transduction protein P(II) is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185:2582-2591
    Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Current opinion in microbiology 6:557-563
    King S J, Hippe KR, Weiser JN (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961-974
    Koide N, Nose M, Muramatsu T (1977) Recognition of IgG by Fc receptor and complement: effects of glycosidase digestion. Biochemical and biophysical research communications 75: 838-844
    Lee HM, Vazquez-Bermudez MF, de Marsac NT (1999) The global nitrogen regulator NtcA regulates transcription of the signal transducer PⅡ (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the Cyanobacterium synechococcus sp. strain PCC 7942. J Bacteriol 181:2697-2702
    Muro-Pastor AM, Valladares A, Flores E, Herrero A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44:1377-1385
    Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, Tuomanen EI, Orihuela CJ (2006) Identification of a Candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infection and immunity 74:4766-4777
    Pluvinage B, Higgins MA, Abbott D W, Robb C, Dalia AB, Deng L, Weiser JN, Parsons TB, Fairbanks AJ, Vocadlo DJ, Boraston AB (2011) Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis. Structure 19: 1603-1614
    Ramasubramanian TS, Wei TF, Oldham AK, Golden JW (1996) Transcription of the Anabaena sp. strain PCC 7120 ntcAgene:multiple transcripts and NtcA binding. J Bacteriol 178:922-926
    Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700