用户名: 密码: 验证码:
生物炭对不同类型土壤理化性质和微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物炭技术的应用,不仅可以大大减少二氧化碳等温室气体的排放,实现固碳减排,而且生物炭施入土壤后还可以改良土壤的理化及生物性状。近年来伴随着可再生能源的不断减少,生物炭在土壤中的应用受到人们的广泛关注。但是关于生物炭的施用效果观点不一,这可能与生物炭的性质、土壤类型以及土壤中微生物有关,关于这方面的研究相对较少。因此,本文就不同浓度梯度生物碳处理在四种不同类型土壤(白浆土、潮土、灰漠土和棕壤土)上的应用效果进行了研究,以期阐述生物炭引起土壤理化性质变化及土壤微生物多样性变化的规律,从而为生物炭在农业上的应用提供参考。主要研究结果如下:
     1、不同类型土壤添加生物炭后能有效提高土壤pH值。40t·hm-2处理pH最高,其次为20t·hm-2处理,0t·hm-2处理pH最低,处理间的差异显著性因不同土壤类型和不同取样时期而不同。其中40t·hm-2处理pH值分别比20t·hm-2处理和0t·hm-2处理升高0.17和0.35个单位,20t·hm-2处理比0t·hm-2处理升高0.19个单位。
     2、施用生物炭处理能够显著提高土壤有机质、全碳含量及C/N,其中40t·hm-2处理显著高于0t·hm-2处理。40t·hm-2和20t·hm-2处理土壤有机质较0t·hm-2处理分别增加了11.9%和8.3%,潮土分别增加了46.7%和26.2%,灰漠土分别增加了11.6%和1.7%,棕壤土分别增加了33.8%和9.1%。
     3、4种类型土壤在生物炭处理前期,土壤速效氮含量在添加生物炭处理与未添加生物炭处理中差异不显著,而在后期取样中,添加生物炭处理土壤速效氮的含量均显著高于未添加生物炭处理,全氮含量也高于未添加生物炭处理。速效氮含量40t·hm-2处理比20t·hm-2和0t·hm-2处理分别增加了0.2~99.2%和0.6~127%,20t·hm-2处理比0t·hm-2处理增加了0.4%~42%。全氮含量40t·hm-2处理比20t·hm-2和0t·hm-2处理分别增加了0.7~23.2%和0.5~38.6%,20t·hm-2处理比0t·hm-2处理增加了3.7%~24.7%。
     4、4种不同类型土壤中20t·hm-2和40t·hm-2处理均不同程度的提高了土壤中的速效磷、速效钾含量,而对土壤全磷和全钾含量的影响存在差异。白浆土20t·hm-2和40t·hm-2处理可以提高土壤中交换性Na、Ca和Mg含量,但降低了有效Zn含量;潮土中添加生物炭处理可提高土壤中交换性Ca、Mg和有效Zn含量而降低土壤有效Mn的含量。
     5、20t·hm-2和40t·hm-2处理均可增加土壤细菌、放线菌、氨化细菌和固氮菌的数量,从添加生物炭比例来看,40t·hm-2处理要高于20t·hm-2处理。但在白浆土和潮土中添加生物炭处理未能促进真菌的生长,表现为抑制真菌生长的现象。土壤微生物量碳的变化表现为添加生物炭处理要显著高于未添加生物炭处理,而40t·hm-2处理显著高于20t·hm-2处理。
     6、4种不同类型土壤添加生物炭初期,添加生物炭处理的AWCD、物种丰富度指数、均匀度指数、优势度指数和碳源利用丰富度指数均低于未添加生物炭处理,后期40t·hm之处理土壤微生物AWCD和多样性指标均高于20t·h-2处理和0t·hm-2处理。
     7、不同比例生物炭处理的四种土壤中,添加生物炭处理土壤微生物可利用的碳源的种类均比未添加生物炭处理多,其中白浆土、灰漠土和棕壤增加了对其他混合物类碳源的利用,潮土增加了对胺类碳源的利用。综合分析四种土壤不同生物炭处理土壤微生物可利用的特征碳源,其中添加40t·hm-2处理可利用的碳源有5类,糖类2种,氨基酸类2种,羧酸类4种,聚合物类3种,其他混合物类1种。20t·hm-2处理可利用的碳源有5类,糖类3种,氨基酸类4种,羧酸类4种,聚合物类1种,其他混合物1种。0t·hm-2处理可利用的特征碳源只有3类,糖类4种,氨基酸类2种,聚合物类2种。
     8、4种类型土壤添加生炭处理均不同程度提高了土壤微生物的种群结构多样性,同类型土壤随着不同取样时期的变化,生物炭的添加对土壤微生物数量和种群结构的影响也存在一定差异。此外,添加生物炭对不同类型土壤微生物群落结构影响也不尽相同。白浆土生物炭处理分离到12株特异性单菌落,分别为短小芽孢杆菌、巨大芽孢杆菌、类芽孢杆菌、简单芽孢杆菌、金黄杆菌属、放射性根瘤菌、纤维素杆霉、节杆菌、水栖黄杆菌、鞘氨醇杆菌、草酸青霉和绿脓杆菌。潮土经生物炭处理后分离得到6株特异性菌落,与GenBank中最相近的菌种相似度达99%-100%,分别为Chryseobacterium sp. WR9、Bacillus sp. DU26(2010)、Arthrobacter sp. CMJ2-1、Paenibacillus sp.9N4、 Brevibacterium sp.210_14、Bacillus sp. CMJ1-5。通过对DGGE谱带荧光强度较亮的优势菌和特异性条带进行分析发现与测序条带相似度为100%的序列有6个,不可培养细菌(Uncultured bacterium)有20个。可培养的细菌有38个。四种土壤共有25条特异性条带,添加生物炭处理所特有的条带有20条,占总特异性条带的80%。
Application of biochar technology not only can dramatically reduce carbon dioxide and other greenhouse gas emission and achieve fixing carbon and reducing discharge, but also improve soil physiochemical property and biological character by applying biochar into soil. For this reason, applying biochar into soil received extensive attention. However, Viewpoints about the effect of biochar application are differs, this may be relate to the properties of the biochar, soil type and soil microbes. At present, relatively few studied on this subject. Therefore, this study discussed the effect of biochar application on soil physiochemical property and soil microbial diversity in four different types of soils (Albic soil, Fluvo-aquic soil, Grey desert soil and Brown soil), and provide a reference for the application of biochar in agriculture. Main research results are as follows.
     1. Applying biochar could effectively increase the soil pH value in four different types of soil.40t·hm-2biochar treatment showed the highest pH value, followed by20t·hm-2biochar treatment, and treatment without biochar showed the lowest pH value. Significant difference between treatments were varied with different soil types and sampling periods. pH value of40t·hm-2biochar treatment increased0.17and0.35units, respectively, compared with20t·hm-2biochar treatment and without biochar treatment.20t·hm-2biochar treatment increased0.19units than without biochar treatment.
     2. Applying biochar could significantly increase soil organic matter, total carbon content and C/N.40t·hm-2biochar treatment was significantly higher than that without biochar treatment. Taking last sampling of autumn spinach for example, organic matter content of albic soil in40t·hm-2and20t·hm-2biochar treatment increased by11.9%and8.3%than control, respectively, fluvo-aquic soil increased by46.7%and26.2%, grey desert increased by11.6%and1.7%, and brown soil increased by33.8%and9.1%.
     3. There was no significant difference in available nitrogen content of soil between applying biochar treatment and without biochar treatment at the first sampling of spring spinach, but there was significant difference at the later sampling period. Available nigrogen content in40t-hm"2biochar treatment were increased by0.2~99.2%and0.6~127%, respectively, compared with20t-hm"2biochar treatment and without biochar treatment, and20t·hm-2biochar treatment increased by0.4%~42%than without biochar treatment. The total nitrogen content in40t·hm-2biochar treatment were increased by0.5~38.6%and0.7~23.2%, respectively, compared with20t·hm-2biochar treatment and without biochar treatment, and20t·hm-2biochar treatment increased by3.7%~24.7%than without biochar treatment.
     4.20t·hm-2and40t·hm-2biochar treatment increased available phosphorus and potassium content in different extent in four types of soil, while there were difference effects in soil total phosphorus and total potassium content. Albic soil applying20t·hm-2and40t·hm-2biochar treatments could increase exchangeable Na, Ca and Mg content, but reduce the content of effective zinc. Fluvo-aquic soil applying biochar treatments could improve soil exchangeable Ca, Mg and available zinc content, however, available Mn content decreased.
     5. Applying Biochar treatments increased the quantities of bacteria, actinomycetes, ammonifier, and nitrogen-fixing bacteria in four different types of soil. In the view of applying biochar proportion,40t·hm-2biochar treatment were higher than20t·hm-2biochar treatment. However, the fungi quantities in albic soil and fluvo-aquic soil decreased in applying biochar treatments, and this may be related to the soil type, soil nutrient content a well as microbial characteristics and so on. The microbial biomass carbons in applyin biochar treatments were higher than that of without biochar treatment in4types of soil, whil MBC of40t·hm-2biochar treatment was significantly higher than that of20t·hm-2biocha treatment.
     6. The AWCD, species richness index, evenness index, dominance index, and carboi utilization richness index in applying biochar treatments were lower than that of in withou adding biochar treatment in the initial stage of applying biochar in four different types of soil At the later stage of applying biochar treatment, the soil microbial AWCD and diversity inde: of the t·hm-2the biochar treatment were higher than that of20t·hm-2biochar treatmen and without adding biochar treatment, which could explain that the single carbon souro utilization and metabolic activity of soil microorganisms in the40t·hm-2biochar treatmen was higher than other treatments.
     7. Soil microbial available carbon sources in applying biochar treatment were highe than without biochar treatment in four types of soil. The Albic soil, gray desert soil and brow soil increased the utilization of other mixture carbon source, and Fluvo-aquic soil increase the utilization of amine carbon source. Comprehensive analysis the utilization characteristi of carbon source by microorganism in four different soil types, five kinds of available carbo: source presented in applying40t·hm-2biochar treatment:sugar had2kinds, amino acids ha2kinds, carboxylic acid had4kinds, polymer had3kinds, and other mixture had1kind. Fiv kinds of available carbon source presented in applying20t·hm-2biochar treatmet:sugar ha3kinds, amino acids had4kinds, carboxylic acid had4kinds, polymer had1kind, and othe mixture had1kind. Three kinds of characteristic carbon sources were used by witho applying biochar treatment:4kinds of sugar,2kinds of amino acids, and2kinds of polymers
     8. Soil microbial population structure diversity in applying biochar treatments wer improved in different extent in four types of soil. Microbial quality and population structure i the same kind of soil were differences with different biochar treatments and differer sampling periods. Furthermore, the effects of applying biochar on soil microbial populatio structure were differences in different types of soil.12specific single colonies were isolate from albic soil in applying biochar treatments, which were Bacillus pumilus, Bacillu megaterium, Paenibacillus glucanolyticus, Bacillus simplex, Chryseobacteriur gleum/indologenes, Rhizobium radiobacter, Cellulomonas hominis (CDC.A-3), Arthrobactt histidinolovorans, Flavobacterium hydatis (26C), Sphingobacterium multivorum, Penicilliu oxalicum Currie&Thom and Pseudomonas aeruginosa, respectively.6specific colonies wei separated from fluvo-aquic soil in applying biochar treatments, the similarity with the mo; similar strains in GenBank were99%~100%, and they were Chryseobacterium sp. WR Bacillus sp. DU26(2010), Arthrobacter sp. CMJ2-1, Paenibacillus sp.9N4, Brevibacteriu, sp.210_14and Bacillus sp. CMJ1-5, respectively. Analyzing relatively bright fluorescenc intensity and specificity bands in DGGE, there were6strains having100%similarity wil objective bands, uncultured bacteria were20strains, and culturable bacteria were38strain Total25specific bands were isolated from four types of soil,20bands of which were peculia to applying biochar treatments, which took up80%of all specific bands.
引文
1. 鲍士旦.2001.土壤农化分析[M].3th ed.北京:中国农业出版社,39-61.
    2. 陈国青,周靖平,高琦,等.2006.超细竹炭对水中Pb2+的吸附效果[J].解放军预防医学杂志,24(6):405-407.
    3. 陈红霞,杜章留,郭伟,等.2011.华北集约农田施用生物质炭对土壤容重,阳离子交换量和颗粒有机质含量的影响.应用生态学报,22(11):2930-2934.
    4. 陈温福,2007.简易玉米芯颗粒炭化炉及其生产方法[P].中国专利:200710086505.4,2007-10-03.
    5. 陈温福,张伟明,孟军,等.2011.生物炭应用技术研究.中国工程科学,13(2):83-89.
    6. 陈旭超,胡志彪,陈杰斌,等.2007.竹炭对铜(Ⅱ)离子的吸附性能研究[J].龙岩学院学报,25(6):78-80.
    7. 崔月峰,陈温福.2008.环保型炭基缓释肥应用于大豆、花生效果初报.辽宁农业科学,(4):41--43.
    8. 崔月峰,曾雅琴,陈温福.2008.颗粒炭及新型缓释肥对玉米的应用效应研究.辽宁农业科学,(3):5-8.
    9. 傅秋华,张文标,钟泰林,等.2004.浙江林学院学报,21(2):159-163.
    10.郭伟,陈红霞,张庆忠,等.2011.华北高产农田施用生物炭对耕层土壤总氮和碱解氮含量的影响[J].生态环境学报,20(3):425-428.
    11.韩光明,孟军,曹婷,等.生物炭对菠菜根际微生物及土壤理化性质的影响.沈阳农业大学学报,2012,43(5):515-520.
    12.何绪生,耿增超,佘雕,等.2011.生物炭生产与农用的意义及国内外动态[J].农业工程学报,27(2):1-7.
    13.花莉,陈英旭,吴伟祥,等.2009.生物炭输入对污泥施用土壤-植物系统中多环芳烃迁移的影响[J].环境科学,30(8):2419-2424.
    14.焦晓光,高崇升,隋跃,等.2011.不同有机质含量农田土壤微生物生态特征.中国农业科学,44(18):3759-3767
    15.匡崇婷,江春玉,李忠佩,等.2012.添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响.土壤(Soils),44(4):570-575
    16.刘玉学,刘微,吴伟祥,等.2008.土壤生物质炭环境行为与环境效应[J].应用生态学报,20(4):977-982.
    17.孟军,张伟明,王绍斌,等.2011.农林废弃物炭化还田技术的发展与前景.沈阳农业大学学报,42(4):387-392.
    18.台喜生,冯佳丽,李梅,等.2011.鞘氨醇单胞菌在生物降解方面的研究进展.湖南农业科学,7:21-25.
    19.孙大荃,孟军,张伟明,等.2011.生物炭对棕壤大豆根际微生物的影响.沈阳农业大学学报,2011(5):521-526.
    20.谭兆赞,刘可星,廖宗文.2006.土壤微生物BIOLOG分析中特征碳源的判别.华南农业大学学报,27(4):10-13
    21.唐光木,葛春辉,徐万里,等.2011.施用生物黑炭对新疆灰漠土肥力与玉米生长的影响.农业环境科学学报,30(9):1797-1802.
    22.唐丽蓉,黄彪,廖益强,等.2009.纤维素热解反应研究进展[J].广州化工,37(9):8-10.
    23.席劲瑛,胡洪营,姜健,等.2005.生物过滤塔中微生物群落的代谢特性[J].环境科学,26(4)165-170
    24.杨铁钊,杨志晓,林娟,等.2009.不同烤烟基因型根际钾营养和根系特性研究[J].土壤学报,46(4):646-651.
    25.袁金华,徐仁扣.2010.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果.生态与农村环境学报,26(5):472-476.
    26.张阿凤,潘根兴,李恋卿.2009.生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学学报,28(12):2459-2463
    27.张春霞,郝明德,魏孝荣,王旭刚.2006.不同农田生态系统土壤微生物生物量碳的变化研究.中国生态农业学报,14(1):81-83
    28.张晗芝,黄云,刘钢,等.2010.生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响生态环境学报,19(11):2713-2717.
    29.张文玲,李桂花,高卫东.2009.生物质炭对土壤性状和作物产量的影响[JJ.中国农学通报,25(17):153-157.
    30.张伟明,2012.生物炭的理化性质及其在作物生产上的应用.博士论文.
    31.郑华,欧阳志云,方治国,等.2004.B1OLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,41(3):456-461.
    32.郑华,欧阳志云,王效科,等.2004.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,15(11):2019-2024.
    33.周建斌,邓丛静,陈金林,等.2008.棉秆炭对镉污染土壤的修复效果[J].生态环境,17(5):1857-186.
    34. BERT E, KRISTIN M, FRIEDRIECH V W,et al. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in ambition to conventional testing procedures [J]. Applied and Environmental Microbiology,1998,64(8):2814-2821.
    35. Bridle T.R. Pritchard D.2004. Energy and nutrient recovery from sewage sludge via pyrolysis [J]. Water Science and Technology,50 (9):169-175.
    36. Brodowski S, John B, Flessa H et al.2006. Aggregate-occluded black carbon in soil [J].European Journal of Soil Science,57:539-546.
    37. Cao X.D., Ma L.Q, Gao B, et al.2009. Dairy manure-derived biochar effectively sorbs heavy metals and organic contaminants [J]. Environ Sci Technol,43(9):3285-3291.
    38. Caragwen L Bracken.2006. Apparent bias in river water inoculum following centrifugation [J]. Journal of Microbiological Methods,67:304-309.
    39. Chan K.Y., Zwieten L, Meszaros I et al.2007. Agronomic values of greenwaste biochar as a soil amendment [J]. Australian Journal of Soil Research,45,629-634.
    40. Chan K.Y., Zwieten V.L., Meszaros I, et al.2008. Using poultry litter biochars as soil amendments[J].Australian Jou Fnal of Soil Research,46:437-444.
    41. Chen B.L., Zhou D.D., Zhu L.Z. et al.2008.Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures [J]. Environment Science Technology,42(14):5137-5143.
    42. CHOI K.H., DOBBS F.C.1999. Comparison of two kinds of biologmicroplates (GN and ECO) in their ability to distinguish among aquaticmicrobial communities [J]. Journal of Alcrobiological A thods,36(3):203-213.
    43. Covington W.W., Sackett S.S.1992. Soil mineral nitrogen changes following prescribed burning in ponderosa pine [J]. Forest Ecology and Management,54 (1-4):175-191.
    44. DeLuca T.H., MacKenzie M.D.,2006. Holben WE et al.Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J].Soil Science Society of American Journal, 70:448-453
    45. Dempster D.N., Gleeson D.B., Solaiman Z.M. et al.2011. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J].Plant and Soil, 354(1-2):311-324.
    46. Ding Y, Liu Y.X., Wu W.X., et al.2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution,213:47-55.
    47. HAN G.M, MENG J, ZHANG W.M, CHEN W. F.2013. Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Applied Mechanics and Materials,295-298:210-219.
    48. Garland J.L.1997. Analysis and interpretation of community level physiological profiles in microbial ecology. Microbial Ecology,24(4):289-300.
    49. Garland J.L., Mills A.L.1991. Classification and characterizationof heterotrophic microbial communities on the basis of pat-terns of community-level sole-carbon-source-utilization [J]. Appl Environ Microb,57:2351-2359.
    50. Gaskin J.W, Steiner C, Harries H, et al.2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the Asabe,51 (6):2061-2069.
    51. Gaskin J.W, Steiner C, Harris K, et al.2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J].Transactions of American Society of Agricultural and Biological Engineers,51(6):2061-2069.
    52. Gheorghe C, Marculescu C, Badea A, et al.2009. Effect of pyrolysis conditions on biochar production from biomass [C]. Proceedings of the 3rd WSEAS international conference on Renewable Energy Sources, Bucharest, Romania.
    53. Glaser B, Balashov E, Haumaier L, et al.2000. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry,31:669-678.
    54. Glaser B, Haumaie L, Guggenberger G, et al.1998. Black carbon in soils:The use of benzenecarboxylic acids as specific markers[J].Organic Geochemistry,29(4):811-819.
    55. Glaser B, Haumaier L, Guggenberger G, et al.2001. The 'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics[J].Naturwissenschaften,88(1):37-41
    56. Glaser B, Lehmann J, Zech W.2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with biochar-a review [J].Biology and Fertility of Soils, 35(4):219-230.
    57. Glaser B.2005. Manioc peel and charcoal:a potential organic amendment for sustainable soil fertility in the tropics [J]. Biol Fertil Soils,41:15-21
    58. GLIMM E, HEUER H, ENGELEN B, et al.1997. Statistical comparisons of community catabolic profiles [J]. J M icrobiol Methods,30:71-80.
    59. Goldberg E.D.1985.Black Carbon in the Environment:Properties and Distribution[M].New York:John Wiley.
    60. Graber E.R, Harel Y.M, Kolton M, et al.2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J].Plant Soil,337(1/2):481-496
    61. Grossman J, O'Neill B,E, Tsai S.M, et al.2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J].Microbial Ecology,60:192-205.
    62. Gundale M.J, DeLuca T.H.2007. Charcoaleffects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem[J]. Biology and Fertility of Soils,43 (3):303-311.
    63. Haack S.K, Garchow H, Klug M.J.1995. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns [J]. Applied and Environment Microbiology Ecology,61:1458-1468.
    64. Hamer U, Marschner B, Brodowski s, et al.2004. Interactive priming of black carbon and Sluc08e mineralization [J], Organic Geochemistry,35(7):823-830.
    65. Hang B, Lehmann J, Sblomon D, et al.2006. Black carbon increases cation exchange capacity in soils [J].Soil Sci Soc Am J,70:1719-1730.
    66. Haumaie L, Guggenberger G, et al.1998. Black carbon in soils:use of benzene carboxylic acids as specific markers[J].Organic Geochemistry,29(4):811-819.
    67. J Lehmann.2006. Black is the new green. Nature,4(42):624-626
    68. Jin H.2010. Characterization of microbial life colonizing biochar and biochar-amended soils.PhD Dissertation, Cornell University, Ithaca, NY.
    69. Khodadad C.L.M, Zimmerman A.R, Green S.J, et al.2011. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments.Soil Biology and Biochemislxy, 43:385-392.
    70. Kim J.S, Sparovek G, Longo R.M, et al.2007. Bacterial diversity of terra preta and pristine forest soil from the western amazon [J]. Soil Biology and Biochemistry,39 (2):684-690.
    71. Kimetu J.M, Lehmann J.2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J]. Soil Research,48 (7):577-585.
    72. Kimetu J.M, Lehmann J.2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J]. Aust J Soil Res,48(7):577-585
    73. Kirchmann H, Haberhauer G, Kandeler E.2004. Effects of level and quality of organic matter input on carbon storage and biological activity in soils:Synthesis of a long-term experiment. Global Biogeochemical Cycles,18:38-46.
    74. Kishimoto S, Sugiura G.2007. Charcoal as a soil conditioner [J]. Int Achieve Future,1985, (5):12-23.
    75. Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review [J]. Biogeochemistry,85:91-118.
    76. Kolb S.E, Fermanich K.J, Dornbush M, et al.2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J].Soil Science Society of American Journal,73(4):1173-1181.
    77. Kolton M, Harel Y.M, Pasternak et al.2011,Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants [J].Applied Environment Microbiology,77(14):4924-4930.
    78. Konopka A, Oliver L, Turco R.F.1998. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology,35(2):103-115.
    79. Laird D, Fleming P, Wang B.Q, et al.2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil,Geoderma,158:436-442
    80. Laird D.A, Brown R.C, Amonette J.E, et al.2009. Review of the pyrolysis platform for coproducing bio-oil and biochar [J]. Biofuel Bioprod Bior,3(5):547-562
    81. Lehmann J, da Silva Jr J.P, Steiner C, et al.2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin fertilizer, manure and charcoal amendments. Plant and Soil,249:343-357
    82. Lehmann J, Ellenberger C, Hoffmann C.2011. Morpho-functional studies regarding the fertility prognosis of mares suffering from equine endometrosis [J]. Theriogenology,76 (7):1326-1336.
    83. Lehmann J, Gaunt J, Rondon M.2006. Bio-char sequestration in terrestrial ecosystems-A review [J]. Mitigation and Adaptation Strategies for Global Change,11:403-427.
    84. Lehmann J, Gaunt J, Rondon M.2006. Biochar sequestration in terrestrial ecosystems:a review[J]. Mitig Adapt Strategy Global Change,11:395-419.
    85. Lehmann J, Joseph S. (Eds.).2009. Biochar for Environmental Management:Science and Technology [M]. Earthscan Ltd, London, UK.
    86. Lehmann J, Liang B, Solomon D, et al.2005. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil:Application to black carbon particles [J].Global Biogeochemical Cycles,19:1-12.
    87. Lehmann J, Pereira da Sliva J, Steiner C, et al.2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of Central Amazonia:fertilizer.and charcoal amendments [J]. Plant and Soil,249 (2):343-357.
    88. Lehmann J, Rillig M.C, Thies J, et al.2011. Biochar effects on soil biota-A review. Soil Biology & Biochemistry,41:1812-1836.
    89. Lehmann J, Silva S,Steiner C et al.2002. Nutrient availability and leaching in an archaeological Anthorosol and a Ferralsol of the Central Amazon basin:fertilizer,manure and charcoal amendments[J]. Plant and Soil,249:343-357.
    90. Lehmann J, Skjemstad J, Sohi S, et al.2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience,1:832-835.
    91. Lehmann J, Sohi S.2008c. Comment on "Fire-Derived Charcoal Causes Loss of Forest Humus [J]. Science,321:1295.
    92. Lehmann J,Joseph S. Biochar for environmental management:science and technology[M].London: Earthscan,2009:1-29,107-157
    93. Lehmann J.2007a. A handful of carbon [J]. Nature,447:143-144.
    94. Lehmann J.2007b. Bio-energy in the black [J].Frontiers in Ecology and the Environment,,5: 381-387.
    95. Lehmann, C.J, Rondon, M.,2006. Bio-char soil management on highly-weathered soils in the tropics. In:Uphoff, N.T. (Ed.), Biological Approaches to Sustainable Soil Systems. CRC Press, Boca Raton, 517-530.
    96. Liang B.Lehmann J.Sohi SP et al.2010. Black carbon affects the cycling of non-black carbon in soil [J].Organic Geochemistry,41(2):206-213.
    97. Liang, B., Lehmann, J., Solomon, D.,et al.2006. Black Carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,70:1719-1730.
    98. Liu Z.G, Zhang F.S.2009. Removal of lead from water using biochars prepared fromhydrothermal liquefaction of biomass [J]. Journal of Hazardous Materials,167(1/2/3):933-939.
    99. Marluthi S, Lehmann J, Kuyper J.W, et al.2009. Biochanlmpact on Soil Microbial Ecology[C].Poster presented at UK Biochar Research Centre's 2nd Annual Biochar Workshop, Rothamsted. April,
    100. Marris E.2006. Putting the Carbon back:Black is the new green [J]. Nature,442:624-626.
    101. Marschner P, Neumann G, Kania A, et al.2002. Spatial and tem-poral dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albusL) [J].Plant Soil, 246:167-174
    102. Masulili A, Utomo W H, Syechfani M S.2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and Its Influence on the properties of acid sulfate soils and rice growth in west Kalimantan, Indonesia [J].Journal of Agricultural Science,2(1):39-47.
    103. Mizuta K, Mastumoto T, Hatate K, et al.2004. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal [J]. Bioresource Technology,95(3):255-257.
    104. Moreno-Castilla C, Alvarez-Merino C, Lopez-Ramon M A, et al.2004. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry,pore texture.ionic strength,and dissolved natural organic matter[J]. Langmuir,20 (19):8142-8148.
    105. Novak J M, Busscher W J, Laird D L, et al.2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J].Soil Science,174(2):105-112.
    106. Novak J M, Frederick J R, Bauer P J, et al.2009. Rebuilding organic carbon contents in coastal plain soils using conservation tillage systems[J]. Soil Science Society of America Journal,73 (2):622-629.
    107. Novak J.M, Lima I, Baoshan Xing, et al.2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand [J].Annals of Environmental Science,3: 195-206.
    108.0'FLAHERY S.2001. Compatison of phenotypic, functional and genetic diversity of bacterial communities in soils[C]//Ress R.M and Campell B.C. (Eds) Sustainable Management of Organic Matter.Wallingford:CABI Publishing, p370-376.
    109. O'Neill B, Grossman J, Tsai M.T, et al.2009. Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using cultunng and molecular identification [J]. Microbial Ecology,58:23-35.
    110. Ogawa M.1994. Symbiosis of people and nature in the tropics [J]. Farming Japan,28(5):10-30.
    111. Pietikainen J, Kiikkila O, Fritze H et al.2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus [J].Oikos,89:231-242
    112. Rondon M.A, Lehmann J, Ramirez J, et al.2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.)increases with bio-char additions[J].Biology and Fertility of Soils,43,699-708.
    113. Rovira P, Duguy B, Vallejo V.R.2009. Black carbon in wildfire-affected shrubland Mediterranean soils [J]. Journal of Plant Nutrition and Soil Science,172 (1):43-52.
    114. Schmidt M, Skjemstad J, Jager C.2002. Carbon isotope geochemistry and nanomorphology of soil black carbon:black chernozemic soils in central Europe originate from ancient biomass burning[J]. Global Biogeochemical Cycles,16:11-23.
    115. Schmidt M, Skjemstad J.O, Czimczik C.I, et al.2001. Comparative analysis of black carbon in soils [J]. Global Biogeochemical Cycle,15(1):163-167.
    116. Singh B.P, Hatton B.J, Singh B et al.2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.Journal of Environmental Quality,39:1224-1235
    117. Smernik R.J, Kookana R.S, Skjemstad J.O,2006, NMR characterization of 13C-benzene sorbed to natural and prepared charcoals [J]. Environmental Science and Technology,40(6):1764-1769.
    318. Spokas K.A, Reicosky D.C.2009. Impacts of sixteen different biochars on soil greenhouse gas production[J]. Annals of Environmental Science,3:179-193.
    119. Steinbeiss S.2009. Effect of biochar amendment on soil carbon balance and soil microbial activity [J].Soil Biology and Biochemistry,41:1301-1310.
    120. Steiner C, Das K.C, Garcia M, et al.2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol [J]. Pedobiologia,51:359-366.
    121. Steiner C, Glaser B, Teixeira W.G.2008. Nitrogen retention and plant uptake on a highly weathered centralamazonian ferralsol amended with compost and charcoal [J]. Journal of Plant Nutrition and Soil Science,171(6):893-899.
    122. Steiner C, Steiner C, Lakly D, et al.2010. Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar [J]. Journal of Environmental Quality,39:1236-1242.
    123. Sutherland W.J, Clout M, cote I.M, et al.2010. A horizon scan of global conservation issues for 2010, Cell,26(1):1-7.
    124. Taketani R.G, Tsai S.M.2010. The Influence of Different Land Uses on the Structure of Archaeal Communities in Amazonian Anthrosols Based on 16S rRNA and amoA Genes [J].Microbial Ecology, 59:734-743.
    125. Wardle D, Nilsson M, Zackrisson O et al.2008. Fire-Derived Charcoal Causes Loss of Forest Humus [J].Science,320:629.
    126. Warnock D.D, Lehmann J, Kuyper T.W, et al.2007. Mycorrhizal responses to biochar in soil-concepts and mechanisms.Plant Soil,300:9-20.
    127. Yaman S.2004. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion and Management,45 (5):651-671.
    128. Yanai Y, Toyota K, Okazaki M.2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J].Soil Science and Plant Nutrition,53(1):181-188.
    129. Yu X.Y, Ying G, Kookana R.S, et al.2006. Sorption and desorption behaviors of diuron in soils amended with charcoal [J]. Journal of Agriculture and Food Chemistry,54:8545-8550.
    130. YU X. J, Dan Y.U, Zhijun L.U, et al.2005. A new m echanism of invader success:Exotic plant inhibits natural vegetation restoration by changing soilm icrobe community [J]. Chinese Science Bulletin,50(11):1105-1112.
    131. Yuan J.H, Xu R.K.2010.The amelioration effects of low temperature biochar generated from nine crop residues on an acidie MLtisol [J].Soil Use and Management.27(1):110-115.
    132. Zhang A.F, Cui L.Q, Pan G.X, et al.2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Taihu Lake plain,China [J]. Agriculture, Ecosystems Ervironment,139(4):469
    133. Zwieten L, Kimber S, Morris S, et al.2009. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil,327(1-2):235-246.
    134. Zwieten V.L, Kimber S, Morris S, et al.2010. Effect of biochar from slow pyrolysisi of papermill waste on agronomic performance and soil fertility [J].Plant and Soil,327 (1-2):235-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700