用户名: 密码: 验证码:
全氟化合物PFOA、PFOS内分泌干扰效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全氟化合物(PFCs)是一类具有重要应用价值的有机化合物,因其具有优良的稳定性、表面活性、疏水疏脂等特性,被广泛应用于工业和民用领域。PFCs广泛分布在各种环境介质和生物体内,且具有难降解性和生物蓄积性,是一种新型持久性有机污染物(POPs)。近年来,PFCs对生态环境和人体健康带来的不利影响受到全球的普遍关注,成为环境科学和毒理学领域的研究热点。
     研究表明,PFCs能造成机体的内分泌系统发生紊乱,已成为环境内分泌干扰效应物(EDCs)筛检的重点。全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)是两种典型的PFCs,目前尚没有对其内分泌干扰活性的完整研究。国际上EDCs筛选程序中推荐采用体内(in vivo)和体外(in vitro)试验的组合测试法。本项目采用代表性PFCs(PFOA、PFOS)作为研究对象,通过体外成组方法筛选受试物的拟/抗雌激素受体(ER)、雄激素受体(AR)、甲状腺激素受体(TR)活性、过氧化物酶体增殖剂激活受体(PPAR)活性及对类固醇激素合成的影响,利用模式生物斑马鱼、SD大鼠,在体内水平研究PFOA、PFOS对机体内分泌系统的影响及作用机制,综合评价PFCs的内分泌干扰效应。
     第一部分
     体外试验筛选PFOA、PFOS的内分泌干扰活性
     第一节PFOA、PFOS对激素受体的干扰活性
     目的
     环境化合物可以通过受体介导途径发挥内分泌干扰效应,采用受体介导的报告基因试验体系,检测和评价PFOA、PFOS对雌激素受体(ER)、雄激素受体(AR)、甲状腺激素受体(TR)、过氧化物酶体增殖剂激活受体(PPAR)激动或拮抗作用。
     方法
     通过瞬时转染,将激素受体(ER、TR、PPAR)表达质粒、含有相应激素反应元件的荧光素酶(Luc)报告基因质粒,转染到激素受体阴性的CV-1细胞中,建立ER、TR、PPAR介导的报告基因试验方法,用来检测PFOA、PFOS的拟/抗雌激素、甲状腺激素、过氧化物酶体增殖剂激活受体活性;利用稳定转染雄激素反应原件报告基因的MDA-Kb2细胞来检测PFOA、PFOS的拟/抗雄激素活性。
     结果
     在ER介导的报告基因试验中,FPOA、PFOS单独作用,不能显著诱导报告基因Luc的表达;与1×10-9M E2共同作用,在受试浓度3×10-9-3×10-7M内可协同E2增强报告基因Luc的表达。在AR介导的报告基因试验中,未发现PFOA、PFOS对Luc有明显的诱导和抑制作用。在TR介导的报告基因试验中,PFOA(1×10-8-3×10-7M)、PFOS(1×10-7M、3×10-7M)能抑制5×10-9M T3诱导的Luc表达量。在PPAR介导的报告基因试验中,PFOA、PFOS在受试范围内表现出PPAR激动作用。
     结论
     PFOA、PFOS具有雌激素协同活性、抗甲状腺激素活性、PPAR激动活性。
     第二节PFOA、PFOS对类固醇激素合成的影响
     目的
     环境化合物可以通过非受体介导途径来发挥内分泌干扰效应,通过研究PFOA、PFOS对类固醇激素合成过程的影响,来评价它们的类固醇激素合成干扰效应。
     方法
     采用人肾上腺皮质瘤细胞H295R,检测PFOA、PFOS作用后对H295R细胞中类固醇激素(雌二醇和睾酮,即E2和T)水平、类固醇激素合成过程中关键酶基因及关键调控因子(SF-1)表达的影响。
     结果
     PFOA在1×10-8M及更高浓度时,增加细胞内E2的水平,在3×10-8M及以上,抑制T的水平。PFOS在3×10-8M及以上,增加E2的表达,在1×10-7M和3×10-7M浓度时,降低T的表达。PFOA、PFOS可以不同程度的改变类固醇合成过程中关键酶基因的表达。在10种与类固醇激素合成相关的基因中,PFOA作用后显著上调17βHSD1、3βHSD2、CYP11B2、CYP19的表达,下调CYP17、17βHSD4、CYP11A的表达。PFOS暴露后显著上调HMGR、StAR、CYP11A、CYP19、3βHSD2、CYP11B2的表达,下调CYP17、17βHSD1、CYP21的表达。PFOA暴露还可导致类固醇合成关键调控因子SF-1的基因和蛋白表达水平降低。
     结论
     PFOA、PFOS可以影响H295R细胞中类固醇激素的合成过程,具有类固醇激素合成干扰效应。
     第二部分
     体内试验研究PFOA、PFOS的内分泌干扰效应
     第一节PFOA、PFOS对斑马鱼胚胎发育的影响
     目的
     利用模式生物斑马鱼,研究PFOA、PFOS短期暴露对斑马鱼胚胎发育、内分泌相关基因以及整体基因表达的影响。
     方法
     受精后4h(4hpf)的斑马鱼胚胎,用100、200、500μg/L的PFOA、PFOS染毒至120hpf。观察斑马鱼胚胎/幼鱼的生长状况,包括胚胎死亡、孵化、生长发育、有无胚胎发育畸形等情况。检测120hpf的斑马鱼幼鱼体内内分泌相关基因(包括雌激素受体表达基因esr1、esr2b,甲状腺早期分化关键基因hhex、pax8,类固醇激素合成基因cyp19a、cyp19b、cyp17)的表达情况。在此基础上,进行单一浓度多暴露终点的斑马鱼胚胎暴露试验。选择500μg/L的PFOA、PFOS在斑马鱼4hpf-120hpf期间染毒,染毒至12hpf、24hpf、48hpf、72hpf、96hpf、120hpf,观察各时间点的胚胎发育情况,选取暴露至120hpf的斑马鱼幼鱼,利用斑马鱼表达谱芯片检测整体基因的表达情况,分析筛选出关键差异表达基因。
     结果
     在4hpf-120hpf染毒期间,受试浓度下的PFOA、PFOS对斑马鱼胚胎/幼鱼的生长发育没有产生明显影响,但可引起斑马鱼幼鱼内分泌相关基因的表达发生改变。与对照组相比,500μg/L的PFOA引起esr1基因水平的上调,对esr2b的表达无影响;200μg/L、500μg/L的PFOA能显著增加hhex、pax8的表达量;PFOA对类固醇合成酶相关基因的影响不大。在最高浓度下,PFOS暴露使esr1的表达量增加、esr2b的表达量降低;PFOS浓度依赖性的增加hhex和pax8的表达;200μg/L、500μg/L的PFOS暴露能显著抑制cyp19a、cyp19b、cyp17的表达。120hpf的斑马鱼表达谱芯片结果提示,多个通路上的多种基因在PFOS暴露后发生改变,差异表达基因主要参与到细胞过程、代谢过程、生物调控、发育等生物学过程。
     结论
     PFOA、PFOS暴露可对斑马鱼的基因表达产生影响,发挥潜在的干扰效应。
     第二节PFOA、PFOS对大鼠青春期发育的影响
     目的
     环境化合物暴露与青春期启动时间的异常密切相关。流行病学研究发现PFOA、PFOS的暴露和青春期启动的改变有关,但对其干扰青春期发育的相关机制一直未得到阐明。我们采用雌性大鼠模型,研究PFOA、PFOS在关键时间段暴露对雌性青春期启动和发育的影响,并探究其相关机制。
     方法
     采用SD雌性大鼠,在新生期(出生后1-5天,PND1-5)和青春前期(出生后26-30天,PND26-30)两个暴露阶段分别进行不同剂量的PFOA、PFOS(0.1mg/kg、1mg/kg、10mg/kg)染毒。测定大鼠出生时、PND15、PND25、PND35、阴道开口日的体重和肛门-生殖器距离(AGD),记录雌鼠进入青春期的年龄(阴道开口时间)、首次发情期时间、雌性周期,检测血清雌激素和促黄体生成素(LH)的水平,计算卵巢系数,进行卵巢组织病理分析和卵泡计数。采用Q-RT-PCR分析下丘脑Kisspeptin/GPR54系统中Kiss1、Kiss1r、ERα、ERβ基因表达的变化,采用免疫组织化学方法检测kisspeptin蛋白表达水平,以探讨该系统在PFOA、PFOS所致的青春期启动时间改变中发挥的作用。选择染毒雌鼠的肝脏组织,测定肝脏系数,进行肝脏功能相关血生化指标的检测,采用GC-MS进行血清脂肪酸组、肝脏代谢组测定,以探讨PFOA、PFOS在发育关键期短期暴露对肝脏功能的影响。
     结果
     新生期、青春前期10mg/kg PFOA、1mg/kg和10mg/kg PFOS短期暴露,可引起雌鼠阴道开口时间比对照组早4-5天,提前进入青春期。新生期PFOA、PFOS暴露后,以非剂量依赖性的方式增加雌鼠体重和AGD;青春前期暴露也可增加雌鼠PND35的体重。在两个暴露阶段处理后,低、中剂量的PFOA、PFOS染毒组大鼠都能出现不规律的雌性周期,表现为延长的静止期或发情后期。PND1-5和PND26-30暴露于PFOA、PFOS的雌鼠血清雌激素和LH水平上升,新生期对激素的影响强于青春前期。化合物染毒未引起卵巢组织结构发生明显改变,但可影响卵泡数量,在新生期低剂量的PFOA、PFOS组大鼠可见生长卵泡数量减少。下丘脑前腹侧室周核(AVPV)和弓状核(ARC)区域Kiss1、Kiss1r、ERα的基因水平下降,免疫组化结果显示kisspeptin纤维密度在PFOA、PFOS的高剂量暴露组受到抑制,与基因表达的结果趋势大体相同。对于大鼠肝脏,高剂量组的PFOA、PFOS可以增加肝脏重量。GC-MS分析结果显示,血清中多种脂肪酸的含量发生改变,肝脏代谢小分子分析显示,PFOA、PFOS导致的差异表达物质主要集中在代谢通路、半乳糖代谢通路、脂肪酸合成通路等。
     结论
     新生期、青春前期短期暴露于环境剂量下的PFOA、PFOS能够影响下丘脑-垂体-性腺(HPG)轴的调控,导致雌性青春期启动的提前,其中kisspeptin/GPR54系统在其中起了关键作用。新生期暴露于PFOA、PFOS也可影响体内脂肪酸代
Perfluorinated compounds (PFCs) are synthetic fully fluorinated organiccompounds that have been widely used as surfactants in industrial and commercialapplications. They are stable chemicals that is both lipid-and water-repellent.Moreover, PFCs have been listed as persistent organic pollutants (POPs). Thewidespread distribution and persistence of PFCs in humans and the environment havegenerated great concern about potential health impacts.
     There is growing evidence that PFCs may disrupt the endocrine system.Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) are therepresentative and commonly used PFCs. Further characterization of theendocrine-disrupting effects of PFOA and PFOS is required for assessing potentialhealth risks. Methods developed by U.S.EPA involve a battery of in vitro and in vivoscreening assays to identify substances that interact with endocrine systems. Toinvestigate the endocrine disruption potencies of PFOA and PFOS, a combination of in vitro and in vivo assays was employed in the present study. Reporter gene assayswere used to detect receptor mediated (anti-)estrogenic,(anti-)androgenic,(anti-)thyroid hormone activities and PPAR activation of PFOA/PFOS. Thesteroidogenic effects of PFOA/PFOS were measured at both the hormone and genelevels in the human adrenocortical carcinoma cell line H295R. Additionally, azebrafish-based short-term screening method and female pubertal rat assay weredeveloped to detect the potential effect of PFOA/PFOS on endocrine function in vivo.Our research focused on a detailed characterization of PFOA/PFOS in an attempt todetermine the endocrine-disrupting effects of these chemicals.
     Part I Assessing the endocrine-disrupting effects of PFOAand PFOS by in vitro assays
     Chapter I Assessing hormone receptor activities of PFOAand PFOS in reporter gene assays
     Objective
     The major way by which endocrine disrupting chemicals (EDCs) disrupt thephysiological process is through interaction with nuclear hormone receptors. Reportergene assay has been established as a powerful tool for testing receptor agonists andantagonists among chemicals. Hormone receptor mediated reporter gene assays wereused to detect (anti-)estrogenic (anti-)androgenic,(anti-)thyroid hormone activitiesand PPAR activation of PFOA and PFOS.
     Methods
     In ER mediated reporter gene assay, CV-1cell line was transfected with ER expression vector rER/pCI and the reporter plasmid pERE-TATA-Luc+. In TR mediated reporter gene assay, CV-1cell line was transfected with TR expressionvector pGal4-L-TR and the reporter plasmid pUAS-tk-luc. In PPAR mediatedreporter gene assay, CV-1cell line was transfected with PPAR expression vectorPG-PPAR and the reporter plasmid PBR-PPRE. Cells were treated with PFOA orPFOS alone to investigate the agonistic activities of these chemicals. For antagonisticactivity tests, cells were treated with PFOA/PFOS with E2/T3. MDA-kb2cell linehad been stably transfected with the pMMTV.neo.luc reporter gene plasmid. Theywere treated with various concentrations of tested chemicals with or without DHT toinvestigate the agonistic and antagonistic activities.
     Results
     PFOA and PFOS acted alone had no effect on reporter gene expression ascompared with vehicle control. PFOA and PFOS co-treatment with1×10-9M E2could increase the luciferase expression at the tested concentrations (3×10-9-3×10-7M). None of the tested groups showed androgenic and antiandrogenic activities in ARreporter gene assay. PFOA and PFOS did not have TR agonistic activity in TRreporter gene assay. PFOA (1×10-8-3×10-7M) displayed anti-thyroid hormone effectswith5×10-9M T3in the medium. While PFOS co-treated with T3could also suppressthe expression of luciferase at concentrations of1×10-7M and3×10-7M. In PPAR reporter gene assay, PFOA and PFOS activated PPAR at all concentrations.
     Conclusion
     Results here demonstrated that PFOA and PFOS has additive estrogenic activity,anti-thyroid hormone activity and PPAR activation in vitro. They could have effectson the endocrine system through interfering with nuclear receptor.
     Chapter II The steroidogenic effects of PFOA and PFOSin H295R steroidgenesis Assay
     Objective
     Chemicals can exert endocrine-disrupting effects via non-receptor mediatedpathways. The human adrenocortical carcinoma cell line H295R has been shown tobe a potential in vitro model for screening adverse effects of chemicals onsteroidogenesis. In this study, H295R cells were used to determine the effects ofPFOA and PFOS on steroidogenesis.
     Methods
     In this study, the steroidogenic effects of PFOA and PFOS were measured inH295R cell. The hormone levels of estradiol (E2) and testosterone (T), the expressionof major steroidogenic genes and the key steroidogenic gene regulator steroidogenicfactors1(SF-1) were measured after PFOA and PFOS exposure in H295Rsteroidogenesis assay.
     Results
     PFOA and PFOS could induce E2production and reduce T production in aconcentration-dependent manner. E2level were significantly increased by PFOA andPFOS at1×10-8M and3×10-8M, respectively. While T level were decreased byPFOA and PFOS at3×10-8M and1×10-7M, respectively. The expression patterns ofthe10steroidogenic genes were altered by PFOA and PFOS exposure. PFOAsignificantly induced the expression of17βHSD1,3βHSD2, CYP11B2, CYP19.Expressions of CYP17,17βHSD4, CYP11A were decreased by PFOA exposure. Genelevels of HMGR, StAR, CYP11A, CYP19,3βHSD2, CYP11B2were elevated by PFOS.For CYP17,17βHSD1and CYP21, the relative responses were suppressed after PFOStreatment. For the key steroidogenic gene regulator SF-1, gene expression wasdown-regulated within the tested concentration range. SF-1protein level gradually decreased in H295R cells as PFOA exposure concentration increased.
     Conclusion
     PFOA and PFOS could alter steroid hormone synthesis and the majorsteroidogenic genes expression in H295R steroidogenesis assay. Results heredemonstrated that PFOA and PFOS have the ability to alter steroidogenesis.
     Part II Assessing the endocrine-disrupting effects of PFOAand PFOS by in vivo assays
     Chapter I Effects of PFOA and PFOS on development andendocrine function in zebrafish
     Objective
     A short-term zebrafish embryo exposure assay was developed to detect thepotential effects of PFOA and PFOS on endocrine system development and functionin vivo.
     Methods
     Zebrafish embryos from4h post fertilization (hpf) to120hpf were exposed to100μg/L,200μg/L, and500μg/L PFOA or PFOS. The embryos’ survivals and thestage of embryonic development were recorded daily. Genes related to estrogenreceptor production (esr1and esr2b), early thyroid development (hhex and pax8), andsteroidogenic enzyme synthesis (cyp17, cyp19a, and cyp19b) were quantified byQ-RT-PCR. To identify genes and pathways involved in the endocrine-disruptingeffects, mRNA microarray analysis were conducted.
     Results
     Exposure to PFOA and PFOS did not affect hatching and larval survival rates inzebrafish embryos. No significant lethal and developmental abnormality wasobserved during the whole exposure time. PFOA cause a significantly increase ofesr1at500μg/L and no changes for esr2b. Exposure to PFOA up-regulated hhex andpax8expression levels at200and500μg/L. No significant changes of cyp17, cyp19a,and cyp19b were observed. Exposure to PFOS (500μg/L) led to an increase in theexpression level of esr1but a decrease in the expression of esr2b. An apparentconcentration-dependent increase of hhex and pax8expression was observed afterPFOS treatment. Suppression of cyp17, cyp19a, and cyp19b was found at200and500μg/L PFOS exposure. Microarray analysis revealed several classes ofsignificantly regulated genes which could be related to cellular, metabolic,development and biological regulation processes in zebrafish.
     Conclusion
     In short-term zebrafish embryo exposure assay, PFOA and PFOS could alter theexpressions of estrogen receptor, early thyroid development and steroid synthesisrelated genes. Further large-scale genetic study using microarrays provided moreinformation on exploring the mechanisms of PFCs-mediated endocrine-related effectsin zebrafish.
     Chapter II Effects of PFOA and PFOS on pubertydevelopment
     Objective
     Limited information about effects of PFOA and PFOS on puberty developmentis available. We evaluated the effects and explored the neuroendocrine mechanism of neonatal and juvenile PFOA/PFOS exposure on female puberty maturation. We alsoevaluated the effects of PFOA/PFOS on liver.
     Methods
     Female rats were injected with PFOA or PFOS at0.1,1and10mg/kg/dayduring postnatal day (PND)1-5or26-30. Body weight, anogenital distance (AGD),vaginal opening (VO), estrous cyclicity and other development indexes were recorded.Serum levels, ovaries histology and follicles numbers were evaluated. Geneexpressions of Kiss1, Kiss1r, ERα, ERβ and immunohistochemistry of kisspeptin inthe hypothalamic anteroventral periventricular (AVPV) and arcuate (ARC) nucleiwere quantified. Liver weight were measured. Fatty acids in serum were determinedby GC/MS. Analysis of biomarkers for hepatic metabolism were also assessed.
     Results
     VO and first estrus were significantly advanced in10mg/kg PFOA,1and10mg/kg PFOS groups after neonatal and juvenile exposure. Neonatal PFOA/PFOSexposure increased body weight and AGD in a non-dose-dependent manner. Estradioland luteinizing hormone (LH) levels were increased after neonatal and juveniletreatments. Irregular estrous cycles occurred more frequently in0.1and1mg/kgPFOA/PFOS groups. Although no altered ovarian morphology was observed, folliclesnumbers were reduced in neonatal groups. Kiss1, Kiss1r, ERα mRNA expressions inAVPV and ARC were decreased after two periods’ exposure. Suppression ofkisspeptin fiber intensities were also evoked by PFOA/PFOS exposure especially atthe high dose in AVPV and ARC. Results also showed that liver weight weresignificantly increased in the highest PFOA/PFOS treated groups.Changes in serumfatty acids composition and metabolic disturbance in liver by both PFOA/PFOS wereobserved.
     Conclusion
     Neonatal and juvenile exposure to environmental levels of PFOA/PFOS couldaffect the regulation of hypothalamic-pituitary-gonadal (HPG) axis leading toadvancing puberty onset. Kisspeptin/GPR54system played a key role in the effects.Neonatal exposure to low-dose of PFOA/PFOS could affect serum fatty acidmetabolism and other metabolic processes in liver.
引文
1. Renner R. Growing concern over perfluorinated chemicals. Environmentalscience&technology.2001.35(7):154-60.
    2. Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife.Environmental science&technology.2001.35(7):1339-42.
    3. Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroalkylatedsubstances. International journal of andrology.2008.31(2)161-9.
    4. Kudo N, Kawashima Y. Toxicity and toxicokinetics of perfluorooctanoic acid inhumans and animals. The Journal of toxicological sciences.2003.28(2):49-57.
    5. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, etal. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemicalproduction workers. Environmental health perspectives.2007.115(9):1298-305.
    6. Olsen GW, Chang SC, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, et al. Acomparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats,monkeys, and humans. Toxicology.2009.256(1-2):65-74.
    7. Strynar MJ, Lindstrom AB. Perfluorinated compounds in house dust from Ohioand North Carolina, USA. Environmental science&technology.2008.42(10):3751-6.
    8. Ericson I, Domingo JL, Nadal M, Bigas E, Llebaria X, van Bavel B, et al. Levelsof perfluorinated chemicals in municipal drinking water from Catalonia, Spain:public health implications. Archives of environmental contamination andtoxicology.2009.57(4):631-8.
    9. Vestergren R, Cousins IT. Tracking the pathways of human exposure toperfluorocarboxylates. Environmental science&technology.2009.43(15):5565-75.
    10. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC. Biologicalmonitoring of polyfluoroalkyl substances: A review. Environmental science&technology.2006.40(11):3463-73.
    11. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Tully JS, Needham LL. Serumconcentrations of11polyfluoroalkyl compounds in the u.s. population: datafrom the national health and nutrition examination survey (NHANES).Environmental science&technology.2007.41(7):2237-42.
    12. D'Hollander W, de Voogt P, De Coen W, Bervoets L. Perfluorinated substancesin human food and other sources of human exposure. Reviews of environmentalcontamination and toxicology.2010.208:179-215.
    13. Kunacheva C, Fujii S, Tanaka S, Seneviratne ST, Lien NP, Nozoe M, et al.Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoicacid (PFOA) in water environment in recent years. Water science andtechnology.2012.66(12):2764-71.
    14. Skutlarek D, Exner M, Farber H. Perfluorinated surfactants in surface anddrinking waters. Environmental science and pollution research international.2006.13(5):299-307.
    15. Loos R, Locoro G, Huber T, Wollgast J, Christoph EH, de Jager A, et al.Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds(PFCs) in the River Po watershed in N-Italy. Chemosphere.2008.71(2):306-13.
    16. So MK, Miyake Y, Yeung WY, Ho YM, Taniyasu S, Rostkowski P, et al.Perfluorinated compounds in the Pearl River and Yangtze River of China.Chemosphere.2007.68(11):2085-95.
    17. Moody CA, Hebert GN, Strauss SH, Field JA. Occurrence and persistence ofperfluorooctanesulfonate and other perfluorinated surfactants in groundwater at afire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal ofenvironmental monitoring.2003.5(2):341-5.
    18. Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D. Perfluorinatedcompounds--exposure assessment for the general population in Westerncountries. International journal of hygiene and environmental health.2009.212(3):239-70.
    19. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, etal. Perfluorooctanesulfonate and related fluorochemicals in human blood fromseveral countries. Environmental science&technology.2004.38(17):4489-95.
    20. Guruge KS, Taniyasu S, Yamashita N, Wijeratna S, Mohotti KM, SeneviratneHR, et al. Perfluorinated organic compounds in human blood serum and seminalplasma: a study of urban and rural tea worker populations in Sri Lanka. Journalof environmental monitoring.2005.7(4):371-7.
    21. Yeung LW, So MK, Jiang G, Taniyasu S, Yamashita N, Song M, et al.Perfluorooctanesulfonate and related fluorochemicals in human blood samplesfrom China. Environmental science&technology.2006.40(3):715-20.
    22. Olsen GW, Burris JM, Burlew MM, Mandel JH. Plasma cholecystokinin andhepatic enzymes, cholesterol and lipoproteins in ammonium perfluorooctanoateproduction workers. Drug and chemical toxicology.2000.23(4):603-20.
    23. So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K, et al. Health risksin infants associated with exposure to perfluorinated compounds in human breastmilk from Zhoushan, China. Environmental science&technology.2006.40(9):2924-9.
    24. Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J. Transplacentalexposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilotstudy. International archives of occupational and environmental health.2007.80(7):643-8.
    25. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkylacids: a review of monitoring and toxicological findings. Toxicological sciences.2007.99(2):366-94.
    26. Rosen MB, Lau C, Corton JC. Does exposure to perfluoroalkyl acids present arisk to human health? Toxicological sciences.2009.111(1):1-3.
    27. Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehaviouraldefects in adult mice. Neurotoxicology.2008.29(1):160-9.
    28. Liu C, Du Y, Zhou B. Evaluation of estrogenic activities and mechanism ofaction of perfluorinated chemicals determined by vitellogenin induction inprimary cultured tilapia hepatocytes. Aquat Toxicol.2007.85(4):267-77.
    29. Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, WilliamsDE. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction withhuman and rainbow trout estrogen receptors in vitro. Toxicological sciences.2011.120(1):42-58.
    30. Biegel LB, Liu RC, Hurtt ME, Cook JC. Effects of ammoniumperfluorooctanoate on Leydig cell function: in vitro, in vivo, and ex vivo studies.Toxicology and applied pharmacology.1995.134(1):18-25.
    31. Ankley GT, Kuehl DW, Kahl MD, Jensen KM, Linnum A, Leino RL, et al.Reproductive and developmental toxicity and bioconcentration ofperfluorooctanesulfonate in a partial life-cycle test with the fathead minnow(Pimephales promelas). Environmental toxicology and chemistry.2005.24(9):2316-24.
    32. Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, etal. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I:maternal and prenatal evaluations. Toxicological sciences.2003.74(2):369-81.
    33. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. Neonatal mortalityfrom in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawleyrats: dose-response, and biochemical and pharamacokinetic parameters.Toxicology.2005.215(1-2):149-69.
    34. Shi X, Liu C, Wu G, Zhou B. Waterborne exposure to PFOS causes disruption ofthe hypothalamus-pituitary-thyroid axis in zebrafish larvae. Chemosphere.2009.77(7):1010-8.
    35. Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. PFOS-induced hepaticsteatosis, the mechanistic actions on beta-oxidation and lipid transport.Biochimica et biophysica acta.2012.1820(7):1092-101.
    36. Olsen GW, Gilliland FD, Burlew MM, Burris JM, Mandel JS, Mandel JH. Anepidemiologic investigation of reproductive hormones in men with occupationalexposure to perfluorooctanoic acid. Journal of occupational and environmentalmedicine.1998.40(7):614-22.
    37. Dallaire R, Dewailly E, Pereg D, Dery S, Ayotte P. Thyroid function and plasmaconcentrations of polyhalogenated compounds in Inuit adults. Environmentalhealth perspectives.2009.117(9):1380-6.
    38. Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Associationbetween serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S.National Health and Nutrition Examination Survey. Environmental healthperspectives.2010.118(5):686-92.
    39. Gaido KW, Maness SC, McDonnell DP, Dehal SS, Kupfer D, Safe S. Interactionof methoxychlor and related compounds with estrogen receptor alpha and beta,and androgen receptor: structure-activity studies. Molecular pharmacology.2000.58(4):852-8.
    40. Sun H, Xu XL, Qu JH, Hong X, Wang YB, Xu LC, et al.4-Alkylphenols andrelated chemicals show similar effect on the function of human and rat estrogenreceptor alpha in reporter gene assay. Chemosphere.2008.71(3):582-8.
    41. Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber JL, et al.Estrogen-like properties of fluorotelomer alcohols as revealed by mcf-7breastcancer cell proliferation. Environmental health perspectives.2006.114(1):100-5.
    42. Henry ND, Fair PA. Comparison of in vitro cytotoxicity, estrogenicity andanti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoicacid. Journal of applied toxicology.2013.33(4):265-72. Epub2011/09/22.
    43. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, SotoAM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientificstatement. Endocrine reviews.2009.30(4):293-342.
    44. Moriyama K, Tagami T, Usui T, Naruse M, Nambu T, Hataya Y, et al.Antithyroid drugs inhibit thyroid hormone receptor-mediated transcription. TheJournal of clinical endocrinology and metabolism.2007.92(3):1066-72.
    45. Tone Y, Collingwood TN, Adams M, Chatterjee VK. Functional analysis of atransactivation domain in the thyroid hormone beta receptor. The Journal ofbiological chemistry.1994.269(49):31157-61.
    46. Miyamoto T, Kakizawa T, Ichikawa K, Nishio S, Takeda T, Suzuki S, et al. Therole of hinge domain in heterodimerization and specific DNA recognition bynuclear receptors. Molecular and cellular endocrinology.2001.181(1-2):229-38.
    47. Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL.Subchronic toxicity studies on perfluorooctanesulfonate potassium salt incynomolgus monkeys. Toxicological sciences.2002.68(1):249-64.
    48. Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP, HamersT. Competitive binding of poly-and perfluorinated compounds to the thyroidhormone transport protein transthyretin. Toxicological sciences.2009.109(2):206-16.
    49. Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, et al.Assessment of the effects of chemicals on the expression of ten steroidogenicgenes in the H295R cell line using real-time PCR. Toxicological sciences.2004.81(1):78-89.
    50. Oskarsson A, Ulleras E, Plant KE, Hinson JP, Goldfarb PS. Steroidogenic geneexpression in H295R cells and the human adrenal gland: adrenotoxic effects oflindane in vitro. Journal of applied toxicology.2006.26(6):484-92.
    51. Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, et al. Humanadrenocarcinoma (H295R) cells for rapid in vitro determination of effects onsteroidogenesis: hormone production. Toxicology and applied pharmacology.2006.217(1):114-24.
    52. Higley EB, Newsted JL, Zhang X, Giesy JP, Hecker M. Assessment of chemicaleffects on aromatase activity using the H295R cell line. Environmental scienceand pollution research international.2010.17(5):1137-48.
    53. Hollert H, Giesy J. The OECD Validation Program of the H295RSteroidogenesis Assay for the Identification of In Vitro Inhibitors and Inducersof Testosterone and Estradiol Production. Phase2: Inter-LaboratoryPre-Validation Studies (8pp). Environmental science and pollution researchinternational.2007.14Suppl1:23-30.
    54. Blaha L, Hilscherova K, Mazurova E, Hecker M, Jones PD, Newsted JL, et al.Alteration of steroidogenesis in H295R cells by organic sediment contaminantsand relationships to other endocrine disrupting effects. Environ Int.2006.32(6):749-57.
    55. Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. Toxicogenomicstudy of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicityand categorizes chemicals based on mechanisms of toxicity. Toxicologicalsciences.2007.97(2):595-613.
    56. Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C. Geneexpression profiling in the lung and liver of PFOA-exposed mouse fetuses.Toxicology.2007.239(1-2):15-33.
    57. Shi Z, Zhang H, Liu Y, Xu M, Dai J. Alterations in gene expression andtestosterone synthesis in the testes of male rats exposed to perfluorododecanoicacid. Toxicological sciences.2007.98(1):206-15.
    58. Shi Z, Ding L, Zhang H, Feng Y, Xu M, Dai J. Chronic exposure toperfluorododecanoic acid disrupts testicular steroidogenesis and the expressionof related genes in male rats. Toxicology letters.2009.188(3):192-200.
    59. Zhang X, Yu RM, Jones PD, Lam GK, Newsted JL, Gracia T, et al. QuantitativeRT-PCR methods for evaluating toxicant-induced effects on steroidogenesisusing the H295R cell line. Environmental science&technology.2005.39(8):2777-85.
    60. Kraugerud M, Zimmer KE, Dahl E, Berg V, Olsaker I, Farstad W, et al. Threestructurally different polychlorinated biphenyl congeners (Pcb118,153, and126)affect hormone production and gene expression in the human H295R in vitromodel. Journal of toxicology and environmental health Part A.2010.73(16):1122-32.
    61. Kraugerud M, Zimmer KE, Ropstad E, Verhaegen S. Perfluorinated compoundsdifferentially affect steroidogenesis and viability in the human adrenocorticalcarcinoma (H295R) in vitro cell assay. Toxicology letters.2011.205(1):62-8.
    62. Bakke M, Zhao L, Hanley NA, Parker KL. SF-1: a critical mediator ofsteroidogenesis. Molecular and cellular endocrinology.2001.171(1-2):5-7.
    63. Beuschlein F, Keegan CE, Bavers DL, Mutch C, Hutz JE, Shah S, et al. SF-1,DAX-1, and acd: molecular determinants of adrenocortical growth andsteroidogenesis. Endocrine research.2002.28(4):597-607.
    64. Hu MC, Hsu NC, Pai CI, Wang CK, Chung B. Functions of the upstream andproximal steroidogenic factor1(SF-1)-binding sites in the CYP11A1promoterin basal transcription and hormonal response. Mol Endocrinol.2001.15(5):812-8.
    65. Ehrlund A, Anthonisen EH, Gustafsson N, Venteclef N, Robertson Remen K,Damdimopoulos AE, et al. E3ubiquitin ligase RNF31cooperates with DAX-1intranscriptional repression of steroidogenesis. Molecular and cellular biology.2009.29(8):2230-42.
    66. Ehrlund A, Jonsson P, Vedin LL, Williams C, Gustafsson JA, Treuter E.Knockdown of SF-1and RNF31affects components of steroidogenesis,TGFbeta, and Wnt/beta-catenin signaling in adrenocortical carcinoma cells. PloSone.2012.7(3):e32080.
    67. Li LA. Polychlorinated biphenyl exposure and CYP19gene regulation intesticular and adrenocortical cell lines. Toxicology in vitro.2007.21(6):1087-94.
    68. Liu Y, Wang J, Wei Y, Zhang H, Dai J. Molecular characterization of cytochromeP4501A and3A and the effects of perfluorooctanoic acid on their mRNA levelsin rare minnow (Gobiocypris rarus) gills. Aquat Toxicol.2008.88(3):183-90.
    69. Hagenaars A, Vergauwen L, De Coen W, Knapen D. Structure-activityrelationship assessment of four perfluorinated chemicals using a prolongedzebrafish early life stage test. Chemosphere.2011.82(5):764-72.
    70. Chandrasekar G, Archer A, Gustafsson JA, Andersson Lendahl M. Levels of17beta-estradiol receptors expressed in embryonic and adult zebrafish followingin vivo treatment of natural or synthetic ligands. PloS one.2010.5(3):e9678.
    71. Bardet PL, Horard B, Robinson-Rechavi M, Laudet V, Vanacker JM.Characterization of oestrogen receptors in zebrafish (Danio rerio). Journal ofmolecular endocrinology.2002.28(3):153-63.
    72. Menuet A, Pellegrini E, Anglade I, Blaise O, Laudet V, Kah O, et al. Molecularcharacterization of three estrogen receptor forms in zebrafish: bindingcharacteristics, transactivation properties, and tissue distributions. Biol Reprod.2002.66(6):1881-92.
    73. Lam SH, Lee SG, Lin CY, Thomsen JS, Fu PY, Murthy KR, et al. Molecularconservation of estrogen-response associated with cell cycle regulation,hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines.BMC Med Genomics.2011.4:41.
    74. Elsalini OA, von Gartzen J, Cramer M, Rohr KB. Zebrafish hhex, nk2.1a, andpax2.1regulate thyroid growth and differentiation downstream ofNodal-dependent transcription factors. Dev Biol.2003.263(1):67-80.
    75. Wendl T, Lun K, Mione M, Favor J, Brand M, Wilson SW, et al. Pax2.1isrequired for the development of thyroid follicles in zebrafish. Development.2002.129(15):3751-60.
    76. Kishida M, McLellan M, Miranda JA, Callard GV. Estrogen and xenoestrogensupregulate the brain aromatase isoform (P450aromB) and perturb markers ofearly development in zebrafish (Danio rerio). Comp Biochem Physiol BBiochem Mol Biol.2001.129(2-3):261-8.
    77. Ma Y, Han J, Guo Y, Lam PK, Wu RS, Giesy JP, et al. Disruption of endocrinefunction in in vitro H295R cell-based and in in vivo assay in zebrafish by2,4-dichlorophenol. Aquat Toxicol.2012.106-107:173-81.
    78. Soto AM, Maffini MV, Schaeberle CM, Sonnenschein C. Strengths andweaknesses of in vitro assays for estrogenic and androgenic activity. Best PractRes Clin Endocrinol Metab.2006.20(1):15-33.
    79. Navas JM, Segner H. In-vitro screening of the antiestrogenic activity ofchemicals. Expert Opin Drug Metab Toxicol.2008.4(5):605-17.
    80. Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumarSM. Neuroendocrine effects of perfluorooctane sulfonate in rats. Environmentalhealth perspectives.2003.111(12):1485-9.
    81. Yang C, Tan YS, Harkema JR, Haslam SZ. Differential effects of peripubertalexposure to perfluorooctanoic acid on mammary gland development in C57Bl/6and Balb/c mouse strains. Reprod Toxicol.2009.27(3-4):299-306.
    82. Zhao Y, Tan YS, Haslam SZ, Yang C. Perfluorooctanoic acid effects on steroidhormone and growth factor levels mediate stimulation of peripubertal mammarygland development in C57BL/6mice. Toxicological sciences.2010.115(1):214-24.
    83. Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, et al.Gestational and lactational exposure to potassium perfluorooctanesulfonate(K+PFOS) in rats: toxicokinetics, thyroid hormone status, and related geneexpression. Reprod Toxicol.2009.27(3-4):387-99.
    84. Wang X, Li B, Zhao WD, Liu YJ, Shang DS, Fang WG, et al. Perfluorooctanesulfonate triggers tight junction "opening" in brain endothelial cells viaphosphatidylinositol3-kinase. Biochemical and biophysical researchcommunications.2011.410(2):258-63.
    85. Butenhoff JL, Kennedy GL, Jr., Frame SR, O'Connor JC, York RG. Thereproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat.Toxicology.2004.196(1-2):95-116.
    86. Fuentes S, Colomina MT, Vicens P, Domingo JL. Influence of maternal restraintstress on the long-lasting effects induced by prenatal exposure to perfluorooctanesulfonate (PFOS) in mice. Toxicology letters.2007.171(3):162-70.
    87. Bateman HL, Patisaul HB. Disrupted female reproductive physiology followingneonatal exposure to phytoestrogens or estrogen specific ligands is associatedwith decreased GnRH activation and kisspeptin fiber density in thehypothalamus. Neurotoxicology.2008.29(6):988-97.
    88. Du G, Hu J, Huang H, Qin Y, Han X, Wu D, et al. Perfluorooctane sulfonate(PFOS) affects hormone receptor activity, steroidogenesis, and expression ofendocrine-related genes in vitro and in vivo. Environmental toxicology andchemistry.2013.32(2):353-60.
    89. Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D,et al. Association of Perfluorooctanoic Acid (PFOA) and PerfluorooctaneSulfonate (PFOS) with age of puberty among children living near a chemicalplant. Environmental science&technology.2011.45(19):8160-6.
    90. Knox SS, Jackson T, Javins B, Frisbee SJ, Shankar A, Ducatman AM.Implications of early menopause in women exposed to perfluorocarbons. TheJournal of clinical endocrinology and metabolism.2011.96(6):1747-53.
    91. Zhang T, Wu Q, Sun HW, Zhang XZ, Yun SH, Kannan K. Perfluorinatedcompounds in whole blood samples from infants, children, and adults in China.Environmental science&technology.2010.44(11):4341-7.
    92. Borman SM, Christian PJ, Sipes IG, Hoyer PB. Ovotoxicity in female Fischerrats and B6mice induced by low-dose exposure to three polycyclic aromatichydrocarbons: comparison through calculation of an ovotoxic index. Toxicologyand applied pharmacology.2000.167(3):191-8.
    93. Simerly RB. Wired for reproduction: organization and development of sexuallydimorphic circuits in the mammalian forebrain. Annual review of neuroscience.2002.25:507-36.
    94. Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, BarreiroML, et al. Advanced vaginal opening and precocious activation of thereproductive axis by KiSS-1peptide, the endogenous ligand of GPR54. TheJournal of physiology.2004.561(Pt2):379-86.
    95. Wang F, Liu W, Jin Y, Dai J, Yu W, Liu X, et al. Transcriptional effects ofprenatal and neonatal exposure to PFOS in developing rat brain. Environmentalscience&technology.2010.44(5):1847-53.
    96. Hansen KJ, Clemen LA, Ellefson ME, Johnson HO. Compound-specific,quantitative characterization of organic fluorochemicals in biological matrices.Environmental science&technology.2001.35(4):766-70.
    97. Mouritsen A, Aksglaede L, Sorensen K, Mogensen SS, Leffers H, Main KM, etal. Hypothesis: exposure to endocrine-disrupting chemicals may interfere withtiming of puberty. International journal of andrology.2010.33(2):346-59.
    98. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens andobesity. Molecular and cellular endocrinology.2009.304(1-2):84-9.
    99. Adewale HB, Todd KL, Mickens JA, Patisaul HB. The impact of neonatalbisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the femalerat. Neurotoxicology.2011.32(1):38-49.
    100. Fernandez M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure tobisphenol a alters reproductive parameters and gonadotropin releasing hormonesignaling in female rats. Environmental health perspectives.2009.117(5):757-62.
    101. Dickerson SM, Cunningham SL, Patisaul HB, Woller MJ, Gore AC. Endocrinedisruption of brain sexual differentiation by developmental PCB exposure.Endocrinology.2011.152(2):581-94.
    102. Amleh A, Dean J. Mouse genetics provides insight into folliculogenesis,fertilization and early embryonic development. Human reproduction update.2002.8(5):395-403.
    103. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, et al.Differential regulation of KiSS-1mRNA expression by sex steroids in the brainof the male mouse. Endocrinology.2005.146(7):2976-84.
    104. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM.Increased hypothalamic GPR54signaling: a potential mechanism for initiationof puberty in primates. Proceedings of the National Academy of Sciences of theUnited States of America.2005.102(6):2129-34.
    105. Bjork JA, Lau C, Chang SC, Butenhoff JL, Wallace KB. Perfluorooctanesulfonate-induced changes in fetal rat liver gene expression. Toxicology.2008.251(1-3):8-20.
    1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, SotoAM, Zoeller RT, Gore AC. Endocrinedisrupting chemicals: an Endocrine Societyscientific statement. Endocr Rev.2009.30(4):293-342.
    2. Colborn T, Clement C. Chemically-induced alterations in sexual and functionaldevelopment: the wildlife/human connection. Princeton Scientific PublishingCo., Inc., Princeton, NJ.1992.
    3. Colborn T, D D, Myers J P. Our stolen future: are we threatening our fertility,intelligence, and surival? Scientific Detective Story. New York: Dutton Books.1996.
    4. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, LucierG, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G,Sheehan DM, Sinks T, Tilson HA. Research needs for the risk assessment ofhealth and environmental effects of endocrine disruptors: a report of the U.S.EPA-sponsored workshop. Environ Health Perspect.1996.104Suppl4:715-40.
    5. Bernanke J, K hler HR. The impact of environmental chemicals on wildlifevertebrates. Rev Environ Contam Toxicol.2009.198:1-47.
    6. Vos JG, Dybing E, Greim HA, Ladefoged O, LambréC, Tarazona JV, Brandt I,Vethaak AD. Health effects of endocrine-disrupting chemicals on wildlife, withspecial reference to the European situation. Crit Rev Toxicol.2000.30(1):71-133.
    7. Guillette LJ Jr, Edwards TM. Environmental influences on fertility: can we learnlessons from studies of wildlife? Fertil Steril.2008.89(2Suppl):e21-4.
    8. Troisi R, Hyer M, Hatch EE, Titus-Ernstoff L, Palmer JR, Strohsnitter WC,Herbst AL, Adam E, Hoover RN. Medical Conditions Among Adult OffspringPrenatally Exposed to Diethylstilbestrol. Epidemiology.2013.24(3):430-438.
    9. Laronda MM, Unno K, Butler LM, Kurita T. The development of cervical andvaginal adenosis as a result of diethylstilbestrol exposure in utero. Differentiation.2012.84(3):252-60.
    10. Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, Cheville AL, Colton T,Hartge P, Hatch EE, Herbst AL, Karlan BY, Kaufman R, Noller KL, Palmer JR,Robboy SJ, Saal RC, Strohsnitter W, Titus-Ernstoff L, Troisi R. Adverse healthoutcomes in women exposed in utero to diethylstilbestrol. N Engl J Med.2011.365(14):1304-14.
    11. O'Reilly EJ, Mirzaei F, Forman MR, Ascherio A. Diethylstilbestrol exposure inutero and depression in women. Am J Epidemiol.2010.171(8):876-82.
    12. Hauser R. The environment and male fertility: recent research on emergingchemicals and semen quality. Semin Reprod Med.2006.24(3):156-67.
    13. Yeung BH, Wan HT, Law AY, Wong CK. Endocrine disrupting chemicals:Multiple effects on testicular signaling and spermatogenesis. Spermatogenesis.2011.1(3):231-239.
    14. Safe S. Clinical correlates of environmental endocrine disruptors. TrendsEndocrinol Metab.2005.16(4):139-44.
    15. Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B,Schaedlich K, Schmidt JS, Amezaga MR, Bhattacharya S, Rhind SM,O'Shaughnessy PJ. Impact of endocrine-disrupting compounds (EDCs) on femalereproductive health. Mol Cell Endocrinol.2012.355(2):231-9.
    16. Caserta D, Mantovani A, Marci R, Fazi A, Ciardo F, La Rocca C, Maranghi F,Moscarini M. Environment and women's reproductive health. Hum ReprodUpdate.2011.17(3):418-33.
    17. Catalano R, Bruckner T, Marks AR, Eskenazi B. Exogenous shocks to the humansex ratio: the case of September11,2001in New York City. Hum Reprod.2006.21(12):3127-31.
    18. James WH. Offspring sex ratios at birth as markers of paternal endocrinedisruption. Environ Res.2006.100(1):77-85.
    19. Meeker JD. Exposure to environmental endocrine disruptors and childdevelopment. Arch Pediatr Adolesc Med.2012.166(10):952-8.
    20. Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals andimmune responses: a focus on bisphenol-A and its potential mechanisms. MolImmunol.2013.53(4):421-30.
    21. Gore AC. Neuroendocrine targets of endocrine disruptors. Hormones (Athens).2010.9(1):16-27.
    22. Wuttke W, Jarry H, Seidlova-Wuttke D. Definition, classification and mechanismof action of endocrine disrupting chemicals. Hormones (Athens).2010.9(1):9-15.
    23. Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals.Mol Endocrinol.2006.20(3):475-82.
    24. Toppari J. Environmental endocrine disrupters. Sex Dev.2008.2(4-5):260-7.
    25. le Maire A, Bourguet W, Balaguer P. A structural view of nuclear hormonereceptor: endocrine disruptor interactions. Cell Mol Life Sci.2010.67(8):1219-37.
    26. Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens).2010.9(1):28-40.
    27. Casals-Casas C, Feige JN, Desvergne B. Interference of pollutants with PPARs:endocrine disruption meets metabolism. Int J Obes (Lond).2008. Suppl6:S53-61.
    28. Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT,Foster PM, Gray CL, Gray LE.Fifteen years after "Wingspread"--environmentalendocrine disrupters and human and wildlife health: where we are today andwhere we need to go. Toxicol Sci.2008.105(2):235-59.
    29. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptorsignaling: identification and mechanisms of action. Chem Res Toxicol.2011.14;24(1):6-19.
    30. Tamura H, Ishimoto Y, Fujikawa T, Aoyama H, Yoshikawa H, Akamatsu M.Structural basis for androgen receptor agonists and antagonists: interaction ofSPEED98-listed chemicals and related compounds with the androgen receptorbased on an in vitro reporter gene assay and3D-QSAR. Bioorg Med Chem.2006.14(21):7160-74.
    31. Zhou H, Wu H, Liao C, Diao X, Zhen J, Chen L, Xue Q. Toxicology mechanismof the persistent organic pollutants (POPs) in fish through AhR pathway. ToxicolMech Methods.2010.20(6):279-86.
    32. Deutschmann A, Hans M, Meyer R, H berlein H, Swandulla D. Bisphenol Ainhibits voltage-activated Ca(2+) channels in vitro: mechanisms and structuralrequirements. Mol Pharmacol.2013.83(2):501-11.
    33. Kang JH, Niidome T, Katayama Y. Role of estrogenic compounds(diethylstibestrol,17beta-estradiol, and bisphenol A) in the phosphorylation ofsubstrate by protein kinase C alpha. J Biochem Mol Toxicol.2009.23(5):318-23.
    34. Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarianfunction: effects on steroidogenesis, metabolism and nuclear receptor signaling.Reproduction.2011.142(5):633-46.
    35. Sanderson JT. The steroid hormone biosynthesis pathway as a target forendocrine-disrupting chemicals. Toxicol Sci.2006.94(1):3-21.
    36. LeBaron MJ, Rasoulpour RJ, Klapacz J, Ellis-Hutchings RG, Hollnagel HM,Gollapudi BB. Epigenetics and chemical safety assessment. Mutat Res.2010.705(2):83-95.
    37. Gee D. Late lessons from early warnings: Toward realism and precaution withendocrine-disrupting substances. Environ Health Perspect.2006.114Suppl1:152-60.
    38. Acerini CL, IA Hughes. Endocrine disrupting chemicals: a new and emergingpublic health problem? Arch Dis Child.2006.91(8):633-41.
    39. Gray LE Jr, Ostby J, Wilson V, Lambright C, Bobseine K, Hartig P, Hotchkiss A,Wolf C, Furr J, Price M, Parks L, Cooper RL, Stoker TE, Laws SC, Degitz SJ,Jensen KM, Kahl MD, Korte JJ, Makynen EA, Tietge JE, Ankley GT.Xenoendocrine disrupters-tiered screening and testing: filling key data gaps.Toxicology.2002.181-182:371-82.
    40. Umezawa Y, Ozawa T, Sato M, Inadera H, Kaneko S, Kunimoto M, Hashimoto S.Methods of analysis for chemicals that disrupt cellular signaling pathways: riskassessment for potential endocrine disruptors. Environ Sci.2005.12(1):49-64.
    41. Li J, Gramatica P. QSAR classification of estrogen receptor binders andpre-screening of potential pleiotropic EDCs. SAR QSAR Environ Res.2010.21(7-8):657-69.
    42. Reif DM, Martin MT, Tan SW, Houck KA, Judson RS, Richard AM, KnudsenTB, Dix DJ, Kavlock RJ. Endocrine profiling and prioritization of environmentalchemicals using ToxCast data. Environ Health Perspect.2010.118(12):1714-20.
    43. U.S.EPA. Integrated summary report for the Validation of an Estrogen ReceptorBinding Assay using Rat Uterine Cytosol as Source of Receptor as a PotentialScreen in the Endocrine Disruptor Screening Program Tier1Battery.2009.
    44. Pillon A, Boussioux AM, Escande A, A t-A ssa S, Gomez E, Fenet H, Ruff M,Moras D, Vignon F, Duchesne MJ, Casellas C, Nicolas JC, Balaguer P. Bindingof estrogenic compounds to recombinant estrogen receptor-alpha: application toenvironmental analysis. Environ Health Perspect.2005.113(3):278-84.
    45. Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W. Rapid screening ofenvironmental chemicals for estrogen receptor binding capacity. Environ HealthPerspect.1998.106(9):551-7.
    46. Zysk JR, Johnson B, Ozenberger BA, Bingham B, Gorski J. Selective uptake ofestrogenic compounds by Saccharomyces cerevisiae: a mechanism forantiestrogen resistance in yeast expressing the mammalian estrogen receptor.Endocrinology.1995.136(3):1323-6.
    47. Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S, Wang X. Assessinghormone receptor activities of pyrethroid insecticides and their metabolites inreporter gene assays. Toxicol Sci.2010.116(1):58-66.
    48. Preuss TG, Gurer-Orhan H, Meerman J, Ratte HT. Some nonylphenol isomersshow antiestrogenic potency in the MVLN cell assay. Toxicol In Vitro.2010.24(1):129-34.
    49. Avber ek M, egura B, Filipi M, Heath E. Integration of GC-MSD andER-Calux assay into a single protocol for determining steroid estrogens inenvironmental samples. Sci Total Environ.2011.409(23):5069-75.
    50. Berckmans P, Leppens H, Vangenechten C, Witters H. Screening of endocrinedisrupting chemicals with MELN cells, an ER-transactivation assay combinedwith cytotoxicity assessment. Toxicol In Vitro.2007.21(7):1262-7.
    51. Draft report of pre-validation and inter-laboratory validation for stably transfectedtransciptional activation (TA) assay to detect estrogenic activity. OECD.Available from: www.oecd.org/dataoecd/7/27/37504278.pdf.
    52. OECD series on testing and assessment no.38. Detailed background review of theuterotrophic bioassay ENV/JM/MONO;2003.1.
    53. Owens JW, Ashby J. Critical review and evaluation of the uterotrophic bioassayfor the identification of possible estrogen agonists and antagonists: in support ofthe validation of the OECD uterotrophic protocols for the laboratory rodent.Organisation for Economic Co-operation and Development. Crit Rev Toxicol.2002.32(6):445-520.
    54. Zhao J, Cai L, Wang J, Wu Y, Yao B, Zhang L. Uterotrophic assay, Hershbergerassay, and repeated28-day oral toxicity study of flumorph based on theOrganization for Economic Co-operation and Development draft protocols. ExpToxicol Pathol.2011.63(1-2):143-9.
    55. Kanno J, Onyon L, Peddada S, Ashby J, Jacob E, Owens W. The OECD programto validate the rat uterotrophic bioassay. Phase2: coded single-dose studies.Environ Health Perspect.2003.111(12):1550-8.
    56. Fusani L, Della Seta D, Dessì-Fulgheri F, Farabollini F. Altered reproductivesuccess in rat pairs after environmental-like exposure to xenoestrogen. Proc BiolSci.2007.274(1618):1631-6.
    57. Dang Z, Li K, Yin H, Hakkert B, Vermeire T. Endpoint sensitivity in fishendocrine disruption assays: regulatory implications. Toxicol Lett.2011.202(1):36-46.
    58. Matozzo V, GagnéF, Marin MG, Ricciardi F, Blaise C. Vitellogenin as abiomarker of exposure to estrogenic compounds in aquatic invertebrates: a review.Environ Int.2008.34(4):531-45.
    59. Jensen KM, Ankley GT. Evaluation of a commercial kit for measuringvitellogenin in the fathead minnow (Pimephales promelas). Ecotoxicol EnvironSaf.2006.64(2):101-5.
    60. U.S.EPA. Integrated summary report for the Validation of an androgen receptorbinding assay as a potential screen in the endocrine disruptor screening program.2007.
    61. Freyberger A, Ahr HJ. Development and standardization of a simple bindingassay for the detection of compounds with affinity for the androgen receptor.Toxicology.2004.195(2-3):113-26.
    62. Owens W, Zeiger E, Walker M, Ashby J, Onyon L, Gray LE Jr. The OECDprogram to validate the rat Hershberger bioassay to screen compounds for in vivoandrogen and antiandrogen responses. Phase1: use of a potent agonist and apotent antagonist to test the standardized protocol. Environ Health Perspect.2006.114(8):1259-65.
    63. Owens W, Gray LE, Zeiger E, Walker M, Yamasaki K, Ashby J, Jacob E. TheOECD program to validate the rat Hershberger bioassay to screen compounds forin vivo androgen and antiandrogen responses: phase2dose-response studies.Environ Health Perspect.2007.115(5):671-8.
    64. Metcalfe CD, Kleywegt S, Letcher RJ, Topp E, Wagh P, Trudeau VL, Moon TW.A multi-assay screening approach for assessment of endocrine-activecontaminants in wastewater effluent samples. Sci Total Environ.2013.454-455C:132-140.
    65. Hollert H, Giesy J. The OECD Validation Program of the H295R SteroidogenesisAssay for the Identification of In Vitro Inhibitors and Inducers of Testosteroneand Estradiol Production. Phase2: Inter-Laboratory Pre-Validation Studies (8pp).Environ Sci Pollut Res Int.2007. Suppl1:23-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700