用户名: 密码: 验证码:
机械抖动棱镜式激光陀螺输出信号特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棱镜式激光陀螺作为一种应用于姿态测量中的惯性器件,相比于反射镜式陀螺和光纤陀螺,具有启动快,精度高,性能稳定,抗干扰能力强,不需要对棱镜进行镀膜等优点,是一种能够在恶劣工作环境下使用的高精度捷联惯性系统的理想器件。随着国内对应用于导航领域的惯性器件性能要求的不断提高,研制高可靠性,具有稳定输出性能的陀螺受到越来越多科研人员的关注。为了将陀螺的工作状态始终保持在锁区之外,一般常用机械抖动方式进行偏频。在实践中发现,棱镜式激光陀螺的输出信号会产生与抖动相关的幅度调制,严重影响陀螺的测量精度。目前对激光陀螺性能的检测主要是针对成品陀螺进行,对于性能不达标的陀螺,需要全部拆解重新装配,这也是目前造成棱镜式激光陀螺成品率低下和生产成本较高的主要原因。
     本文基于某现有型号抖动偏频棱镜式激光陀螺,从几何结构,棱镜材料,光电探测器的装配,陀螺内部传输激光的偏振特性,以及棱镜在抖动状态下的应力分布等方面进行了认真细致的理论分析和实验测量。论文在仿真实验的基础上,给出了陀螺输出信号受到幅度调制的影响机制。通过对陀螺内传输激光偏振态的测量,提出使用偏振光功率对陀螺信号调制特性进行预判的方法。最后,从工程探索的角度出发,提出一种对称型的激光陀螺结构概念,并用计算机仿真试验,与原始结构陀螺进行性能对比,验证了该优化方案所具有的优势。
     1.针对抖动偏频棱镜式激光陀螺的输出电压信号产生幅度调制的现象,首次将机械抖动对激光传输轨迹和光电探测器的影响作为分析对象,引入陀螺输出信号特性的研究。通过理论分析和仿真实验,结果表明机械抖动会对陀螺的棱镜产生应力作用,使激光光路发生改变,影响激光输出能量,同时造成光电探测器与出射光束产生相对位移,最终引起陀螺输出信号的幅度受到与抖动相关的调制。通过对所提出模型的仿真结果和真实输出信号波形的对比,证明了本文提出的幅度调制机制的合理性和分析模型的正确性。
     2.对陀螺中传输激光的偏振特性进行研究。棱镜式激光陀螺采用布儒斯特角来进行激光光束的折反,本文给出了棱镜式激光陀螺出射光的强度表达式,激光偏振参量与陀螺输出信号调制程度的一般关系。首次提出以出射偏振光的功率值作为依据,来判定陀螺输出信号幅度调制程度的方法。通过对多组陀螺的测量表明,在抖动状态下当陀螺出射偏振光功率小于静止理想状态下的25.5%,标准差大于0.0337dBm,棱镜偏移量大于陀螺腔内传输激光束腰半径的53%时,陀螺输出电压信号幅值相对起伏程度可达到16%以上,严重影响陀螺的测量精度。使用这种基于输出光偏振特性的检测方法,可以在陀螺的装配过程对不合格的部件及时进行修复,显著地提高陀螺的检测与生产效率,缩短生产周期,提高激光陀螺的可靠性。
     3.在对非对称型激光陀螺性能进行分析的基础上,首次将对称型全反射棱镜纳入陀螺的结构设计方案,为优化陀螺结构参数,减小出射光功率调制深度提供了新的思路。通过使用有限元分析软件,比较了非对称型陀螺和对称型陀螺的振动模态和动态响应。结果表明,在抖动状态下,对称型陀螺的应力分布具有对称性,棱镜上的应力取值也显著小于非对称棱镜。从仿真的结果来看,使用对称型结构,能够减弱机械抖动对棱镜的应力作用,降低传输激光光轴偏移的程度,有效提高棱镜式激光陀螺输出激光的稳定性,改善输出信号幅度特性。
     4.在综合已有分析结论和对称型结构方案的基础上,本文对具有不同折射率和结构参数的棱镜,不同程度的探测器位置偏移对输出信号的影响进行了分析,提出在保证探测器初始位置位于出射激光光斑中心的前提下,选取折射率为1.8857的对称型陀螺的激光陀螺的改善措施。通过对此方案进行数值分析,结果表明,使用对称型的陀螺结构,选取具有合适折射率的对称型棱镜,减小探测器与出射光斑中心的相对位移,可以将出射光幅度调制相比原先减小52.63%以上,显著地改善棱镜式激光陀螺输出信号的稳定性。该方案经检索,尚未见到类似的技术优化方案的报道。
     本文所做的研究工作,对于提高棱镜式激光陀螺输出信号稳定性和提高生产效率具有重要的参考价值,对于激光陀螺结构优化设计和提高惯性器件可靠性具有重要的意义。
As a new type of optical inertial device which is used in attitude measurement,prisms laser gyro has drawn many attentions in recent years because of its excellentperformance under the adverse circumstance. Compared with the traditional mirror lasergyro such as reflector gyro and fiber optical gyro, prisms laser gyro has manyadvantages such as a quick starting, high accuracy, stable performance, high abilities ofpreventing interference and no need of coatings. With the increasing requirement ofhigh performance of inertial devices in the area of domestic navigation, the gyro withhigher reliability and stable output quality has become the study focus.To keep the gyroworking status out of lock-in, mechanical dither is usually used. However, it is foundthat the amplitude of output voltage signal of prisms laser gyro is always modulated bydither bias, which strongly influences the measurement accuracy of gyro. Currently, theperformance test is mainly made at the stage of the finished products. Any unqualifiedgyro needs to be disassembled to repair. That's the mainly cause responsible for thelower rate of finished gyro products and higher production cost.
     This paper presents a theoretical analysis and experimental research on thegeometrical structure, prism's material, a photodetector assembly situation, polarizationproperties of output light and the stress distribution in prisms of gyro. The mechanismof the output signal modulation has been presented by help of the simulation results oflaser gyro. Based on the polarized measurement results, a new method based on powervalue of output polarized light to estimate the output signal amplitude modulation oflaser gyros is proposed. And a new structure to improve the gyro performances has beenpresented and the numerical simulation is also made to examine the advantages of thenew structure laser gyro.
     1. Based on the fact that the amplitude of output voltage signal has been modulatedby dither bias, the effect of mechanical dither to the laser transmission trajectory andphotodetector is calculated and analyzed systematically. By use of the numericalsimulation and finite element analysis methods, it is found that the main factors to causemodulation depth are photodetector deviation and stress induced birefringence in prisms.The comparison between the numerical simulation and experiment shows that by themodel and the mechanism proposed can well describe the coupled light intensity.
     2. To test the polarization characteristics of the transmission laser in the prismsgyro, a specified test platform is established. Using the Brewster angle as the laser beam incident angle is a significant characteristic in prisms laser gyro. The analytical formulaof output light intensity in gyro and the relationship between polarized parameters andmodulation depth are given and discussed. For the first time to our knowledge, a newmethod to estimate the amplitude modulation of the gyro output signal is proposed byuse of the polarized power value of the output optical intensity. Experimental resultsshow that when the value of polarized power of output light is below25.5%of that inideal static situation which equals to-23.334dBm, the standard error is over0.0337dBm,and the displacement extent of prism is higher than the53%of radius of the beam waistin gyro cavity, the amplitude modulation extent of gyro output signal can be as high as16%, which can strongly influence measurement precision of laser gyro. According tothe results above, the production efficiency could be improved, and development cyclecould be shortened through testing the polarized power of output light before the prismsare assembled to gyro.
     3. Based on the analysis of the performance of an asymmetrical gyro, a new type ofgyro with symmetrical structure is proposed. This symmetry structure provides a newway for optimization design and reduction amplitude modulation for the prisms lasergyro. Compared with the results of finite element analysis between these two kinds ofgyros, it is shown that the stress value distribution is symmetry gyro and the value ismuch smaller than that in asymmetry one in prism. From the results of simulation, usingthe symmetry gyro structure could reduce the stress of the prism and off-axis range ofthe laser beam trajectory in the cavity, and improve the stability of output laser intensityand output signal quality of the laser gyro effectively.
     4. Based on the analysis results and the idea of the symmetry gyro structure, theinfluence of the refractive index of the prism and the vibration of photodetector on theoutput laser power of gyro is analysed.An optimization method has been presented. Theinitial position of the detector should be in the center of the output light spot area, andthe prism refractive index should be1.8857. In this case, analysis indicates that the gyrowith symmetric prisms of higher refractive index would improve the performance ofcoupling light and reduce the modulation depth by52.63%at least.
     The research results in this paper would provide an important reference forimproving the quality of the output signal and the reliability of prisms laser gyro.
引文
[1]宫经宽.航空机载惯性导航系统[M].北京:航空工业出版社.2010.pp1~6
    [2] Draper C S, Wrigley W,Grohe L R. The floating integrating gyro and itsapplication to geometrical stabilization problems on moving bases [J]. Aero. Eng.Rev.,1956,15(6)
    [3] Graig R J G. Theory of Operation of an Elastically Supported Tuned Gyroscope[J].IEEE Trans. on AES.1972,8(3):280~297
    [4] Draper C S, Woodbury R B. Geometrical stabilization based on servo drivengimbals and integrating gyro units [J]. AGARD Symp. Guidance and Control,Venice, Sept.1956
    [5]唐洪亮,李继光,刘锡敬.静电陀螺仪在潜艇导航技术中的应用及展望[J].四川兵工学报.2009,30(9):128~131
    [6] Macek W M, Davis D T M. Rotation rate sensing with travelling wave ringlasers[J]. Appl. Phys. Lett.,1963(2):67~75
    [7] Vali V, Shorthill R W. Fiber Ring Interferometer[J]. Applied Optics,1976,15:1099-1100(SPIE MS8:135~136)
    [8]许国祯.惯性技术手册[M].北京:宇航出版社,1995. pp23~36
    [9] Ohlmeyer E J,Pepitone T R,Miller B L. Assessment of integrated GPS/INS forthe EX-171extended range guided munition[A]. AIAA Guidance, Navigationand Control Conference[C]. Boston, MA.1998.
    [10]李庆辉,姚呈康,孙刚,等.基于红外序列图像超分辨率重建方法的热分析测试系统[P].CN200810150401.X.西安电子科技大学.2008-12-10
    [11] Gustavson T L, Landragin A, Kasevich M. Rotation sensing with a dualatom-interferometer Sagnac gyroscope[J]. Classical Quantum Gravity,2000,17(12):2385-2398.
    [12] Gauguet A, Canuel B, Levequel T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Physical Review A,2009,80(6):3604-3616.
    [13]曾庆化,刘建业,頼际舟,等.环形激光陀螺的最新发展[J].传感器技术,2004,23(11):1~4.
    [14]张鹏飞,王宇,汤建勋,等.机抖激光陀螺多温度点实时温度补偿方法的研究[J].兵工学报,2010,31(5):526~566
    [15] Sagnac G. L’either lumineux demontre par l’effect du vent relative d’ether dans uninterferometren en rotation uniforme[J]. Comptes Rendus de l’Academic desScience,1913,95:708~710
    [16] Michelson S W, Gale G H. The effect of the Earth’s rotation on the velocity oflight[J]. Astrophys. J.,1925(61):140~147
    [17] Ma H L, Zhang G H, Li M C, et al. Zero-deviation effect in a resonator opticgyro caused by nonideal digital ramp phase modulation[J]. Optics and Lasers inEngineering,2010,48:933~939
    [18]章燕申,汤全安,潘珍吾.激光陀螺及其误差补偿[J].航空学报,1990,11(3):A120-A126
    [19] Yao Chengkang,Li Qinghui. Motion Compensation Realization for satellite bornecamera[J]. Infrared and Laser Engineering,2011,40(6):1090-1097
    [20] Hashimoto T., Maeya J., Fujita T., et al. Concept of MEMS Ring LaserGyroscope with Movable Optical Parts [J], Procedia Chemistry,2009,1(1):564-567
    [21]张梅,张文.激光陀螺漂移的研究方法(一)[J].中国惯性技术学报,2009,17(2):210-213
    [22]张梅,张文.激光陀螺漂移的研究方法(二)[J].中国惯性技术学报,2009,17(3):350-355
    [23]冯杨,徐庆九.激光陀螺捷联惯导系统的误差参数标定方法[J].测控技术,2013,32(4):126-131
    [24]田海峰,陈军军,李霖.数字机械抖动控制的一种改进方案及噪声注入方法.[J].中国惯性技术学报,2011,19(3):594-598
    [25]岳明桥,王天泉.激光陀螺仪的分析及发展方向[J].控制与制导,2005,5:46-48
    [26]吕妍红,崔中兴.环形激光陀螺信号分析与处理[J].传感技术学报,2004,6(2):249-252
    [27]张庆华,胡绍民,卢广锋.机械抖动激光陀螺新型信号处理方法的研究.[J].光学技术,2010,36(1):126-130
    [28] Post E J. Sagnac effect [J]. Rev. Mod. Phys.,1967,39:475-493
    [29]石顺祥,王学恩,刘劲松.物理光学与应用光学[M].西安:西安电子科技大学出版社,2008:pp45-52
    [30]张兴周. Sagnac效应光纤陀螺[J].传感器技术,1998,17(1):59-62
    [31]傅鑫,马冲泽,陈林峰,等.基于DSP的激光陀螺稳频回路设计及其参数整定[J].应用光学,2012:33(5):841-845
    [32]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984:pp52-58
    [33] Wang K D, Gu Q T. Key problems of mechanically dithered system of RLG[J].Tsinghua Science and Technology,2001,6:304-309
    [34]赵东洋,石顺祥,蒋军彪,等.全反射棱镜式环形激光器耦合输出的理论分析[J],光子学报,2005,34(5):652-655
    [35]李庆辉,姚呈康,邢乐,等. He-Ne激光器频率稳定度测量系统及其测量方法
    [P].CN101858822B.西安电子科技大学.2012-09-05
    [36]谢元平.机械抖动激光陀螺鉴相解调与稳频技术的研究[D].长沙:国防科技大学.2000:pp42-59
    [37]姜亚南.环形激光陀螺[M].北京:清华大学出版社,1984:pp63-67
    [38]高伯龙.激光陀螺的近似解[J].国防科学技术大学学报.1979:1-37
    [39]杨培根,龚智炳.光电惯性技术[M].北京:兵器工业出版社,1999:pp12-90
    [40] Yuan Baolun, Han Songlai, Yang Jianqiang. Rotation Scheme for Single-axisIndexing RLG INS [J], Journal of Chinese Inertial Technology,2011,19(2):145-151
    [41] Broslavets Y Y, Zaitseva T E, Kazakov A A, el al. Amplitude—phase ModeStructure of An Astigmatic Gaussian Beam in Ring Lasers with A NonplanarFour-mirror Cavity and An Aperture [J], Quantum Electron,2006,36(5):447-456
    [42]万顺平,李峰,王小飞,等.机械抖动对机抖激光陀螺稳频装置的影响[J],红外与激光工程,2008,37(4):728-731
    [43] Liu Yinghui, Li Hongfu, An Application of the Mode-matching Technique inthe Calculation of Resonators in Gyro-devices [J], Nuclear Instrumentation andMethods in Physics Research Section A,2009,598(2):605-610
    [44]刘元正,张明辉,张华伟,等.激光陀螺腔长控制镜改进设计[J],中国惯性技术学报,2013,21(3):101-105
    [45]王京献.激光陀螺抖动偏频技术研究[D].西安:西北工业大学硕士论文.1999:pp34-48
    [46]张永昌. MSC. Nastran有限元分析理论基础与应用[M].北京:科学出版社.2004:pp3-11
    [47]盛选禹,唐守琴. CATIA有限元分析命令详解与实例[M].北京:机械工业出版社.2005:pp23-42
    [48]黄林林,谢元平,张斌.激光陀螺中的光学抖动及其对锁区的影响分析[J].应用光学,2010(31),2.333:335
    [49]张明辉,刘元正,兰佩锋等.激光陀螺腔长控制镜结构特性有限元分析[J],应用光学,2011(32),2.353:357
    [50]金世龙,龙兴武,李晓红等.激光陀螺新型光路程长控制镜的研制[J],光学学报,2006,26(4):526-566
    [51]胡志强,姚合宝,蒋军彪等.激光陀螺光电探测器光窗的设计[J].应用光学,2008,29(4):576-579
    [52] M Faucheux, D. Fayoux, J. J. Roland, The ring laser gyro[J], J. Optics,1988,19(3):101-115
    [53]高玉凯,邓正隆.消除机械抖动激光陀螺闭锁误差的方法[J].中国激光,2007,34(3):354-358
    [54] FAN Zhen-fang, LUO Hui, HU Shao-min. Instantaneous phase method forreadout signal processing of body dithered ring laser gyro[J]. Applied optics,2011,50(20):3455-3460
    [55]王锴,谢元平.激光陀螺稳频精度对比例因子的影响研究[J].半导体光电,2011,32(2):292-294
    [56]陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M].北京:中国铁道出版社,2001,pp5-7
    [57]周炳坤,高以智,陈倜嵘,等.激光原理[M].北京:国防工业出版社,2000,pp1-235
    [58]姚呈康,曾晓东,曹长庆.机械抖动棱镜式激光陀螺出射光强度特性[J].物理学报.2012,21(9):094216
    [59]丛薇,隋清江.光的偏振态描述及转换计算[J].哈尔滨师范大学自然科学学报.2007.23(2):76-77
    [60] Bakin Y V, Ziouzev G N, Lioudomirski M B. Laser gyros with total reflectionprisms[D]. Bauman moscow state technical university.2003: pp1~28
    [61] Rao F J, Chen S F, Fu L. Bidirectional oscillations in Er-doped fiber ring cavitywith polarization splitting for rotation sensing[J].2011,284(5):1284-1288
    [62] Guan Yanjin, Zhang Hongmei, Liu Jie, et al. Laser Micro-bending ProcessBased on the Characteristic of the Laser Polarization [J]. Journal of MaterialsProcessing Technology,2011,212(3):662-671
    [63]王伟,李国华.斯托克斯空间用邦加球表示光偏振态的在研究[J].应用光学,2002,23(3):23-25
    [64]刘超.关于光学系统中光束能量和偏振态的分析[D].浙江:浙江大学硕士学位论文.2012,pp56-132
    [65]吴位巍,岳莉,肖涛.各向同性介质中折射光的偏振态[J].凯里学院学报,2008,26(6):24-26
    [66] Yao Cheng-kang, Zeng Xiao-dong, Cao Chang-qing. Polarization properties inprisms laser gyro with mechanical dither bias[J]. Chinese Physics B.2012,21(12):124206
    [67]马建玲.光在介质表面反射和折射时偏振态的研究[J].泰山学院学报,2005,27(6):67-69
    [68] Wolff L B. Polarization based material classification from specular reflection[J].IEEE Trans of PAM I,1990,1059-1071
    [69]冯国杰,王晓东.激光偏振检测技术研究[J].激光与红外,2009,39(9):918-920
    [70] Chengkang Yao,Xiaodong Zeng,Changqing Cao. Study on the output signalmodulation for laser gyro with mechanical dither bias[J]. Applied Mechanics andMaterials,2013,303-306:1752-1758
    [71]马有年.环形激光陀螺的腔体[J].中国惯性技术学报,1993,1(3):40-43
    [72]王亚江,李广云,刑坤,等. Gyromat3000陀螺经纬仪温度影响测试与分析[J].测绘科学,2012,37(6):128-129
    [73]刘建宁.全反射棱镜式激光陀螺稳频技术研究[D].西安电子科技大学,2010:pp1~48
    [74]石念宝,蒋军彪,姚合宝. TRP激光陀螺的射频放电频率对腔体的影响分析[J].弹箭与制导学报,2007,27(1):385-386
    [75] Killpatrick J.,李菁蕾. GG1308环形激光陀螺[J].战术导弹控制技术,1993,1:57-61
    [76]王国保,关再亮,陈文奎.微晶玻璃封包He3渗漏的检测[J].真空,1990,6:30-34
    [77] Matthew J. Bohn, Jean Claude Diels. Bidirectional Kerr-lens mode-lockedfemtosecond ring laser[J]. Optics Communications,1997,141(1-2):53-58
    [78]吕百达.激光光学:激光束的传输变换和光束质量控制[M].成都:四川大学出版社,1992,pp1-155
    [79]方倩.全反射棱镜式激光陀螺的误差仿真研究[D].西安电子科技大学,2011:pp18-44
    [80]赵道木,林强,王绍明.运用张量ABCD定律分析简单象散的对称化[J].杭州大学学报,1994,21(1):36-40
    [81]胡玉禧,安连生.应用光学[M].合肥:中国科学技术大学出版社,1996,pp246-272
    [82]卫延,常德远,郑凯,等.圆芯边孔光纤的应力区和双折射[J].光学学报,2008,28(2):243-248
    [83]郭宁,覃付祥,孟庆友,等.外力作用下熊猫型保偏光纤应力双折射分析[J].光学与光电技术,2008,6(5):38-41
    [84]杨林.低温环境对全反射棱镜式激光陀螺输出性能的影响研究[D].西安电子科技大学,2011,pp13-44
    [85]邢进华.温度对气体折射率的非线性影响[J].物理实验,2005,25(4):35-37
    [86]刘慧兰,贺斌,刘恒,等.空间谐振式陀螺谐振腔的失调分析[J].光学技术,2008,34(1):145-148
    [87]廖延彪.偏振光学[M].北京:科学出版社,2003,pp7-8
    [88]周清荃.关于标量场高斯光束成为矢量场的分析[J].激光杂志,1999,20(4):47-52
    [89]赵明,王轲,苏域.激光陀螺抖动系统振动特性的有限元分析[J].中国惯性技术学报,2004,12(4):39-42
    [90]汤建勋.机械抖动激光陀螺抖动偏频系统的研究与设计[D].国防科学技术大学,2000,pp27-46
    [91]刘颖,李言,李淑娟.激光陀螺抖动系统模态分析与实验[J].西安理工大学学报,2009,25(1):80-84
    [92] Xie L Q,Wu X Z,Li S Y,et al. Design and Characterization of a Novel Z-axisQuartz Cross-fork Micromachined Gyroscope[J]. Chinese Journal of MechanicalEngineering,2011,24(1):50-57
    [93]陆萍,秦惠芳,栾芝云.基于有限元法的风力机塔架结构动态分析[J].机械工程学报,2002,38(9):127-130
    [94]汤建勋,龙兴武.机械抖动激光陀螺抖动机构的设计[J].激光杂志,2000,21(2):64-65
    [95]于旭东,汤建勋.激光陀螺抖动系统的理论分析与有限元模拟[J].机械制造,2007,45(517):16-18
    [96]王玉芬,刘连城.石英玻璃SiO2[M].北京:化学工业出版社,2008,pp57-78
    [97]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004:pp378-396
    [98]庹洲慧,李如华,江明明.机抖激光陀螺减震系统的模态分析[J].国防科技大学学报,2010,32(6):142-146
    [99]魏建仓,庹洲慧,吴美平.机抖激光陀螺动力学特性研究[J].中国惯性技术学报,2006,14(6):69-72
    [100]于旭东,龙兴武,汤建勋.机抖激光陀螺动力学分析及优化设计[J].中国惯性技术学报,2007,15(2):241-245
    [101]任尊松,孙守光,李强,等.构架结构振动与动态应力仿真研究[J].机械工程学报,2004,40(8):187-192
    [102]许光明,王飞.激光陀螺光路变动分析及其对陀螺性能的影响[J].应用光学,2010,31(5):805-809
    [103]高爱华,何小庆,张炜,等.腔镜失调对激光陀螺信号输出的影响[J].光子学报,2011,40(6):823-827
    [104]党文佳,曾晓东,曹长庆.全反射棱镜式环形激光陀螺偏振特性研究[C].2012年西部光子学学术会议论文集,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700