用户名: 密码: 验证码:
高效光合产氢藻株的筛选及其产氢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿藻产氢可以实现太阳能向氢能的转换,具有催化效率高、光能转化效率高、能量消耗低及生产过程清洁等优点,作为一种生产清洁可再生能源的理想途径,近年来备受关注。目前,基于模式藻株Chlamydomonas reinhardtii建立的两步缺硫法,应用于诱导绿藻产氢的研究已日趋成熟,但是该方式产氢仍存在实际光能转化率不高、产氢系统对氧气敏感等问题。同时产氢绿藻的研究大部分集中于模式藻株Chlamydomonasreinhardtii上,而其它绿藻产氢代谢的研究鲜有报道。基于自然界存在众多单细胞绿藻,某些种类可以进行光合产氢,不同绿藻的产氢能力及产氢机理可能存在差异,本实验在广泛筛选新型高效产氢绿藻的基础上,对其中高效产氢藻株的产氢条件进行优化,并初步探讨其产氢机制,以期对绿藻的光合产氢过程及机制有更深入和系统地了解,也为建立适合于不同绿藻的调控方法,提高其产氢效率提供理论和技术指导。主要结果如下:
     (1)通过对62株微藻在缺硫胁迫下暗诱导产氢能力进行测定,筛选出13株淡水产氢绿藻、13株海水产氢绿藻和3株产氢螺旋藻。其中3株淡水绿藻和6株海水绿藻是目前未见报道的新型产氢藻株。通过形态学和分子生物学手段对新筛选的产氢藻株进行了鉴定:3株淡水绿藻为雪衣藻(Parietochloris incisa)、小球藻(Chlorellaprotothecoides和Chlorella sorokiniana);6种海水绿藻为四爿藻(Tetraselmishelgolandica、Tetraselmis suecica、Tetraselmis striata和Tetraselmis tetrathele)、微绿球藻(Nannochloropsis oceanica)和塔胞藻(Pyramimonas sp.)。此外,螺旋藻在缺氮胁迫下产氢量比缺硫胁迫下高;金藻在我们的实验条件下没有产氢能力。所检测的藻株中,淡水绿藻的中产氢藻株的比例高于海水绿藻(86.7%vs33.3%),且暗诱导耗氧和诱导产氢所需时间均比海水绿藻短(<7h vs7-40h),平均产氢量亦高于海水绿藻(8.88vs2.30ml/l)。同时发现,所有新筛选的产氢绿藻中小球藻属的产氢能力最佳,并发现淡水小球藻产氢能力高于海水小球藻。
     (2)实验发现,暗诱导处理能迅速消耗体系内的氧气,诱导氢酶产氢,达到快速检测藻株是否具有产氢能力的目的,但该方法产氢量较低;直接持续光照更适宜诱导高效产氢小球藻大量产氢。在此基础上,建立了一种两步法诱导海水微藻产氢的方法。第一步,以醋酸为有机底物,在天然海水培养基中进行细胞培养,以获取藻生物量;第二步,收集藻细胞转入含醋酸的人工海水培养基中,诱导藻细胞高效产氢。在密闭条件下,该方法可诱导海水小球藻Chlorella sp.(689S)和Chlorella sp.(707S)高效产氢,其中Chlorella sp.(707S)的产氢能力较强。人工海水营养亏缺(缺硫或缺氮)处理,能进一步提高海水小球藻的产氢量。此外,在两步法的产氢阶段,Chlorella sp.(707S)可在天然海水缺氮处理诱导下大量产氢,更具应用于微藻产氢产业化的潜力。
     (3)发现国际通用的两步缺硫法,并非诱导某些产氢微藻,如淡水小球藻Chlorellaprotothecoides (038F)和Chlorella sorokiniana (085F)高效产氢的最佳条件,推测淡水小球藻在正常生长条件下,细胞内能富集一定量的硫元素,在转移到无硫培养基中诱导产氢时,依然残存部分硫元素,实际上细胞并未处于缺硫状态。我们通过实验发现,生长于低氮培养基中的淡水小球藻,在转移到低氮缺硫密闭条件下时能大量产氢。由此我们建立了一种诱导淡水小球藻大量产氢的方法——低氮缺硫两步法,能解决单纯缺硫条件下无法诱导淡水小球藻产氢的问题。对于Chlorella protothecoides (038F)来说,通过上述方法诱导其产氢时,最适的氮浓度为0.35mM NH4Cl,产氢量达到233.7ml/l,平均产氢速率达到2.19ml/l/h,其产氢能力与国际上公认的产氢模式藻株Chlamydomonas reinhardtii相当,但其产氢持续时间(~100h)比Chlamydomonasreinhardtii短。同时研究还发现单一氮限制亦能够诱导Chlorella protothecoides (038F)大量产氢,硫缺乏对低氮培养的Chlorella protothecoides (038F)产氢有一定的协同增益效应,产氢阶段添加一定量的硫酸盐(<50M MgSO4)能够促进细胞产氢。为此推测,低氮缺硫两步法诱导该藻产氢的大致机制为:限制生长过程中的氮源供给,可导致藻细胞光合放氧活性降低,淀粉大量积累,有利于细胞迅速消耗体系内氧气,建立厌氧环境并诱导氢酶高活性表达,促使藻细胞高效产氢。
     (4)通过在产氢阶段施加光合电子传递抑制剂3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU)和2,5-dibromo-3-methyl-6-isopropylp-benzoquinone(DBMIB),发现低氮缺硫条件下用于Chlorella protothecoides (038F)产氢的电子来源有2部分,其中以来源于PSII光裂解水的电子为主,约占75%-90%,而来源于淀粉等有机底物降解的电子为辅,约占10%-25%。通过施加叶绿体呼吸抑制剂propyl gallate(PG)和交替氧化酶抑制剂salicyl hydroxamic acid(SHAM),研究发现:低氮缺硫条件下叶绿体呼吸和交替呼吸途径增强,有利于细胞迅速耗氧。叶绿体呼吸仅在细胞耗氧阶段作为电子安全阀消耗过量的光合电子,提高细胞总呼吸能力;叶绿体呼吸在厌氧产氢阶段作用较小。交替呼吸途径通过快速消耗细胞内过量的还原力,维持细胞内适宜的氧化还原状态,保证光合电子传递的顺畅。其与氢酶一起作为光合电子传递链的安全阀,消耗低氮缺硫厌氧条件下过量的光合电子/还原力,缓解光合电子传递链上的电子压力,减少光抑制的发生。
H_2photoproduction by green algae is able to convert the solar energy into H_2energy.This process is characterized by high catalytic and conversion efficiency, low energyconsumption and clean production process. In recent years, as a renewable method toproduce green energy, H_2production by green algae has attracted worldwide attention. Atwo-stage process has been developed to induce the model strain, Chlamydomonasreinhardtii to produce H_2efficiently under sulfur (S-) deprivation. However, the low actualconversion efficiency and the sensitivity to O2of system are the obstacles that hamper thestep of industrialization of H_2photoproduction by green algae. Most researches on H_2photoproduction by green algae were focused on Chlamydomonas reinhardtii, and only afew researches were related to H_2metabolisms in other green algae. Actually, some algalstrains are able to produce H_2, while others not, and the H_2metabolisms vary among species.This research will first screen for novel high efficient H_2producing algal strains, and thenoptimize and investigate into their H_2production process. The aim of this study is tounderstand the mechanisms underlying H_2photoproduction, which might help to providetheoretical and technical direction to the regulation and improvement of H_2photoproductionprocess. The main results were as follows:
     (1) By determining the H_2production abilities of62microalgal strains,13strains offreshwater green algae,13strains of marine green algae and3Arthrospira strains werefound to possess H_2producing ability. Among these strains,3freshwater and6marine greenalgal strains were first reported for their H_2producing ability. Based on the results ofmolecular and morphological identification,3novel freshwater strains were identified asParietochloris incise, Chlorella protothecoides, Chlorella sorokiniana;6novel marinestrains were identified as Tetraselmis helgolandica, Tetraselmis striata, Tetraselmistetrathele, Tetraselmis suecica, Nannochloropsis oceanica, Pyramimonas sp.. The testedArthrospira strains generated more H_2under nitrogen (N-) deprivation than S-deprivation.The chrysophyte strains detected in this study were unable to release any H_2underS-deprivation. The probability of marine green algae being able to produce H_2was only33.3%, which was much lower than the86.7%in freshwater green algae. The dark incubationtime required for H_2production in freshwater strains was usually less than7h. However, the time for inducing hydrogenase activity in marine green algae was more than7h andsometimes even extended to30-40h. In addition, the average H_2yield in freshwater strainswas higher than marine strains (8.88vs2.30ml/l). Among the H_2producing strains,Chlorella strains showed the best H_2production abilities, and freshwater Chlorella strainsproduced more H_2than marine Chlorella strains.
     (2) Dark induction induced rapid consumption of O2and activation of hydrogenases inalgal cells, which was considered as an effective means to determine in short time whetherthe strains could generate H_2. However, the H_2yield was low via dark induction. Continuousillumination was demonstrated to be an effective method to induced high H_2production inChlorella. A two-stage method was applied to induce H_2production by marine Chlorella.Firstly, the algal cells were grown in natural seawater L1medium adding acetate to obtainbiomass. Then the cells were harvested and transferred into artificial seawater mediumcontaining acetate to induce hydrogenase activities. Chlorella sp.(689S) and Chlorella sp.(707S) generated large amount of H_2using this method, and Chlorella sp.(707S) showedbetter H_2production ability. In addition, Chlorella sp.(707S) was able to produce H_2inN-free natural seawater medium, which provided possibility of industrialization of H_2production by marine algae.
     (3) The common use two-stage method was unable to induce efficient H_2production infreshwater Chlorella strains. This might be attributed to the accumulation of sulfur inChlorella cells during the growth phase, thus cells were not subjected to real S-deprivationwhen transferred to S-free medium. Interestingly, freshwater Chlorella cells grown inmedium with low concentration of ammonium could produce large amount of H_2, whentransferred to N-limited and S-deprived medium. The optimal ammonium concentration forcultivation and H_2production was0.35mM NH4Cl for Chlorella protothecoides (038F). Thetotal H_2output and average H_2production rate by Chlorella protothecoides (038F) was233.7ml/l and2.19ml/l/h under optimum H_2producing conditions. Even though the duration forH_2production (~100h) was slightly shorter than Chlamydomonas reinhardtii, Chlorellaprotothecoides (038F) was still considered as a potential rival strain that could compete withChlamydomonas reinhardtii for H_2photoproduction. Moreover, mere N-limitation (0.35mMNH4Cl) could induce high H_2production in Chlorella protothecoides (038F), which implied that N-limitation was the key factor inducing H_2production. Despite the fact thatS-deprivation only exerted an enhancement effect on H_2production under N-limitedcondition, re-addition of small amount of sulfate (<50M) improved H_2photoproduction.By studying the physiological and biochemical changes, we proposed the hypotheticalmechanism for the enhancement of H_2production by Chlorella protothecoides (038F) underN-limited and S-deprived conditions as follows: N-limitation during the cultivation phaseleaded to low photosynthetic oxygen evolution capacities of the cells, and inducedaccumulation of large amount of intracellular starch. Both factors favored rapid consumptionof O2, fast establishment of anaerobiosis and induction of high hydrogenase activity.
     (4) By studying the effect of photosynthetic inhibitors,3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and2,5-dibromo-3-methyl-6-isopropylp-benzoquinone (DBMIB)on H_2production process under N-limited and S-deprived conditions,75-90%electrons forhydrogenase reaction were found to originate from photosystem II (PSII), the other10-25%came from organic compounds such as starch degradation. By study the effect of propylgallate (PG)(the chlororespiratory inhibitor), and salicyl hydroxamic acid (SHAM)(thealternative oxidase inhibitor), we found that the chlororespiration and alternative oxidase(AOX) pathway was enhanced under N-limitation and S-deprivation, which favored rapidconsumption of O2. Chlororespiration was found to be activated only during O2consumptionphase in aerobic atmosphere, and the enhancement of its activity improved the totalrespiratory activity. When the system was transient to anoxia, the chlororespiratory activitydisappeared promptly. Chlororespiration was considered to severe as an electron valve anddissipate excess photoelectrons.
     The AOX pathway removed the excess cellular redox equivalents rapidly, in order tomaintain a suitable reduced state for photoelectron transport and H_2photoproduction. TheAOX pathway, together with hydrogenases, acted as effective energy valves forphotosynthetic electron transport. These pathways could dissipate excessive photoelectronsor reduced equivalents under anaerobiosis to release the high electron pressure on thephotosynthetic chain, in order to prevent the occurrence of photoinhibition.
引文
1. IEA. Key World Energy Statistics.2010; Available from:http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010.pdf.
    2. Stern N, Stern Review Report on the Economics of Climate Change.2006, HMtreasury: London.
    3. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu JP, and Seibert M.Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms[J]. Annual Review of Plant Biology.2007;58:71-91.
    4. Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing thechlorophyll antennae to maximize efficiency [J]. Plant Science.2009;177(4):272-80.
    5. Brentner LB, Peccia J, and Zimmerman JB. Challenges in Developing Biohydrogen asa Sustainable Energy Source: Implications for a Research Agenda [J]. EnvironmentalScience&Technology.2010;44(7):2243-54.
    6. Troshina O, Serebryakova L, Sheremetieva M, and Lindblad P. Production of H2bythe unicellular cyanobacterium Gloeocapsa alpicola CALU743during fermentation[J]. International Journal of Hydrogen Energy.2002;27(11–12):1283-9.
    7. Harwood CS. Nitrogenase-catalyzed hydrogen production by purple non-sulfurphotosynthetic bacteria [M]. in: Wall JDH, C. S.;Demain, A., editors. Bioenergy.Washington, D.C.: ASM Press;2008, p.259-71.
    8. Angenent LT, Karim K, Al-Dahhan MH, and Domiguez-Espinosa R. Production ofbioenergy and biochemicals from industrial and agricultural wastewater [J]. Trends inBiotechnology.2004;22(9):477-85.
    9. Weissman JC and Benemann JR. Hydrogen production by nitrogen-starved cultures ofAnabaena-cylindrica [J]. Appl Environ Microbiol.1977;33(1):123-31.
    10. Liu JG, Bukatin VE, and Tsygankov AA. Light energy conversion into H2byAnabaena variabilis mutant PK84dense cultures exposed to nitrogen limitations [J].Int J Hydrogen Energy.2006;31(11):1591-6.
    11. Brouers M and Hall DO. Ammonia and Hydrogen-Production by ImmobilizedCyanobacteria [J]. Journal of Biotechnology.1986;3(5-6):307-21.
    12. Shah V, Garg N, and Madamwar D. Ultrastructure of the cyanobacterium Nostocmuscorum and exploitation of the culture for hydrogen production [J]. Folia Microbiol(Praha).2003;48(1):65-70.
    13. Baebprasert W, Lindblad P, and Incharoensakdi A. Response of H2production andHox-hydrogenase activity to external factors in the unicellular cyanobacteriumSynechocystis sp. strain PCC6803[J]. International Journal of Hydrogen Energy.2010;35(13):6611-6.
    14. Aoyama K, Uemura I, Miyake J, and Asada Y. Fermentative metabolism to producehydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis [J].Journal of Fermentation and Bioengineering.1997;83(1):17-20.
    15. McNeely K, Xu Y, Bennette N, Bryant DA, and Dismukes GC. Redirecting reductantflux into hydrogen production via metabolic engineering of fermentative carbonmetabolism in a cyanobacterium [J]. Appl Environ Microbiol.2010;76(15):5032-8.
    16. Melis A and Happe T. Trails of Green Alga Hydrogen Research–from Hans Gaffronto New Frontiers [J]. Photosynthesis Research.2004;80(1):401-9.
    17. Miura Y, Yagi K, Shoga M, and Miyamoto K. Hydrogen production by a green alga,Chlamydomonas reinhardtii, in an alternating light/dark cycle [J]. Biotechnol Bioeng.1982;24(7):1555-63.
    18. Klein U and Betz A. Fermentative Metabolism of Hydrogen-evolvingChlamydomonas moewusii [J]. Plant Physiol.1978;61(6):953-6.
    19. Persanov VM and Gogotov IN. Evolution of Molecular-Hydrogen by Cells of theGreen-Alga Chlorella-Vulgaris [J]. Soviet Plant Physiology.1979;26(3):447-53.
    20. Winkler M, Heil B, and Happe T. Isolation and molecular characterization of the[Fe]-hydrogenase from the unicellular green alga Chlorella fusca [J]. BiochimBiophys Acta.2002;1576(3):330-4.
    21. Maksimova IV and Dal ES. Production of glycolic acid by the cells of Chlorellapyrenoidosa [J]. Mikrobiologiia.1975;44(6):1057-63.
    22. Samira Chader HH, Spiros N. Agathos. Study of hydrogen production by three strainsof Chlorella isolated from the soil in the Algerian Sahara [J]. International Journal ofHydrogen Energy.2009;34:4941-6.
    23. Gaffron H and Rubin J. Fermentative and photochemical production of hydrogen inalgae [J]. Journal of General Physiology.1943;26(2):219-40.
    24. Ballin G, Doucha J, Zachleder V, and Setlik I. Macromolecular Syntheses and theCourse of Cell-Cycle Events in the Chlorococcal Alga Scenedesmus-Quadricaudaunder Nutrient Starvation-Effect of Nitrogen Starvation [J]. Biologia Plantarum.1988;30(2):81-91.
    25. Cherdsak Maneeruttanarungroj PL, Aran Incharoensakdi. A newly isolated green alga,Tetraspora sp. CU2551, from Thailand with efficient hydrogen production [J].International Journal of Hydrogen Energy.2010:1-7.
    26. Schnackenberg J, Ikemoto H, and Miyachi S. Photosynthesis and hydrogen evolutionunder stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale [J].Journal of Photochemistry and Photobiology B-Biology.1996;34(1):59-62.
    27. Guan Y, Zhang W, Deng M, Jin M, and Yu X. Significant enhancement ofphotobiological H2evolution by carbonylcyanide m-chlorophenylhydrazone in themarine green alga Platymonas subcordiformis [J]. Biotechnol Lett.2004;26(13):1031-5.
    28. He ML, Li L, and Liu JG. Isolation of wild microalgae from natural water bodies forhigh hydrogen producing strains [J]. Int J Hydrogen Energy.2012;37(5):4046-56.
    29. Ghirardi ML, Zhang LP, Lee JW, Flynn T, Seibert M, Greenbaum E, et al. Microalgae:a green source of renewable H2[J]. Trends Biotechnol.2000;18(12):506-11.
    30. Winkler M, Hemschemeier A, Gotor C, Melis A, and Happe T.[Fe]-hydrogenases ingreen algae: photo-fermentation and hydrogen evolution under sulfur deprivation [J].Int J Hydrogen Energy.2002;27(11-12):1431-9.
    31. Posewitz MC, Dubini, A., Meuser, J. E., Seibert, M., Ghirardi, M. L., Elizabeth, H. H.,and David BS, and George, B. W. Hydrogenases, hydrogen production, and anoxia[M]. in: Stern DB, editors. The Chlamydomonas Sourcebook: Organellar andMetabolic Processes. London: Elsevier: Academic Press;2009, p.217-55.
    32. Ghirardi ML, Togasaki RK, and Seibert M. Oxygen sensitivity of algal H2production[J]. Appl Biochem Biotechnol.1997;63-65:141-51.
    33. Urbig T, Schulz R, and Senger H. Inactivation and reactivation of the hydrogenases ofthe green algae Scenedesmus obliquus and Chlamydomonas reinhardtii [J]. ZeitschriftFur Naturforschung C-a Journal of Biosciences.1993;48(1-2):41-5.
    34. Lemon BJ and Peters JW. Binding of exogenously added carbon monoxide at theactive site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum [J].Biochemistry.1999;38(40):12969-73.
    35. L F, A T, and T H. A novel type of iron hydrogenase in the green alga Scenedesmusobliquus is linked to the photosynthetic electron transport chain [J]. J Biol Chem.2001276(9):6125-32.
    36. Happe T and Kaminski A. Differential regulation of the Fe-hydrogenase duringanaerobic adaptation in the green alga Chlamydomonas reinhardtii [J]. Eur J Biochem2002;269(3):1022-32.
    37. Forestier M, King P, Zhang LP, Posewitz M, Schwarzer S, Happe T, et al. Expressionof two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions[J]. Eur J Biochem.2003;270(13):2750-8.
    38. Winkler M, Maeurer C, Hemschemeier A, and Happe T. The isolation of green algalstrains with outstanding H2-productivity. Biohydrogen III JM, Y Igarashi, M Roegner:Elsevier Science, Oxford, UK;2004,103-16.
    39. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, and Ghirardi ML.Discovery of two novel radical S-adenosylmethionine proteins required for theassembly of an active [Fe] hydrogenase [J]. J Biol Chem.2004;279(24):25711-20.
    40. Happe T, Mosler B, and Naber JD. Induction, localization and metal content ofhydrogenase in the green-alga Chlamydomonas-reinhardtii [J]. Eur J Biochem.1994;222(3):769-74.
    41. Mus F, Dubini A, Seibert M, Posewitz MC, and Grossman AR. Anaerobic acclimationin Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, andmetabolic pathways [J]. J Biol Chem.2007;282(35):25475-86.
    42. Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, et al. Geneticdisruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into therole of HYDA2in H2production [J]. Biochemical and Biophysical ResearchCommunications.2012;417(2):704-9.
    43. Urbig T, Schulz R, and Senger H. Inactivation and reactivation of the hydrogenases ofthe green-algae Scenedesmus obliquus and Chlamydomonas reinhardtii [J]. ZeitschriftFur Naturforschung C-a Journal of Biosciences.1993;48(1-2):41-5.
    44. Melis A, Zhang LP, Forestier M, Ghirardi ML, and Seibert M. Sustainedphotobiological hydrogen gas production upon reversible inactivation of oxygenevolution in the green alga Chlamydomonas reinhardtii [J]. Plant Physiol.2000;122(1):127-35.
    45. Burgess SJ, Tamburic B, Zemichael F, Hellgardt K, and Nixon PJ. Solar-drivenhydrogen production in green algae [J]. Advances in Applied Microbiology.2011;75:71-110.
    46. Greenbaum E, Guillard RRL, and Sunda WG. Hydrogen and oxygen photoproductionby marine algae [J]. Photochemistry and Photobiology.1983;37(6):649-55.
    47. Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, and Ghirardi ML.Hydrogen photoproduction is attenuated by disruption of an isoamylase gene inChlamydomonas reinhardtii [J]. Plant Cell.2004;16(8):2151-63.
    48. Desplats C, Mus F, Cuine S, Billon E, Cournac L, and Peltier G. Characterization ofNda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonaschloroplasts [J]. J Biol Chem.2009;284(7):4148-57.
    49. Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, et al. A type IINAD(P) H dehydrogenase mediates light-independent plastoquinone reduction in thechloroplast of Chlamydomonas [J]. Proceedings of the National Academy of Sciencesof the United States of America.2008;105(51):20546-51.
    50. Gfeller RP and Gibbs M. Fermentative Metabolism of Chlamydomonas reinhardtii: I.Analysis of Fermentative Products from Starch in Dark and Light [J]. Plant Physiol.1984;75(1):212-8.
    51. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, et al. Pyruvateformate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonasmitochondria [J]. J Biol Chem.2006;281(15):9909-18.
    52. Melis A. Photosynthetic H2metabolism in Chlamydomonas reinhardtii (unicellulargreen algae)[J]. Planta.2007;226(5):1075-86.
    53. Kosourov SN, Tsygankov AA, Seibert M, and Ghirardi ML. Sustained hydrogenphotoproduction by Chlamydomonas reinhardtii: Effects of culture parameters [J].Biotechnol Bioeng.2002;78(7):731-40.
    54. Zhang L and Melis A. Probing green algal hydrogen production [J]. Philos Trans RSoc Lond B Biol Sci.2002;357(1426):1499-507; discussion507-11.
    55. Zhang LP, Happe T, and Melis A. Biochemical and morphological characterization ofsulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga)[J]. Planta.2002;214(4):552-61.
    56. Wykoff DD, Davies JP, Melis A, and Grossman AR. The regulation of photosyntheticelectron transport during nutrient deprivation in Chlamydomonas reinhardtii [J]. PlantPhysiol.1998;117(1):129-39.
    57. Nixon PJ, Michoux F, Yu J, Boehm M, and Komenda J. Recent advances inunderstanding the assembly and repair of photosystem II [J]. Ann Bot.2010;106(1):1-16.
    58. Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB,et al. The dependence of algal H2production on Photosystem II and O2consumptionactivities in sulfur-deprived Chlamydomonas reinhardtii cells [J]. Biochim BiophysActa.2003;1607(2-3):153-60.
    59. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, et al. Themetabolome of Chlamydomonas reinhardtii following induction of anaerobic H2production by sulfur depletion [J]. J Biol Chem.2009;284(35):23415-25.
    60. Hemschemeier A, Jacobs J, and Happe T. Biochemical and physiologicalcharacterization of the pyruvate formate-lyase Pfl1of Chlamydomonas reinhardtii, atypically bacterial enzyme in a eukaryotic alga [J]. Eukaryot Cell.2008;7(3):518-26.
    61. Tsygankov AA, Kosourov SN, Seibert M, and Ghirardi ML. Hydrogenphotoproduction under continuous illumination by sulfur-deprived, synchronousChlamydomonas reinhardtii cultures [J]. Int J Hydrogen Energy2002;27(11-12):1239-44.
    62. Kosourov SN, Seibert M, and Ghirardi ML. Effects of extracellular pH on themetabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtiicultures [J]. Plant Cell Physiol.2003;44(2):146-55.
    63. Ji CF, Yu XJ, Chen ZA, Xue S, Legrand J, and Zhang W. Effects of nutrientdeprivation on biochemical compositions and photo-hydrogen production ofTetraselmis subcordiformis [J]. International Journal of Hydrogen Energy.2011;36(10):5817-21.
    64. Batyrova KA, Tsygankov AA, and Kosourov SN. Sustained hydrogenphotoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures [J].International Journal of Hydrogen Energy.2012;37(10):8834-9.
    65. Philipps G, Happe T, and Hemschemeier A. Nitrogen deprivation results inphotosynthetic hydrogen production in Chlamydomonas reinhardtii [J]. Planta.2012;235(4):729-45.
    66. Hemschemeier A, Fouchard S, Cournac L, Peltier G, and Happe T. Hydrogenproduction by Chlamydomonas reinhardtii: an elaborate interplay of electron sourcesand sinks [J]. Planta.2008;227(2):397-407.
    67. Hemschemeier A, Melis A, and Happe T. Analytical approaches to photobiologicalhydrogen production in unicellular green algae [J]. Photosynth Res.2009;102(2-3):523-40.
    68. Mus F, Cournac L, Cardettini V, Caruana A, and Peltier G. Inhibitor studies onnon-photochemical plastoquinone reduction and H2photoproduction inChlamydomonas reinhardtii [J]. Biochim Biophys Acta, Bioenerg.2005;1708(3):322-32.
    69. Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, and Rubin AB.Relationships between H2photoproduction and different electron transport pathwaysin sulfur-deprived Chlamydomonas reinhardtii [J]. Int J Hydrogen Energy.2009;34(22):9087-94.
    70. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, et al.Improved photobiological H2production in engineered green algal cells [J]. J BiolChem.2005;280(40):34170-7.
    71. Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, et al. Control ofHydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flowin Chlamydomonas reinhardtii [J]. Plant Cell.2011;23(7):2619-30.
    72. Cournac L, Mus F, Bernard L, Guedeney G, Vignais P, and Peltier G. Limiting steps ofhydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC6803asanalysed by light-induced gas exchange transients [J]. International Journal ofHydrogen Energy.2002;27(11-12):1229-37.
    73. Lee JW and Greenbaum E. A new oxygen sensitivity and its potential application inphotosynthetic H2production [J]. Appl Biochem Biotechnol.2003;105-108:303-13.
    74. Raghavendra AS and Padmasree K. Beneficial interactions of mitochondrialmetabolism with photosynthetic carbon assimilation [J]. Trends in Plant Science.2003;8(11):546-53.
    75. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, et al.Mutations in the Arabidopsis gene immutans cause a variegated phenotype byinactivating a chloroplast terminal oxidase associated with phytoene desaturation [J].Plant Cell.1999;11(1):57-68.
    76. Wu DY, Wright DA, Wetzel C, Voytas DF, and Rodermel S. The immutans variegationlocus of Arabidopsis defines a mitochondrial alternative oxidase homolog thatfunctions during early chloroplast biogenesis [J]. Plant Cell.1999;11(1):43-55.
    77. Houille-Vernes L, Rappaport F, Wollman FA, Alric J, and Johnson X. Plastid terminaloxidase2(PTOX2) is the major oxidase involved in chlororespiration inChlamydomonas [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.2011;108(51):20820-5.
    78. Antal TK, Volgusheva AA, Kukarskih GP, Bulychev AA, Krendeleva TE, and RubinAB. Effects of sulfur limitation on photosystem II functioning in Chlamydomonasreinhardtii as probed by chlorophyll a fluorescence [J]. Physiologia Plantarum.2006;128(2):360-7.
    79. Peltier G and Schmidt GW. Chlororespiration: an adaptation to nitrogen deficiency inChlamydomonas reinhardtii [J]. Proc Natl Acad Sci U S A.1991;88(11):4791-5.
    80. Rosso D IA, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, HurryV, Rodermel SR, Maxwell DP, Hüner NPA. Immutants does not act as stress-inducedsafety valve in the protection of the photosynthetic apparatus [J]. Plant Physiol.2006;142:574-85.
    81. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, and Hankamer B. Photosynthesis:a blueprint for solar energy capture and biohydrogen production technologies [J].Photochem Photobiol Sci.2005;4(12):957-70.
    82. King PW, Posewitz MC, Ghirardi ML, and Seibert M. Functional studies of [FeFe]hydrogenase maturation in an Escherichia coli biosynthetic system [J]. Journal ofBacteriology.2006;188(6):2163-72.
    83. Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, et al.Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenaselibraries [J]. Biotechnology Letters.2007;29(3):421-30.
    84. Stapleton JA and Swartz JR. A Cell-Free Microtiter Plate Screen for Improved [FeFe]Hydrogenases [J]. Plos One.2010;5(5).
    85. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, et al. Howoxygen attacks [FeFe] hydrogenases from photosynthetic organisms [J]. Proceedingsof the National Academy of Sciences.2009.
    86. Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, et al. Moleculardynamics and experimental investigation of H2and O2diffusion in [Fe]-hydrogenase[J]. Biochemical Society Transactions.2005;33:80-2.
    87. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, et al. The crystalstructure of [Fe]-hydrogenase reveals the geometry of the active site [J]. Science.2008;321(5888):572-5.
    88. Peters JW, Lanzilotta WN, Lemon BJ, and Seefeldt LC. X-ray crystal structure of theFe-only hydrogenase (CpI) from Clostridium pasteurianum to1.8angstrom resolution[J]. Science.1998;282(5395):1853-8.
    89. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, et al.Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure ofHydA(DeltaEFG)[J]. Nature.2010;465(7295):248-51.
    90. Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, and Happe T. Isolation andfirst EPR characterization of the [FeFe]-hydrogenases from green algae [J]. BiochimBiophys Acta.2008;1777(5):410-6.
    91. Stripp S, Sanganas O, Happe T, and Haumann M. The structure of the active siteH-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtiistudied by X-ray absorption spectroscopy [J]. Biochemistry.2009;48(22):5042-9.
    92. Hemschemeier A and Happe T. Alternative photosynthetic electron transport pathwaysduring anaerobiosis in the green alga Chlamydomonas reinhardtii [J]. BiochimBiophys Acta.2011;1807(8):919-26.
    93. Terauchi AM, Lu SF, Zaffagnini M, Tappa S, Hirasawa M, Tripathy JN, et al. Patternof Expression and Substrate Specificity of Chloroplast Ferredoxins fromChlamydomonas reinhardtii [J]. Journal of Biological Chemistry.2009;284(38):25867-78.
    94. Winkler M, Hemschemeier A, Jacobs J, Stripp S, and Happe T. Multiple ferredoxinisoforms in Chlamydomonas reinhardtii-Their role under stress conditions andbiotechnological implications [J]. European Journal of Cell Biology.2010;89(12):998-1004.
    95. Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, and Zhang SG.Photosynthetic electron partitioning between [FeFe]-hydrogenase andferredoxin:NADP(+)-oxidoreductase (FNR) enzymes in vitro [J]. Proceedings of theNational Academy of Sciences of the United States of America.2011;108(23):9396-401.
    96. Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, et al. Hydrogenproduction in Chlamydomonas: photosystem II-dependent and-independent pathwaysdiffer in their requirement for starch metabolism [J]. Plant Physiol.2009;151(2):631-40.
    97. Rochaix JD. Reprint of: Regulation of photosynthetic electron transport [J]. BiochimBiophys Acta.2011;1807(8):878-86.
    98. Peltier G, Tolleter D, Billon E, and Cournac L. Auxiliary electron transport pathwaysin chloroplasts of microalgae [J]. Photosynth Res.2010;106(1-2):19-31.
    99. Philipps G, Krawietz D, Hemschemeier A, and Happe T. A pyruvate formatelyase-deficient Chlamydomonas reinhardtii strain provides evidence for a linkbetween fermentation and hydrogen production in green algae [J]. The Plant Journal.2011;66(2):330-40.
    100. Dubini A, Mus F, Seibert M, Grossman AR, and Posewitz MC. Flexibility inAnaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtiiLacking Hydrogenase Activity [J]. Journal of Biological Chemistry.2009;284(11):7201-13.
    101. Polle JEW, Kanakagiri S, Jin E, Masuda T, and Melis A. Truncated chlorophyllantenna size of the photosystems—a practical method to improve microalgalproductivity and hydrogen production in mass culture [J]. International Journal ofHydrogen Energy.2002;27(11–12):1257-64.
    102. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, et al.Engineering photosynthetic light capture: impacts on improved solar energy tobiomass conversion [J]. Plant Biotechnol J.2007;5(6):802-14.
    103. Kosourov SN, Ghirardi ML, and Seibert M. A truncated antenna mutant ofChlamydomonas reinhardtii can produce more hydrogen than the parental strain [J].International Journal of Hydrogen Energy.2011;36(3):2044-8.
    104. Li Z, Wakao S, Fischer BB, and Niyogi KK. Sensing and responding to excess light[J]. Annual Review of Plant Biology.2009;60:239-60.
    105. Faraloni C and Torzillo G. Phenotypic characterization and hydrogen production inChlamydomonas reinhardtii QB-binding D1-protein mutants under sulfur starvation:changes in Chl fluorescence and pigment composition [J]. Journal of Phycology.2010;46(4):788-99.
    106. Torzillo G, Scoma A, Faraloni C, Ena A, and Johanningmeier U. Increased hydrogenphotoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1protein mutant [J]. International Journal of Hydrogen Energy.2009;34(10):4529-36.
    107. Makarova VV, Kosourov S, Krendeleva TE, Semin BK, Kukarskikh GP, Rubin AB, etal. Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants withimpaired photosystem II photochemical activity [J]. Photosynth Res.2007;94(1):79-89.
    108. Chen HC, Newton AJ, and Melis A. Role of SulP, a nuclear-encoded chloroplastsulfate permease, in sulfate transport and H2evolution in Chlamydomonas reinhardtii[J]. Photosynth Res.2005;84(1-3):289-96.
    109. Laurinavichene TV, Tolstygina IV, Galiulina RR, Ghirardi ML, Seibert M, andTsygankov AA. Dilution methods to deprive Chlamydomonas reinhardtii cultures ofsulfur for subsequent hydrogen photoproduction [J]. International Journal of HydrogenEnergy.2002;27(11–12):1245-9.
    110. Laurinavichene T, Tolstygina I, and Tsygankov A. The effect of light intensity onhydrogen production by sulfur-deprived Chlamydomonas reinhardtii [J]. J Biotechnol.2004;114(1-2):143-51.
    111. Kosourov SN, Patrusheva E, Ghirardi ML, Seibert M, and Tsygankov AA. Acomparison of hydrogen photoproduction by sulfur-deprived Chlamydomonasreinhardtii under different growth conditions [J]. J Biotechnol.2007;128(4):776-87.
    112. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, and Tsygankov AA.Demonstration of sustained hydrogen photoproduction by immobilized,sulfur-deprived Chlamydomonas reinhardtii cells [J]. International Journal ofHydrogen Energy.2006;31(5):659-67.
    113. Kosourov SN and Seibert M. Hydrogen photoproduction by nutrient-deprivedChlamydomonas reinhardtii cells immobilized within thin alginate films under aerobicand anaerobic conditions [J]. Biotechnology and Bioengineering.2009;102(1):50-8.
    114. Oncel S and Vardar-Sukan F. Photo-bioproduction of hydrogen by Chlamydomonasreinhardtii using a semi-continuous process regime [J]. International Journal ofHydrogen Energy.2009;34(18):7592-602.
    115. Ruhle T, Hemschemeier A, Melis A, and Happe T. A novel screening protocol for theisolation of hydrogen producing Chlamydomonas reinhardtii strains [J]. BMC PlantBiol.2008;8:107.
    116. Marín-Navarro J, Esquivel M, and Moreno J. Hydrogen production byChlamydomonas reinhardtii revisited: Rubisco as a biotechnological target [J]. WorldJournal of Microbiology and Biotechnology.2010;26(10):1785-93.
    117. Wu SX, Huang R, Xu LL, Yan GY, and Wang QX. Improved hydrogen productionwith expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii[J]. Journal of Biotechnology.2010;146(3):120-5.
    118. Wu S, Xu L, Huang R, and Wang Q. Improved biohydrogen production with anexpression of codon-optimized hemH and lba genes in the chloroplast ofChlamydomonas reinhardtii [J]. Bioresour Technol.2011;102(3):2610-6.
    119. Kovacs L, Wiessner W, Kis M, Nagy F, Mende D, and Demeter S. Short-andlong-term redox regulation of photosynthetic light energy distribution andphotosystem stoichiometry by acetate metabolism in the green alga, Chlamydobotrysstellata [J]. Photosynthesis Research.2000;65(3):231-47.
    120. Goulding KH and Merrett MJ. Photometabolism of Acetate by Chlorella Pyrenoidosa[J]. Journal of Experimental Botany.1966;17(53):678-&.
    121. Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, et al.Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprivedChlamydomonas cells [J]. Appl Environ Microbiol.2005;71(10):6199-205.
    122. J.Geider R and Osborne BA. Respiration and microalgal growth: a review of thequantitative relationship between dark respiration and growth [J]. New Phytologist.1989;112(3):327-41.
    123. Burris JE. Photosynthesis, photorespiration, and dark respiration in eight species ofalgae [J]. Marine Biology.1977;39(4):371-9.
    124. Ananyev G, Carrieri D, and Dismukes GC. Optimization of metabolic capacity andflux through environmental cues to maximize hydrogen production by thecyanobacterium "Arthrospira (Spirulina) maxima"[J]. Appl Environ Microbiol.2008;74(19):6102-13.
    125. Strasser BJ and Strasser RJ. Measuring fast fluorescence transients to addressenvironmental questions: the JIP test [M]. in: Mathis P, editors. Photosynthesis: FromLight to Biosphere. Dordrecht: Kluwer Academic Publishers;1995, p.977–80.
    126. Strasser RJ, Srivatava A, and Tsimilli MM. Screening the vitality and photosyntheticactivity of plants by fluorescence transient [M]. in: Behl RK PM, Lather BPS, editors.Crop improvement for food security. Hisar, India: AAARM;1999, p.72–115.
    127. Amutha KB and Murugesan AG. Biological hydrogen production by the algal biomassChlorella vulgaris MSU01strain isolated from pond sediment [J]. BioresourceTechnology.2011;102(1):194-9.
    128. Wang HY, Fan XL, Zhang YT, Yang DW, and Guo RB. Sustained photo-hydrogenproduction by Chlorella pyrenoidosa without sulfur depletion [J]. BiotechnologyLetters.2011;33(7):1345-50.
    129. Wellen KE and Thompson CB. Cellular metabolic stress: considering how cellsrespond to nutrient excess [J]. Mol Cell.2010;40(2):323-32.
    130. Lynn SG, Kilham SS, Kreeger DA, and Interlandi SJ. Effect of nutrient availability onthe biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscusminutulus (Bacillariophyceae)[J]. J Phycol.2000;36(3):510-22.
    131. Kosourov SN, Batyrova KA, Petushkova EP, Tsygankov AA, Ghirardi ML, andSeibert M. Maximizing the hydrogen photoproduction yields in Chlamydomonasreinhardtii cultures: The effect of the H2partial pressure [J]. International Journal ofHydrogen Energy.2012;37(10):8850-8.
    132. Chahal JK. Ability of Plectranthus spp to Re-green After Nitrogen Deficiency.Lincoln, Nebraska,University of Nebraska-Lincoln, Agronomy and HorticultureDepartment2010; Master: p.1-13.
    133. Achnine L, Mata R, Iglesias-Prieto R, and Lotina-Hennsen B. Impairment ofphotosystem II donor side by the natural product odoratol [J]. J Agric Food Chem.1998;46(12):5313-7.
    134. Zhang LT, Zhang ZS, Gao HY, Xue ZC, Yang C, Meng XL, et al. Mitochondrialalternative oxidase pathway protects plants against photoinhibition by alleviatinginhibition of the repair of photodamaged PSII through preventing formation ofreactive oxygen species in Rumex K-1leaves [J]. Physiol Plant.2011;143(4):396-407.
    135. Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, and Peltier G. In vivointeractions between photosynthesis, mitorespiration, and chlororespiration inChlamydomonas reinhardtii [J]. Plant Physiology.2002;129(4):1921-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700