用户名: 密码: 验证码:
6-姜酚在大鼠肝微粒体中的代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     6-姜酚是生姜辣味成分姜辣素中的主要成分,具有广泛的生物活性,目前研究证明其在抗氧化和抗肿瘤方面具有很好的效果。前期对6-姜酚大鼠体内药代动力学研究表明:6-酚口服给药后在大鼠体内吸收迅速,主要分布在肝脏、胃肠道组织中,而血药浓度较低,推测其口服给药存在首过效应,而肝脏是药物代谢的主要场所,虽然目前有研究确认了6-姜酚经口服给药后在大鼠尿及粪便中的代谢产物,但6-姜酚经肝脏代谢后的情况、肝脏中药酶对其代谢影响以及其本身对肝药酶有何影响还未见报道。
     因此本文拟通过建立大鼠肝微粒体体外孵育体系及其在大鼠肝微粒孵育体系中的HPLC-UV检测方法,研究6-姜酚在肝微粒体中的代谢情况,考察其在体外孵育体系中的酶动力学以及选择性细胞色素P450抑制剂对其代谢的影响;通过建立LC-MS条件考察6-姜酚在大鼠肝微粒中的代谢产物及其代谢途径;通过给予大鼠灌服6-姜酚,考察6-姜酚是否对参与体内药物代谢的主要肝药酶亚型活性有影响。通过上述研究探究6-姜酚在体内的可能代谢途径,肝药酶对其代谢影响以及6-姜酚对CYP450的影响,从而提供6-姜酚代谢实验资料以及与其他药物相互作用的依据,这对临床合理用药具有十分重要的意义,也为6-姜酚的进一步研究及姜的开发利用提供了理论和实验依据。
     方法
     1.采用钙沉淀法制备大鼠肝微粒体,Lowry法和一氧化碳还原光谱示差法分别测其蛋白含量和CYP450酶含量;6-姜酚在总体积为200μL孵育体系中于37℃水浴振荡孵育30mim,反应体系包含NADPH (1mM),肝微粒体蛋白(1mg·mL-1), PBS缓冲液(0.1M, PH=7.4),反应结束后150μL乙腈终止反应,加50μL内标,12000g离心10min,取上清液20μL进样。肝微粒体样品采用KcrosmasiL C18柱(4.6mm×250mm,5μm)色谱柱,以甲醇-水(65:35)为流动相,流速1mL·min-1,检测波长280nm,进样量20μL,进样时间为20min,检测温度为室温进行分析测定。
     2.以孵育时间、大鼠肝微粒体蛋白浓度和底物浓度为考察对象,固定其中两个孵育条件,观察第三条件对6-姜酚代谢率的影响从而优化了孵育条件;考察了辅助因子NADPH和NADH对6-姜酚代谢的影响;用底物消除法计算了6-姜酚在大鼠肝微粒中的酶促动力学参数(最大速率Vmax、米氏常数Km和清除率CLint)。
     3.采用CYP450酶专属性抑制剂:α-萘黄酮(CYP1A)、西米替丁(CYP2C)、奎宁(CYP2D)、噻氯匹定(CYP2B)、4-甲基吡唑(CYP2E)、酮康唑(CYP3A),各抑制剂浓度范围为0-100μmol· L-1,分别加入大鼠肝微粒体中与6-姜酚共同孵育,测定6-姜酚的消除量,以阴性样品中6-姜酚消除量的百分比定量,评价不同抑制剂对6-姜酚代谢的影响。
     4.6-姜酚在大鼠肝微粒体中代谢产物的鉴定采用ACQUITY UPLC BEH C18(2.1×50mm,1.7μm)色谱柱,柱温30℃。以0.1%甲酸水溶液(A)-乙腈(B)梯度洗脱,洗脱程序如下:0~2min,95%A;2~12min;95%~20%A;12~16min;20%~95%A;16~18min;95%A。进样量为20μL,流速为0.2mL·min-1.模式检测为ESI正离子模式,质谱采集范围m/z:100-600。离子源参数:Capillary cone:3000V, Sample cone:30V, Source Temp:100℃,去溶剂化温度:350℃,去溶剂气(N2)体积流量:500L·h-1,雾化气(N2)体积流量:50L·h-1,二级质谱碰撞能量为20V。
     5.利用聚酰胺柱纯化6-姜酚;雄性SD大鼠60只按体重随机分组6组,每组10只。空白组给予蒸馏水,溶媒组给予花生油2mL·100g-1,6-姜酚高、中、低剂量组分别给予花生油助溶的6-姜酚200,100,50mg·kg-1,苯巴比妥钠组给予苯巴比妥钠注射液80mg.kg-‘。空白组、溶媒组以及6-姜酚高、中、低剂量组灌胃给药7天,苯巴比妥钠组腹腔给药5天,给药结束后制备肝微粒体。通过比较实验组与空白组的肝指数、肝微粒体蛋白浓度、CYP450酶含量、CYPb5含量以及红霉素N-脱甲基酶(Erythromycin N-demethylase, ERD)和氨基比林N-脱甲基酶(Aminopyrence N-demethylase,ADM)活性,确定6-姜酚对CYP450酶活性的影响。
     结果
     1.大鼠肝微粒蛋白浓度为20.66mg·mL-1, CYP450含量为0.64nmol·mg-1protein;所建立的HPLC-UV检测方法的回收率为100.6~104.2%,日内和日间精密度RSD为1.6-7.5%,符合生物样品测定要求;6-姜酚在1~100μg.mL-1范围内呈良好的线性关系;6-姜酚在室温以及4℃下放置48h内稳定性符合实验要求。
     2.6-姜酚在大鼠肝微粒体中孵育的最佳时间为10min,肝微粒体蛋白浓度为1.0mg·mL-1,底物浓度为17.0μM; NADPH和NADH合用时与单独使用NADPH相比,对6-姜酚代谢程度没有明显影响,而单独使用NADH作为辅助因子时6-姜酚未有明显代谢;6-姜酚在大鼠肝微粒体中的表观米氏常数Km和Vmax分别为5.64μmol·L-1、3.13nmol·min-1·mg-1, CLint为0.55mL·min-1·mg-1。
     3.α-萘黄酮、噻氯匹定、西米替丁、4-甲基吡唑抑制率小于20%,所以它们无抑制作用;奎宁抑制率为20.2%,为中度抑制作用;酮康唑抑制率为65.7%,故为强抑制剂。这表明在大鼠肝微粒体中参与6-姜酚代谢的CYP450酶亚型主要是CYP3A,其次是CYP2D,而CYP1A、2B、2C、2E作用不明显。
     4.在大鼠肝微粒体孵育液发现了6-姜酚原型药(MO)以及2个可能代谢产物(M1、M2),经分析发现M1、M2分别为6-姜酚脱水生成的6-姜稀酚以及氧化脱氢产生的脱氢姜酮。
     5.通过聚酰胺柱纯化后6-姜酚的纯度大于90%;6-姜酚经口服给药后与空白组比较发现:低、中、高剂量组对肝指数、微粒体蛋白浓度没有影响(P>0.05);能显著降低CYP450酶以及CYPb5含量(P<0.01);低、中、高剂量组均能抑制ADM酶的活性(P<0.01),高剂量组能抑制ERD酶的活性(P<0.01)。
     结论
     1.所建立的6-姜酚在大鼠肝微粒体中的HPLC-UV测定法方便快捷,其检测范围、回收率、精密度和稳定性基本符合生物样品分析的要求,可应用于6-姜酚在大鼠肝微粒中的代谢研究,也为6-姜酚在其他生物基质样品的测定提供了参考依据。
     2.6-姜酚在大鼠肝微粒体中的代谢是依赖NADPH进行的;与传统的产物生成法相比较,在选择合适的底物浓度及数据处理方法下,底物消除法是一种可靠、简便测定肝微粒体酶动力学参数的方法,所得到的酶动力学参数为6-姜酚进一步研究提供了重要参数。
     3. CYP3A是在大鼠肝微粒体中参与6-姜酚代谢的主要CYP450酶亚型,CYP2D次之,CYPIA、CYP2B、CYP2E、CYP2C没有参与其代谢。
     4.6-姜酚在大鼠肝微粒体中可能代谢产物为6-姜稀酚和脱氢姜酮,代谢途径为脱水与氧化脱氢。
     5.6-姜酚高、中、低剂量均能降低CYP450总蛋白和CYPb5含量,表明6-姜酚能抑制CYP450酶活性,对CYP450主要酶亚型影响上,6-姜酚高、中、低剂量能抑制ADM酶的活性;6-姜酚高剂量能抑制ERD酶的活性。这预示着6-姜酚或姜制品在临床上与其他药物特别是经CYP3A与CYP2E1代谢的药物合用时,要注意在长期大剂量使用下,可能影响这些药物的代谢。
Objective
     6-gingerol is the main composition from Ginger's spicy flavor that possesses a wide range of biological activities in gingerols. The current research demonstrates that it has very good effect in antioxidant and anticancer. The prior pharmacokinetic study of6-gingerol in vivo indicate that the absorption of6-gingerol is fast after oral administer to rats, mainly distributed in the gastrointestinal tract tissue and liver, but low blood concentration, its speculate that the first effect after oral administration. Liver is the main place of drug metabolism, though some studies found the metabolites of6-gingerol in rat's urine and feces after oral administration, the condition of6-gingerol after metabolism in liver, the effects on metabolic enzymes in liver and what the effect to enzymes in liver has not been reported.
     In order to study the metabolism and enzyme kinetics of6-gingerol in rat liver microsomal incubation in vitro system, therefore the paper established a rat liver microsomal incubation system in vitro and detection method of HPLC-UV;To investigate the metabolites and their metablic pathways through establishing the LC-MS conditions;To investigate the effect of6-gingerol on the main liver enzymes isoforms that involve in drug metabolism in vivo through administering the6-gingerol to rat by oral administration.The Through the above research explore the possible metabolic pathways of6-gingerol, the effect of liver enzyme on metabolism of6-gingerol and the effect of6-gingerol on cytochrome p450enzyme, the result can provid the experimental data for the metabolism of6-gingerol and the evidence of drug-drug interaction with others, it is very significance in indicating the clinical rational medication, as well as providing the envidece of theory and experiment for the further research of6-gingerol and development and utilization of ginger.
     Method
     1. The rat liver microsomes were prepared by calcium precipitation method and the concentration of the protein and CYP450enzyme determined by the method of Lowry and carbon monoxide reduction of differential spectrum respectively;6-gingerol was incubated in200u L incubation system that contained NADPH (1mM), rat liver microsomes(1mg· mL-1), potassium phosphate buffer(0.1M, PH=7.4)for30min at37℃. Reaction was terminated by adding150μ L acetonitrile, and then add50μL interior label, The tubes were then vortexed and centrifuged at12, OOOXg for10min,200μL of the supernatant was transferred into a1.5ml EP tube and an aliquot (20μ L) was injected into HPLC system for analysis. Chromatography analysis was performed on a C18reversed phase column(4.6mm×250mm,5μm, Kcrosmasil) with a C18security guard column, The mobile phase was mehanol-water (65:35, v/v) at a flow rate of1ml· min-1. The analytes were separated by the analytical column set at room temperature. Detection was set at wavelength of280nm.
     2. Time for microsomal incubation, protein concentration and substrate concentration were used as investigating objects. When one of them was changed after the immobilization of the other, the conditions for microsomal incubation could be optimized by observing the metabolic rate of6-gingerol;NADPH and NADH were used as helper factor to investigate the effect of6-gingerol on metabolism;Substrate deletion approach was used to measure kinetic parameters (Vmax, Km, CLint) for microsomal enzyme.
     3. For studying the inhition of6-gingerol metabolism, a CYP-specific inhibtor was chose to confirm CYP involvement. To determine the CYP isoforms involved, we investigated the inhibitory effects of CYP-selective inhibitors including α-naphthoflavone (CYP1A), Cimetidine (CYP2C), Quinine (CYP2D), Ticlopidine hydrochloride(CYP2B),4-Methylpyrazole(CYP2E), and Ketoconazole (CYP3A) on6-gingerol metabolism in untreated rat liver microsomes, the inhibitor concentration were range was0-100μmol· mL-1,6-gingerol was added and incubated with inhibitors in rat liver microsomes, the ratio of6-gingerol in samples with and without inhibitor was calculated and effect of different inhibitors on the metabolism of6-gingerol was evaluated.
     4. The metabolites of6-gingerol in rat liver mircosomes were indentied by ACQUITY UPLC BEH C18(2.1×50mm,1.7μm), column temperature was set at30℃.The initial mobile phase condition consisted of acetonitrile and water both fortified with0.1%of formic acid and was maintained at a ratio of5:95from0to2min. From2to12min a linear gradient was applied and a ratio of80:20to5:95from12to16min, at last a ratio of5:95from16to18min. The flow rate was fixed at200μ L·min-1,20μ L aliquots were analyzed. The mass spectrometer was operating in full-sacn MS[100-600] with a positive mode. The ESI capillary cone was set to3000V, sample cone was set to30V, source temperature was set to100℃.The nebulization was assisted with nitrogen gas heated to350℃and set to a flow rate of500L· h-1, the second mass spectrometer crash energy was set to20V.
     5.6-gingerol was purify by polyamide column. Male SD rats were divided into six groups by weight randomly, each group has ten rats. Water was administered by orally to blank group, peanut oil was administered by orally to solvent group at doses of2mL·100g-1,6-gingerol was administered by orally to rats at doses of200,100,50mg· kg-1body weight as the high, middle, low dose group respectively, Phenobarbitol sodium injection was injected by intraperitoneally to phenobarbitol sodium group at doses of80mg· kg-1.All of groups were administered by orally for7days except phenobarbitol sodium group for5days.The liver microsomes were prepared after administering ending. Compare to blank group, the liver index, protein concentration, content of CYP450and CYPb5, ERD and ADM enzyme as the observing objects to identify the effect of6-gingerol on the enzymatic activity of CYP450.
     Result
     1.The content of pretein and CYP450in rat liver microsomes were20.66mg· mL-1and0.64nmol· mg-1protein respectively. The recovery of this method was100.6-104.2%, and the precisions of intra-and inter-day were1.6-7.5%, it's accordance with the requirements of the biological drug determination. The calibration curve was linear in the range from1-100μ g· mL-1,6-gingerol were found to be stable in room temperature and in freeze for48h.
     2. Icubation time of10min, protein concentration of1mg· mL-1and substrate concentration of17μ M were found to be optimal for the metabolism of6-gingerol in rat liver mirosomes. There is no effect on the metabolism of6-gingerol when using NADPH with NADH compare to using NADPH separately, but 6-gingerol was not be metabolized when using the NADH separately as the helper factor. The Km, Vmax and CLint for6-gingerol were5.64μ mol· L-1、3.13nmol· min-1· mg-1, CLint为0.55mL· min-1· mg-1respectively in rat liver mirosomes.
     3. The inhitition ratios for α-naphthoflavone, Cimetidine, Ticlopidine hydrochloride,4-Methylpyrazole were all<20%, So they had no inhibitory effects; quinine had a moderate inhibitory effect with an inhibition ratio of20.2%, and ketoconazole had a strong inhibitory effect with an inhibition ratio of65.7%. This suggested that the CYP3A and CYP2D6-selectiove inhibitors contributed to the in vitro metabolism of6-gingerol. CYP2C, CYP2B, and CYP2E inhibitors did not show obvious inhibitory effects on6-gingerol metabolism on6-gingerol in rat liver microsomes.
     4.6-gingerol was metabolized and two metabolites were identified in rat liver mirosomes, which were6-shogaol and dehydro-6-zingerone.
     5. The purify of6-gingerol is more than90%through polyamide column. The6-gingerol have no effects on the contents of rat liver index and microsomal protein in rat treated with6-gingerol (200、100、50mg· kg-1· d-1)(P>0.05) but can remarkable decrease the contents of CYP450and CYPb5respectively (P<0.01); the activity of ADM was inhibited in rat treated with6-gingerol(200、100、50mg· kg-1· d-1)(P<0.05) and the effect of inhibition become stronger with the dose of gingerol. The activity of ERD was inhibited in rat treated with6-gingerol (200mg· kg-1· d-1)(P<0.05).
     Conclusion
     1.The HPLC-UV method was very convenient and efficient for detecting the6-gingerol in rat liver mirosomes, detection range, recovery, precision and stability can satify the requirement of biological sample analysis. The developed method was suitable for the research of6-gingerol in rat liver microsomes, as well as providing the reference for detecting6-gingerol in other organisms matrix.
     2. The metabolism of6-gingerol was dependent on NADPH;Compare to traditional product produce method, if it can choose the suitable substrate concentration and data processing method, the substrate deletion approach was a reliable and convenient method for determining the kinetic parameters, which can provid the important parameters for the futher research of6-gingerol.
     3. CYP3A was the main CYP450isoforms involving in metabolism of6-gingerol in rat liver microsomes, CYP2D was the second charge for the metabolism of6-gingerol, CYP1A, CYP2B, CYP2E, CYP2C were not participate in the metabolism of6-gingerol.
     4. The metabolites of6-gingerol in rat liver mirosomes were6-shogaol and dehydro-6-zingerone possibly, the metablized pathway was dehydration and oxidative dehydrogenation.
     5. The high, middle, low doses of6-gingerol can decrease the contents of CYP450and CYPb5demonstrate that6-gingerol can inhibit the activity of CYP450enzyme, the high, middle,low doses of6-gingerol have the effect of inhibiting to activity of ADM;the high dose of6-gingerol can inhibite the activity of ERD, which predicted that6-gingerol may have the side effect on the drug that metabolize by CYP3A or CYP2E1combined using with6-gingerol or ginger, especially under the long-term and big dose.
引文
[1]李时珍.本草纲目下册(第二版)[M].北京:人民卫生出版社,1985:1621.
    [2]李计萍,王跃生,马华,等.干姜与生姜主要化学成分的比较研究[J].中国中药杂志.2001(11):26-29.
    [3]谭建宁,梁臣艳,黄秋洁,等.广西生姜挥发油化学成分的GC-MS研究[J].中国药房.2012(3):240-243.
    [4]汪晓辉,卫莹芳,李隆云,等.犍为干姜与生姜挥发油成分的比较研究[J].成都中医药大学学报.2006(3):54-55.
    [5]余珍,巫华美,丁靖垲.生姜的挥发性化学成分[J].云南植物研究.1998(1):113-118.
    [6]陈帅华,李晓如,韦超,等.生姜与生姜皮挥发油成分的分析[J].福建分析测试.2011(4):11-16.
    [7]营大礼,干姜化学成分及药理作用研究进展[J].中国药房.2008(18):1435-1436.
    [8]Connell D W, Mclachlan R. Natural pungent compounds:IV. Examination of the gingerols, shogaols, paradols and related compounds by thin-layer and gas chromatography[J]. Journal of Chromatography A. 1972,67(1):29-35.
    [9]蒋苏贞,宓穗卿,王宁生.姜辣素的化学成分研究概述[J].中药新药与临床药理.2006(5):386-389.
    [10]李霞,杜爱玲,王艳,等.姜油树脂中主要活性成分的GC/MS'险测条件研究[J].中国调味品.2012(10):88-92.
    [11]朱媛,张雪松.乙醇溶剂提取姜辣素的实验研究[J].中国调味品.2008(4):83-85.
    [12]唐仕荣,宋慧,苗敬芝,等.超声波技术提取姜辣素的工艺研究[J].中国调味品.2009(1):46-49.
    [13]刘成梅,刘伟,李明,等.微波辅助萃取生姜中姜辣素的研究[J].食品科技.2006(2):52-54.
    [14]汤秀华,周郑虹.微波辅助萃取法从生姜中提取姜辣素的工艺[J].食品研究与开发.2012(8):88-91.
    [15]曾凡逵,黄雪松,李爱军.超临界二氧化碳萃取姜油树脂与溶剂浸提的比较[J].食品科学.2006(6):155-157.
    [16]刘伟,刘成梅,李明,等.大孔吸附树脂纯化姜辣素研究[J].食品科学.2005(9):208-210.
    [17]罗京超,冯毅凡,吉星.天然线性二苯基庚烷类化合物的研究进展[J].中草药.2008(12):1912-1917.
    [18]卢仁福,贾科,侯朋远,等.生姜醇提取物抗心肌缺血再灌注损伤的作用研究[J].中国药房.2010(11).
    [19]马利华,秦卫东.生姜多糖抗氧化性及其组分的研究[J].中国食品添加剂.2010(3):113-118.
    [20]曹亚军,马建慧,陈虹,等.生姜醇提取物对亚急性衰老小鼠抗脂质过氧化作用的研究[J].现代预防医学.2007(12):2253-2254.
    [21]宋学英,王桥,朱莹,等.生姜对急性缺氧小鼠的保护作用[J].首都医科大学学报.2004(4):438-440.
    [22]Ahmed R S, Seth V, Banerjee B D. Influence of dietary ginger (Zingiber officinales Rose) on antioxidant defense system in rat:comparison with ascorbic acid[J]. Indian J Exp Biol.2000,38(6):604-606.
    [23]Fuhrman B, Rosenblat M, Hayek T, et al. Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice[J]. J Nutr.2000,130(5):1124-1131.
    [24]张然,李平华.生姜提取物对大鼠视网膜缺血-再灌注损伤的保护作用研究[J].中国药房.2010(3).
    [25]王庆忠.生姜醇提取物诱导TM4细胞凋亡的研究[J].潍坊学院学报.2012(4):60-63.
    [26]刘辉,袁健,李勇,等.生姜醇提物诱导荷瘤鼠HepA细胞凋亡的研究[J].广东医学.2011(8).
    [27]武彩霞,徐丽洒,魏欣冰,等.生姜有效部位对实验性高脂血症大鼠血清血栓素A2、前列环素和脂质过氧化的影响[J].中国药学杂志.2006(14):1066-1068.
    [28]武彩霞,魏欣冰,丁华.生姜有效部位的调血脂作用研究[J].齐鲁药事.2005(3):174-176.
    [29]Kobayashi M, Ishida Y, Shoji N, et al. Cardiotonic action of [8]-gingerol, an activator of the Ca++-pumping adenosine triphosphatase of sarcoplasmic reticulum, in guinea pig atrial muscle[J]. J Pharmacol Exp Ther.1988,246(2):667-673.
    [30]Ohizumi Y, Sasaki S, Kusumi T, et al. Ptilomycalin A, a novel Na+, K(+)-or Ca2(+)-ATPase inhibitor, competitively interacts with ATP at its binding site[J]. Eur J Pharmacol.1996,310(1):95-98.
    [31]Suekawa M, Aburada M, Hosoya E. Pharmacological studies on ginger. Ⅱ. Pressor action of (6)-shogaol in anesthetized rats, or hindquarters, tail and mesenteric vascular beds of rats[J]. J Pharmacobiodyn.1986, 9(10):842-852.
    [32]Koo K L, Ammit A J, Tran V H, et al. Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation [J]. Thromb Res.2001,103(5):387-397.
    [33]刘端,闫金萍.生姜提取物的体外抑菌效果研究[J].微量元素与健康研究.2010(2):33-34.
    [34]严赞开.生姜提取物的抑菌试验[J].中国食品添加剂.2005(1):74-76.
    [35]付爱华,尹建元,孙莹,等.黄精和生姜抗皮肤癣菌活性研究[J].白求恩医科大学学报.2001(4):384-385.
    [36]Dugasani S, Pichika M R, Nadarajah V D, et al. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol[J]. Journal of Ethnopharmacology.2010,127(2): 515-520.
    [37]Penna S C, Medeiros M V, Aimbire F S, et al. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema[J]. Phytomedicine.2003,10(5):381-385.
    [38]姜正林,周维镕,邵荣世,等.生姜合剂对运动病大鼠血液胃泌素和胃动素水平的影响[J].中华航海医学与高气压医学杂志.2001(4):4-5.
    [39]姜正林,沈洪妹,杨凯,等.生姜与抗胆碱药的抗大鼠模拟运动病作用的比较观察[J].中华航海医学杂志.1999(1):20-22.
    [40]Akhani S P, Vishwakarma S L, Goyal R K. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats[J]. J Pharm Pharmacol.2004,56(1):101-105.
    [41]Haksar A, Sharma A, Chawla R, et al. Zingiber officinale exhibits behavioral radioprotection against radiation-induced CTA in a gender-specific manner[J]. Pharmacology Biochemistry and Behavior.2006, 84(2):179-188.
    [42]张来银.生姜的丙酮提取物对大鼠异嗜高岭土模型的止呕作用[J].中国医药指南.2008(9).
    [43]郑伟然,陶永华,苗宏伟,等.炮姜超临界CO2萃取6-姜酚的工艺研究[J].中草药.2011(10):2023-2025.
    [44]曾凡逵,黄雪松,李爱军.超临界二氧化碳萃取姜油树脂与溶剂浸提的比较[J].食品科学.2006(6):155-157.
    [45]韩菊,魏福祥,王改珍,等.生姜中姜酚的提取及其鉴定[J].食品工业科技.2004(3):64-65.
    [46]许玲玲,李群力,麻佳蕾.微波萃取法萃取鲜姜有效成分6-姜酚的工艺研究[J].现代食品科技.2009(6):620-621.
    [47]唐仕荣,宋慧,苗敬芝,等.超声波技术提取姜辣素的工艺研究[J].中国调味品.2009(1):46-49.
    [48]陈艳,何苒,曾明,等.正交设计优化超临界CO2萃取姜油工艺[J].中国药师.2009(9):1196-1197.
    [49]刘婷婷,唐延林,张永萍.正交设计优选生姜中6-姜酚提取工艺[J].光谱实验室.2010(4):1325-1328.
    [50]杨小敏,刘建平,李倩倩,等.响应面法优化超声辅助提取姜辣素的工艺[J].江西农业大学学报. 2011(5):1012-1016.
    [51]骆海林,陆宁.响应面法优化生姜中姜辣素的超声波提取工艺[J].包装与食品机械.2009(6):54-57.
    [52]黄雪松,王建华,路福绥.姜酚的提取、分离和鉴定[J].山东农业大学学报.1998(4):95-98.
    [53]柳乃奎,黄雪松.聚酰胺柱层析分离姜酚类物质的效果[J].食品工业科技.2005(1):99-102.
    [54]蒋苏贞,王宁生.姜酚的提取分离及[6]-姜酚含量测定[J].中药新药与临床药理.2007(3):222-224.
    [55]黄雪松,张宁.结晶姜酚的制取与鉴定[J].食品与发酵工业.2005(10):48-50.
    [56]李群力,许玲玲,麻佳蕾,等.D-101型大孔吸附树脂纯化生姜中6-姜酚的研究[J].中草药.2009(11):1749-1752.
    [57]Hiroe K. Gingerol related compounds from the rhizomes of Zingiber officinale[J]. Phytochemistry. 1992,43(1):1786-1793.
    [58]Hiroe K. Cyclic diaryl heptanoids from rhizomes of Zingiber officinale[J]. Phytochemistry.1996,43(1): 273-277.
    [59]Hisrodt R D, Fransblau S G, Rosen R T. Isolation of 6-,8-,10-gingerol from Ginger Rhizone by HPLC and prelminary investigation of inhibition of mycobacterium avium and mycobacterium tuberculosis[J]. Agric Food Chem.1998,46:2504-2508.
    [60]张雪红,李华昌.高效液相色谱法分离生姜中的6-姜酚[J].化工技术与开发.2004(2):36-37.
    [61]向云峰,杨佳祝,李光辉,等.生姜油树脂微胶囊生产工艺的研究[J].中国调味品.1996(9):15-20.
    [62]李安林.光度法测定姜香调味汕中姜辣素的含量[J].中国调味品.1995(11):30-32.
    [63]杨春海,易扬慧,余爱农.溶出伏安法测定姜中姜辣素含量的研究[J].食品科学.2003(2):110-112.
    [64]袁干军,董伍爱,文昌湖.薄层扫描法测定干姜中6-姜醇[J].中草药.2004(10):113-114.
    [65]Chen C C. Gas chromatographic analysis of the thermal degredation products of gingerol compounds in steam-distilled oil from ginger(Zingiber officinale Roscoe.)[J]. Chromatogr.1987,38(7):499-504.
    [66]Harvey D J. GC and MS studies of ginger constituents identification of gingerols and new hexahydrocurcum in analogues[J]. Chromatogr.1981,21(2):75-88.
    [67]林先哲,郭墨婷,吴珍菊,等HPLC内标法同时测定十三香中胡椒碱和6-姜酚的含量[J].食品工业科技.2011(12):452-454.
    [68]傅秀娟,王芳,刘艳HPLC法测定正柴胡饮胶囊中6-姜辣素的含量[J].泸州医学院学报.2011(1):33-35.
    [69]罗少华,邵伟,龚大春RP-HPLC测定干姜中6-姜酚的含量[J].农产品加工(学刊).2011(12):79-81.
    [70]蒋苏贞,宓穗卿,王宁生HPLC-UV法测定大鼠血中[6]-姜酚的浓度[J].中药新药与临床药理.2010(2).
    [71]薛文静,张燕,杨龙华,等UPLC-MS/MS测定姜辣素中的6-姜酚[J].中国卫生检验杂志.2010(9):2178-2181.
    [72]王维皓,王智民,徐丽珍,等HPLC法测定生姜中有效成分6-姜辣素的含量[J].中国中药杂志.2002(5):31-32.
    [73]孙承铭,谢岱希,郑文华.6-姜酚对脑缺血损伤模型小鼠的保护作用[J].山东医药.2011(52).
    [74]夏斌,蔡飞,李彩蓉,等.6-姜酚对大鼠局灶性脑缺血的保护作用[J].咸宁学院学报(医学版).2006(4):279-281.
    [75]任贤俊,蔡匕,夏斌,等.6-姜酚对脑缺血再灌注后SGK1和FAS表达的影响[J].咸宁学院学报(医学版).2009(6):461-463.
    [76]姜泉,夏斌.6-姜酚对大鼠脑缺血再灌注炎性细胞因子的影响[J].咸宁学院学报(医学版).2007(4):281-283.
    [77]Tzeng T F, Liu I M.6-Gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells[J]. Phytomedicine.2013.
    [78]Chakraborty D, Mukherjee A, Sikdar S, et al. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice[J]. Toxicol Lett.2012,210(1):34-43.
    [79]张建新,李兰芳.生姜的药理作用[J].河北医药.1993(6):374-376.
    [80]Sabina E P, Pragasam S J, Kumar S, et al.6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice[J]. Zhong Xi Yi Jie He Xue Bao.2011,9(11):1264-1269.
    [81]Yang Y, Kinoshita K, Koyama K, et al. Structure-antiemetic-activity of some diarylheptanoids and their analogues[J]. Phytomedicine.2002,9(2):146-152.
    [82]Young H Y, Luo Y L, Cheng H Y, et al. Analgesic and anti-inflammatory activities of [6]-gingerol[J]. J Ethnopharmacol.2005,96(1-2):207-210.
    [83]Yon J M, Baek I J, Lee S R, et al. Protective effect of [6]-gingerol on the ethanol-induced teratogenesis of cultured mouse embryos[J]. Arch Pharm Res.2012,35(1):171-178.
    [84]Park K K, Chun K S, Lee J M, et al. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice[J]. Cancer Lett.1998,129(2):139-144.
    [85]Lin C B, Lin C C, Tsay G J.6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest[J]. Evid Based Complement Alternat Med.2012,2012:326096.
    [86]Ju S A, Park S M, Lee Y S, et al. Administration of 6-gingerol greatly enhances the number of tumor-infiltrating lymphocytes in murine tumors[J]. Int J Cancer.2012,130(11):2618-2628.
    [87]Manjree M, Suresh W, Swaram D. Insect growth inhition antifeedant and antifungal activity of compounds isolated derived from Zingiber officinal Roscoe rhizomes[J]. Pest Manag Sci.2001(57):289-300.
    [88]Ding G H, Naora K, Hayashibara M, et al. Pharmacokinetics of [6]-gingerol after intravenous administration in rats[J]. Chem Pharm Bull (Tokyo).1991,39(6):1612-1614.
    [89]Kim M G, Shin B S, Choi Y, et al. Determination and pharmacokinetics of [6]-gingerol in mouse plasma by liquid chromatography-tandem mass spectrometry[J]. Biomed Chromatogr.2012,26(5):660-665.
    [90]Naora K, Ding G, Hayashibara M, et al. Pharmacokinetics of [6]-gingerol after intravenous administration in rats with acute renal or hepatic failure[J]. Chem Pharm Bull (Tokyo).1992,40(5): 1295-1298.
    [91]Nakazawa T, Ohsawa K. Metabolism of [6]-gingerol in rats[J]. Life Sci.2002,70(18):2165-2175.
    [92]Gauthier M L, Douat J, Vachon P, et al. Characterization of [6]-gingerol metabolism in rat by liquid chromatography electrospray tandem mass spectrometry[J]. Biomed Chromatogr.2011,25(10):1150-1158.
    [93]王广基,刘晓东,柳晓泉.药物代谢动力学[M].北京:北京工业出版社,2001.
    [94]Naiman K, Martinkova M, Schmeiser H H, et al. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity[J]. Mutat Res.2011,726(2):160-168.
    [95]Ruan H, Zhang Z, Liang X F, et al. Metabolism of dl-praeruptorin A in rat liver microsomes using HPLC-electrospray ionization tandem mass spectrometry[J]. Arch Pharm Res.2011,34(8):1311-1321.
    [96]张渝娟,全钰珠,黄婉芸.吡喹酮在诱导和未诱导大鼠肝微粒体内的羟化代谢概貌及其羟化物的质谱鉴定[J].中国药理学与毒理学杂志.1996,10(1):56-61.
    [97]单文雅,张玉峰,朱捷强,等.黄芪甲苷对大鼠肝微粒体酶活性影响[J].中国中药杂志.2012(1):85-88.
    [98]姚庆强,王琰,杨树民,等.大鼠肝微粒体温孵体系中(+),(-)-黄皮酰胺及其代谢产物的LC-MS分析[J].药物分析杂志.2000,20(1):3-7.
    [99]王汝涛,周四元,梅其炳,等.染料木黄酮在大鼠肝微粒体代谢的酶动力学[J].中国临床药理学与治疗学.2005(3):294-297.
    [100]姜敏,梁先明,熊玉卿.甲基莲心碱在大鼠肝微粒体CYP450系统中的代谢特征[J].中国药理学通报.2006,22(6):739-743.
    [101]Luo J P, Vashishtha S C, Hawes E M, et al. In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine[J]. Biophann Drug Dispos.2011,32(7):398-407.
    [102]Narimatsu S, Nakanishi R, Hanioka N, et al. Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes:focusing on CYP2A6[J]. Chem Biol Interact.2011, 194(2-3):120-126.
    [103]Anne D, Delphine B, Odile T. In vitro oxidative metabolism study of (-)-rhazinilam[J]. Biol Med Chem. 2006,14(10):1558-1564.
    [104]廖正根,万彦婷,梁新丽,等.延胡索与白芷组分配伍对延胡索乙素在大鼠肝微粒体中酶促反应动力学的影响[J].中草药.2011(9):1783-1787.
    [105]栾连军,邵青,张晓红,等.苯巴比妥诱导对普荼洛尔对映体葡醛酸化立体选择性的影响[J].浙江大学学报(医学版).2004(3).
    [106]裘雅渔,姚彤炜HPLC-ELSD在肌微粒体中银杏萜内酯的测定及其代谢研究中的应用[J].中国药学杂志.2005(22).
    [107]Sabine J, Guido S, Herbert K. Glucuronidation of aliphatic alcohols in human liver microsomes in vitro[J]. Alcohol.2004,32(1):187-194.
    [108]Rangaraj N, Barbara L, David A W. Glucuronidation of haloperidol by rat liver microsomes: involvement of family 2 UDP-glucuronosyltransferases[J]. Life Sci.2004,74(10):2527-2539.
    [109]罗丹,刘华钢.原代肝细胞的分离培养及其在药物研发中的应用[J].广西科学.2006(1).
    [110]Born S L, Hu J K, Lehman-Mckeeman L D. o-hydroxyphenylacetaldehyde is a hepatotoxic metabolite of coumarin[J]. Drug Metab Dispos.2000,28(2):218-223.
    [111]Shibata Y, Takahashi H, Ishii Y. A convenient in vitro screening method for predicting in vivo drug metabolic clearance using isolated hepatocytes suspended in serum[J]. Drug Metab Dispos.2000,28(12): 1518-1523.
    [112]曹国颖,武秀忠,胡欣,等.那格列奈在大鼠游离肝细胞中的代谢特点[J].中国新药杂志.2004(4).
    [113]陈聪颖,周金娥,严国锋,等.槐苷在大鼠肝匀浆中的代谢[J].上海第二医科大学学报.2005(5).
    [114]李文兰,杨玉楠,季宇彬,等.邻苯二甲酸丁基苄酯在鼠肝匀浆中的生物降解及代谢产物鉴定[J].环境科学学报.2004,124(03):498-503.
    [115]陈怀侠,陈勇.山莨菪碱大鼠肝匀浆代谢物的液相色谱-串联质谱法分析[J].湖北大学学报(自然科学版).2006(3):296-298.
    [116]吕承,吴伟.灯盏乙素的体外降解动力学[J].复旦学报(医学版).2006(4):522-525.
    [117]Nelson D R, Koymans L, Kamataki T, et al. P450 superfamily:update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics.1996,6(1):1-42.
    [118]Wrighton S A, Vandenbranden M, Ring B J. The human drug metabolizing cytochromes P450[J]. J Pharmacokinet Biopharm.1996,24(5):461-473.
    [119]邱星辉,冷欣夫.细胞色素P450的多样性[J].生命的化学(中国生物化学会通讯).1997(6):15-18.
    [120]许振华,周宏灏.细胞色素氧化酶P4501A2与药物代谢[J].中国临床药理学杂志.1996(2):115-121.
    [121]Maenpaa J, Rane A, Raunio H, et al. Cytochrome P450 isoforms in human fetal tissues related to phenobarbital-inducible forms in the mouse[J]. Biochem Pharmacol.1993,45(4):899-907.
    [122]Marre F, Sanderink G J, de Sousa G, et al. Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans[J]. Cancer Res.1996,56(6):1296-1302.
    [123]雷霆雯,李红梅,许庆忠,等.大青叶对CYP1A1酶活性及转录水平影响[J].中国公共卫生.2006(10):1241-1242.
    [124]Medina-Diaz I M, Estrada-Muniz E, Reyes-Hernandez O D, et al. Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice[J]. Toxicol Appl Pharmacol.2009,239(2):162-168.
    [125]Zimmennann C, van Waterschoot R A, Harmsen S, et al. PXR-mediated induction of human CYP3A4 and mouse Cyp3a11 by the glucocorticoid budesonide[J]. Eur J Pharm Sci.2009,36(4-5):565-571.
    [126]Cooper B W, Cho T M, Thompson P M, et al. Phthalate induction of CYP3A4 is dependent on glucocorticoid regulation of PXR expression[J]. Toxicol Sci.2008,103(2):268-277.
    [127]曹亚杰,曹伟,余奇,等.吴茱萸次碱在人肝微粒体中对细胞色素P450酶的抑制作用[J].中南药学.2005(4):243-245.
    [128]Cinti D L, Moldeus P, Schenkman J B. Kinetic parameters of drug-metabolizing enzymes in Ca 2+-sedimented microsomes from rat liver[J]. Biochem Pharmacol.1972,21(24):3249-3256.
    [129]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. J Biol Chem.1951,193(1):265-275.
    [130]徐叔云,卞如濂,修陈,等.药理实验方法学[M].2版.北京:人民卫生出版社,1994:167-168.
    [131]肖功华.用钙沉淀法制备微粒体[J].国外医学(卫生学分册).1981(5):273-275.
    [132]陈燕,蔡同一,付力,等.用改进的高效液相色谱法(HPLC)测定姜中姜辣素[J].食品科学.2001,22(4):60-63.
    [133]Nath A, Atkins W M. A theoretical validation of the substrate depletion approach to determining kinetic parameters[J]. Drug Metab Dispos.2006,34(9):1433-1435.
    [134]Krippendorff B F, Lienau P, Reichel A, et al. Optimizing classification of drug-drug interaction potential for CYP450 isoenzyme inhibition assays in early drug discovery[J]. J Biomol Screen.2007,12(1): 92-99.
    [135]Xia Z L, Ying J Y, Sheng R, et al. In vitro metabolism of BYZX in human liver microsomes and the structural elucidation of metabolite by liquid chromatography-mass spectrometry method[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2007,857(2):266-274.
    [136]Kocarek T A, Schuetz E G, Strom S C, et al. Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes[J]. Drug Metab Dispos.1995,23(3):415-421.
    [137]Walsky R L, Obach R S. A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1',1"-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inactivators of human cytochrome P450 2B6[J]. Drug Metab Dispos.2007,35(11):2053-2059.
    [138]Szakacs T, Veres Z, Vereczkey L. Effect of phenobarbital and spironolactone treatment on the oxidative metabolism of antipyrine by rat liver microsomes[J]. Pol J Pharmacol.2001,53(1):11-19.
    [139]Shimizu M, Matsushita R, Matsumoto Y, et al.4'-hydroxylation of flurbiprofen by rat liver microsomes in fasting and feeding conditions[J]. Biol Pharm Bull.2003,26(10):1448-1454.
    [140]Szotakova B, Skalova L, Baliharova V, et al. Characterization of enzymes responsible for biotransformation of the new antileukotrienic drug quinlukast in rat liver microsomes and in primary cultures of rathepatocytes[J]. J Pharm Pharmacol.2004,56(2):205-212.
    [141]Paul L D, Springer D, Staack R F, et al. Cytochrome P450 isoenzymes involved in rat liver microsomal metabolism of californine and protopine[J]. Eur J Pharmacol.2004,485(1-3):69-79.
    [142]朱大岭,韩维娜,张荣.细胞色素P450酶系在药物代谢中的作用[J].医药导报.2004(7):440-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700