用户名: 密码: 验证码:
酸枣荆条液流特征及其耗水尺度扩展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被恢复重建已有多年的研究与实践,但由于地域、干扰类型和强度的差异性,植被退化类型、原因、程度及响应机制也各不相同。因此,在不同区域山地植被恢复的目标、侧重点及其选用的配套关键技术也各不相同。酸枣和荆条抗干旱和瘠薄的能力很强,在北方山地丘陵区的水土保持和植被恢复建设中的地位极为重要,但是,长期以来对其关注不够,研究不力。本论文以这两种典型灌木树种为研究对象,利用热扩散式边材茎流测定系统和自动气象站对河北省平山县岗南镇寺家沟的酸枣荆条的边材液流及其环境影响因子于2008-2009年进行了连续同步监测,找出了影响液流启动、停止、瞬态变化、平均值变化的主导环境因子,找到了树干边材液流不同天气、不同季节的变化过程并建立了液流速率的环境因子回归模型;通过对样株测树因子、解剖结构、生物量的调查,找出了最佳尺度扩展参数;在样方水平上找到了最佳尺度扩展参数以及抗旱节水型植被的配置模式。结果表明:
     1.影响液流的主导环境因子不同天气条件下酸枣荆条树干液流从启动、上升、下降等日进程上表现出极大差异;不论晴天、阴天还是雨天,各环境因子对树干液流速率均有影响,但程度不同,各环境因子的值加权平均结果表明太阳辐射是影响液流速率的最主要因子;各月日平均液流通量值与植物的年生长发育规律有直接的关系,在植物的开花、坐果及果实膨大期(快速生长期)耗水量大,其他月份则小;酸枣荆条各月日平均累计液流通量与环境因子的均值表现出不同的趋势,与相对湿度完全相同,月相对湿度的增减液流通量也随之而增减,与温度、降水量略有差异,与太阳辐射则呈现出比较复杂的变化趋势。
     2.液流速率日季模型不同天气条件的模型选择结果为晴天的多元线性回归模型;不同月份荆条酸枣的回归模型选择全年的模型作为代表。酸枣、荆条日变化模型选择为:
     酸枣:
     Y=0.65809+0.00282tmp+0.04125vwcc-0.00042hmd+0.00138wng+6.19*10-5smsa-0.65*10-5srd
     荆条:
     Y=0.67552+0.00199tmp+0.04325vwcc+7.16*10-5smsa-0.00061hmd-5.88*10-6srd
     酸枣、荆条季节变化模型为:
     酸枣:
     Y=0.93073+0.00283tnp+0.00087tmpb+0.00221vwcc-0.00022hmd+0.00134wng+0.01259rnf
     荆条:
     Y=0.92314+0.00290tmp+0.00225vwcc+0.00838rnf-0.00018hmd+0.00112tmpb+0.00138wng+0. OOOOlsrd
     (式中:tmp为空气温度,vwcc为土壤含水量,rnf为降水量,hmd为空气湿度,tmpb为土壤温度,srd为太阳辐射,wng为风速,smsa为土壤水势。)
     3.降水后液流特征的连续变化特征降水后,酸枣荆条的液流速率与液流通量总体呈现先上升后降低的趋势,7月29日降雨前降至最低,且荆条的水分消耗量大于酸枣;降水后,土壤含水量很高,植物有充足的水分用于蒸腾,但随时间的推移,土壤含水量逐渐降低,植株可用于蒸腾的水分有限,土壤含水量与液流速率的相关性则逐渐增强;液流速率与太阳辐射的相关性呈逐渐增强、与空气温度湿度的相关性呈逐渐减弱趋势:降水后,酸枣的夜间液流通量值随时间延伸而呈现降升降的趋势,荆条夜间液流通量随时间的变化趋势不明显,两者的值与夜间的温度、空气湿度、土壤含水量均值均没有随时间推移而增减的趋势。
     4.扩展参数选择从边材直径、树高、地径、全株生物量、地上部生物量、边材导管面积、每平方厘米导管数量等7个因子的参数模拟来看,不同树种其模拟参数不一致,并且模型的模拟差异较大。酸枣的参数选择结果为:地径、全株生物量(中间模型为全株生物量与地径)、地上部生物量(中间模型为:地上部生物量与地径):荆条的选择结果为:边材直径、地径、全株生物量(中间模型为:全株生物量与地径)、地上部生物量(中间模型为:地上部生物量与地径)。
     5.林分扩展参数及抗旱节水植被的配置用地径、全株生物量、地上部生物量、树高等四个参数的边材面积模型来预测林分的边材面积,用液流通量的计算方法来推算林分的耗水量,对同一样方用彭曼公式的计算结果进行比较,筛选出全株生物量为最佳林分尺度扩展参数,全株生物量与边材面积模型(中间模型为全株生物量与地径)是最优样方耗水量预测模型;用年龄和地径、树高、冠幅等拟合模型进行耗水量及郁闭时间的推算,并用耗水量和郁闭时间两个因素来确定酸枣荆条的初植密度和配置比例,酸枣纯林郁闭度达到0.8(冠幅面积超过8000m2)的年份为第七年,前七年的平均耗水量为17921.d-1.hm-2,是5种密度耗水量中最低的,因此酸枣纯林的初植密度为10000株/hm2;从荆条的5种密度看,10000株/hm2第4年即达到郁闭,平均耗水量为28171.d-1.hm-2;6667株/hm:第5年达到郁闭,平均耗水量为26831.d-1.hm-2综合选择6667株/hm2作为荆条纯林的初植密度:酸枣荆条混交模式中达到郁闭的时间相差不大,为6-8年,但达到郁闭时平均耗水量酸3荆1的最低,为19291.d-1.hm-2,因此混交模型配置酸3荆1比例最佳;抗旱节水型植被的乔灌混交比例为乔1灌3,乔木的密度为2*2m,也即是刺槐种植500株/hm2,酸枣3750株/hm2,荆条1250株/hm2。
The research and practice concerning the restoration of vegetation has been carried out for several years. However, owing to the differences of region, inference types and intensity, the form, reason, degree and responding mechanism of the vegetation degradation also vary from each other. Therefore, the mountain vegetation restorations in different regions have various goals and emphasis, as well as the supporting key technology. It is very strong of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla in drought-tolerant and barren resistence and the two shrubs are very important in water and soil conservation and vegetation recovery in North hilly and mountainous area. But the attention is insufficient and the research on them is few. This thesis focuses on the two typical shrub Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla in the mountain area of North China, depending on the Thermal Dissipation Probe System and automatic meteorological station, which conduct continuous and simultaneous monitoring of the sap flow and environmental affecting factors of the Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla in Sijia Gou, Gangnan Town, Pingshan County of Hebei Province during2008to2009, and identifies the dominant environmental factors affecting the start and cease of the flow and also its transient changes and the changes of its mean value, finds out the changing process of sap flow under weather and seasonal changes, leading to the establishment of the environmental factors regression model of the flow rate; get the best scaling parameter by the investigation of the sample tree measurement factors, anatomical structure and the biomass; gain the best scaling parameter and the drought resistance and water saving vegetation configuration model at the quadrat level.
     1.The dominant environmental factors affecting the sap flow:different weather conditions will lead to great differences in the start, increase and decrease or other daily processes; all the environmental factors exert an influence on the trunk flow rate by different degrees, whose weighted average results demonstrated that solar radiation is the main factor affecting the flow rate; the average sap flux value of each day of each month has a direct relationship with the yearly growing regularity of the plants, which manifests as the large water consumption during the period of blooming, fruit setting and fruit enlargement, and small water consumption during other periods; the average cumulative monthly and daily sap flux of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla exhibits different trends with that of the average value of the environmental factors, but the former shows the same trend with that of the relative humidity, increasing and decreasing with the relative monthly humidity. While it has certain differences with the temperature and precipitation, and has presents complicated variation tendency with the solar radiation.
     2. The daily and seasonal model of flow rate The model choice under different weather conditions is the MLR (Multiple Linear Regression) Model in the sunny day; the MLR model choice of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla in different months is the representative model of the whole year. The model of diurnal variations are:
     Zizyphus jujuba var.:
     Y=0.65809+0.00282tmp+0.04125vwcc-0.00042hmd+0.00138wng+6.19*10-5smsa-1.65*10-5srd
     Vitex negundo var.
     Y=0.67552+0.00199tmp+0.04325vwcc+7.16*10-5smsa-0.00061hmd-5.88*10-6srd
     The model of seasonal variation are:
     Zizyphus jujuba var.:
     Y=0.93073+0.00283tmp+0.00087tmpb+0.00221vwcc-0.00022hmd+0.00134wng+0.01259rnf
     Vitex negundo var.:
     Y=0.92314+0.00290tmp+0.00225vwcc+0.00838rnf-0.00018hmd+0.00112tmpb+0.00138wng+0.00001srd
     3. The continuous variation characteristics of flow after rainfalls After the rain, the flow rate and sap flux of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla increase first and then decrease generally and decrease to the lowest before the rain on29th, July, even with the water consumption of Vitex negundo var. heterophylla larger than that of Zizyphus jujuba var. spinosus Hu; after the rain, with the water content of the soil being high, the plants have enough water for evapotranspiration. As the water content decreases, the water for evapotranspiration also become limited, and then the correlation between the flow rate and the water content of soil strengthens gradually; the correlation between the flow rate and the solar radiation enhances by degrees, and the correlation between the former and the temperature and humidity dwindled gradually; after the rain, the value of the sap flux of Zizyphus jujuba var. spinosus Hu at night shows a increase-decrease-increase movement, while the value of the sap flux of Vitex negundo var. heterophylla at night shows no obvious change, and the two values and the average value of the temperature, humidity and soil water content at night has no distinct movement over time.
     4. Scaling parameter choice It is seen from the seven parameter simulations, which are the sapwood diameter, tree height, diameter, tree biomass, aboveground biomass, sapwood catheter area, the catheter number per square centimeter, that the parameter simulation differs from different types of trees and the model simulation has large differences. The parameter choices of Zizyphus jujuba var. spinosus Hu are:diameter, tree biomass (intermediate model for the whole plant:biomass and ground diameter), aboveground biomass (intermediate model:aboveground biomass and ground diameter); the choices of Vitex negundo var. heterophylla are:sapwood diameter, diameter, tree biomass (intermediate model:the whole plant biomass and ground diameter), aboveground biomass (intermediate model:aboveground biomass and ground diameter).
     5. The scaling parameter of stand and the drought resistance and water saving vegetation configuration:After using the sapwood area model with the four parameters of the diameter, tree biomass, aboveground biomass and tree height to calculate the sapwood area of the stand, and using the method of calculating the flow flux to calculate the water consumption of the stand, comparing the results by the Penman's formula to calculate the same quadrat, the tree biomass is selected as the best stand scaling parameter, the tree biomass and the sapwood area model selected as the best quadrat water consumption calculating model; it is calculated by the fitting models of the age, diameter, height and canopy width to forecast the water consumption and the canopy closure time, by which to determine the planting density and allocation ratio of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla. The year when the canopy density of Zizyphus jujuba var. spinosus Hu reaches0.8(the canopy area exceeds8000m2) is the7th year, and the average water consumption of the preceding seven years is17921.d-1.hm-2, which is the lowest amount of water consumption among the five densities. Therefore, the planting density of Zizyphus jujuba var. spinosus Hu forest is10000trees/hm2. Seen from the five densities of Vitex negundo var. heterophylla,10000trees/hm2reach closure time at the fourth year with an average water consumption of28171.d-1.hm-2;6667trees/hm2reach closure time at the fifth year with an average water consumption of26831.d-1.hm-2, and the comprehensive choice of the planting density of Vitex negundo var. heterophylla is6667trees/hm2. The mixed forest of Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla reaches the closure time almost at the same time, which is6to8years, but the lowest average water consumption (19291.d-1.hm-2) when reaching the closure time is with a proportion of3Zizyphus jujuba var. spinosus Hu to1Vitex negundo var. heterophylla. Therefore, the best mixed model configuration is3:1for Zizyphus jujuba var. spinosus Hu and Vitex negundo var. heterophylla. The mixing ratio of tree and shrub in drought resistance and water saving vegetation is tree1shrub3, the density of tree is2*2m that is 500in one hm", the densitys of shrub are Zizyphus jujuba var. spinosus Hu3750in one hm2and Vitex negundo var. heterophylla1250in one hm2.
引文
Allen S J.. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria [J]. Agric Forest Meteorol[J].1990,49:291-309
    Allen SJ, Grime VL.1995. Measurements of transpiration from savannah shrubs using sap flow gauges. Agricultural and Forest Meteorology 75,23-41.
    Amarakoon D., Chen A., Melean P.. Estimating daytime latent heat flux and evapotranspiration in Jamaica. Agric For Meteoro,2000,102:113-124.
    An Saveyn, Kathy Steppe, and Raoul Lemeur, Spatial variability of xylem sap flow in mature beech (Fagus sylvatica) and its diurnal dynamics in relation to microclimate, Botany 2008(86):1440-1448
    Ansley RJ, Dugas WA, Heuer ML, Trevino BA. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa). Journal of Experimental, Botany,1994.45,847-56.
    Baker J M, van Bavel C HM.. Measurement of mass flow of water in the steins of herbaceous plants. Plant Cell Environ [J].1987,10:777-782.
    Becker, P.1996. Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods. Tree Physiol.16:295-299.
    Beyazgul, M., Y. Kayan. and F. Engelsman.. Estimation methods for crop water requirements in the Gediz Basin of western Turkey. J. Hydrol,2000,229:19-26.
    Boast C. W., Roherlson T. M.. A "micro lysimeter" method for determining evaporation from a bare soil:description and laboratory eva]uation[J].Soil Sci. Soc. Am. J.,1982,46:689-696.
    C'erma'k, J., Cienciala, E., Kucera, J,, and Hallgren, J. E. Radial velocity prof iles of water flow in trunks of Norway spruce and oak and the response of spruce to severing. Tree Physiol.[J].1992,10:367-380.
    C'erma'k, J., Kucera, J., and Nadezhdina, N.2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees (Berl.),18:529-546.
    Cermak J, Deml M, Perka M.. A new method of sap flow rate determination in trees. Biologia Plantrum,1973,15:171-177.
    Cermak J, Jenik J, Kucera J, ZidekV. Xylem water flow in a crack willow tree (Saiix fragilis L.) in relation to diurnal changes of environment.Oecologia[J]. 1984,64:145-51.
    Cienciala E, Lindroth A, Cermak J, Hallgren JE, Kucera J.1994. The effects of water availability on transpiration, water potential and growth of Picea abies during a growing season. Journal of Hydrology 155,57-71.
    Clark L. Stevens and Russell L. Eggert, Observations on the causes of the flow of sap in red maple, Plant Physiology,1945:636-648
    Cohen Y. Determination of orchard water requirement by a combined trunk sap flow and meteorological approach. Irrigation Science[J].1991,12:93-8.
    Cohen, Y., Cohen, S., Canctuarias-Aviles, T., and Schiller, G.2008. Variations in the radial gradient of sap velocity in trunksof forest and fruit trees. Plant Soil,305: 49-59.
    David G Simpson. Water use of interior Douglas-fir. Canadian Journal of Forest Research,2000,30(4):534-540.
    David Scott, Neil G. Bayfield, Alexander Cernusca, David A. Elston. Use of a weighing lysimeter system to assess the effects of trampling on evapotranspiration of montane plant communities. Canadian Journal of Botany,2002,80 (6):675-683.
    Delzon, S., Sartore, M., Granier, A., and Loustau, D.2004. Radialprofiles of sap flow with increasing tree size in maritime pine. Tree Physiol.24:1285-1293.
    Droogers P.. Estimating actual evapotranspiration using a detailed agro-hydrological model. J. Hydrol.2000,229:50-58.
    Du Ning, Guo Weihua, Zhang Xiuru et, Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress, Acta Physiologiae Plantarum,2010,32(5):839-848
    Dugas WA, Heuer ML, Hunsaker D, Kimball BA, Lewin KF, Nagy J, Johnson M.1994. Sap flow measurements of transpiration from cotton grown under ambient and enriched C02 concentrations. Agricultural and Forest Meteorology 70,231-45.
    Dugas WA, Wallace JS, Allen SJ, Roberts JM. Heat balance, porometer, and deuterium estimates of transpiration from potted trees. Agricultural and Forest Meteorology[J]. 1993,64:47-62.
    Dunn, G.M. and D. J. Connor. An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiol.[J].1993,13:321-336.
    Dye, P. J., Olbrich, B. W., and Poulter, A. G. The influence of growth rings in Pinus patula on heat pulse velocity and sap flow measurement. J. Exp. Bot. [J]. 1991,42:867-870.
    Edward P. Glenn, Alfredo R. Huete, Pamela L. Nagler, Katherine K. Hirschboeck, Paul Brown. Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration:Critical Reviews in Plant Sciences. Boca Raton,2007,26 (3):139-168.
    Edwards W R N, Booker R E.. Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement. Journal of Experimental Botany,1984,153:551-561.
    Edwards WRN, Warwick NWM. Transpiration from a kiwifruit vine as estimated by the heat pulse technique and the Penman-Monteith equation. New Zealand Journal of Agricultural Research[J].1984,27:537-43.
    Emil Cienciala, Per-Erik Mellander, Jiri Kucera, Madga Oplustilova, et al.. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Canadian Journal of Forest Research,2002,32 (4):693-699.
    Fares, A., and A. K. Alva.. Evaluating the capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an Entisol profile. Irrig. Sci.,2000,19:57-64.
    Fichtner K and Schulze E-D.. Xylem water flow in tropical vines as measured by a steady state heating method. Oecologia[J].1990,82:355-361.
    Fiora, A., and Cescatti, A.2006. Diurnal and seasonal variability in radial distribution of sap flux density:implications for estimating stand transpiration. Tree Physiol.26:1217-1225.
    Ford, C.R., Goranson, C. E., Mitchell, R. J., Will, R. E., and Teskey, R.0.2004b. Diurnal and seasonal variability in the radial distribution of sap flow:predicting total stem flow in Pinus taedatrees. Tree Physiol.24:941-950.
    Ford, C. R., McGuire, M. A., Mitchell, R. J., and Teskey, R.O.2004a. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physio].24:241-249.
    Granier A, Huc R, Barigah S T. Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology,1996,78:19-29.
    Granier A, Huc R, Barigah S T. Transpirat ion of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol.,1996,78:19-29
    Granier A., Claustres J. P.. Water relations of a Norway spruce(Picea abies) tree growing in natural condition:variation within the tree. Acta Oecologica[J]. 1989,10(3):295-310.
    Granier A., Huc R., Barigah S. T.. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol,1996,78:19-29.
    Granier A.. Evaluation of transpiration in a Douglas fir stand by means of sap flowmeasurements. Tree Physiology[J].1987,7:309-320.
    Grime V L, Morison J I L and Simmonds L P.. Including the heat storage term in sap flow measurements with the stem heat balance method. Agric. Forest Meteorol, 1995, a(74):1-25.
    Grime V L, Morison J I L and Simmonds L P.. Sap flow measurements from stem heat balances:a comparison of constant with variable power methods. Agric. Forest Meteorol,1995, b(74):27-40.
    Grimes V L, Morrison JIL, Simmonds LP.. Including the heat storage term in sap flow measurements with the stem heat balance method. Agric For Meteorol,1995,74:1-25.
    Ham J M., Heilman J L. Measurement of mass flow rate of sap in Ligustrum japonicum. HortScience [J].1990,25:465-467.
    Ham J M., Heilman J L. Dynamics of a heat balance stem flow gauge during high flow. Agron. [J].1990,1(82):147-152.
    Hatton, T. J. and R. A. Vertessy. Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen ratio. Hydrol. Proc. [J].1990,4:289-298.
    Hatton, T.J., Catchpole, E.A., and Vertessy, R. A. Integration of sapflow velocity to estimate plant water use. Tree Physiol. [J].1990,6:201-209.
    Hatton, T.J., S.J. Moore and P. H. Reece.1995. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies. Tree Physiol.15:219-227.
    Huber B., Schmidt E.. Eine Kompensationsmethode zur thermoelektrischen Messung langsamer Saftstrome. Ber deutsch Bot Ges,1937,55:514-529.
    Huber B.. Observation and measurements of sap flow in plant. Berichte der Deutscher Botanishcen Ges-sellschaft,1932,50:89-109.
    James W. Marvin and Mary T. Greene, Temperatiure-induced sap flow in excised stem of Acer, Plant Physiology,1951 (5):565-580
    Jason W. Oberg, Assefa M. Melesse. Evapotranspiration dynamics at an ecohydrological restoration site:an energy balance and remote sensing approach. Journal of the American Water Resources Association,2006,42(3):565-572.
    Jime'nez, M.S., Nadezhdina, N., C-erma'k, J., and Morales, D.2000. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. Tree Physiol.20:1149-1156.
    Kostner BMM, Schulze ED, Kelliher FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL. Transpiration and canopy conductance in a pristine broadleaved forest of Nothofagus-an analysis of xylem sap flow and eddy-correlation measurements. Oecologia[J].1992,91:3-9.
    Kubota, M., Tenhunen, J., Zimmermann, R., Schmidt, M., Adiku,S., and Kakubari, Y. 2005. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan. Tree Physiol. 25:545-556.
    Lascano R J, Baumhardt R L and Lipe W N.. Measurement of water flow in young grapevines using the stem heat balance method. Amer. J. Enol. Vitic. [J].1992,43:159-165.
    Loustau, D., Domec, J. C., and Bosc, A.1998. Interpreting the variations in xylem sap flux density within the trunk of maritime pine(Pinus pinaster Ait.):application of a model for calculating water flows at tree and stand levels. Ann. For. Sci.55:29-46.
    Mahmood Nachabe, Nirjhar Shah, Mark Ross, Jeff Vomacka. Evapotranspiration of Two Vegetation Covers in a Shallow Water Table Environment. Soil Science Society of America Journal,2005,69 (2):492-499.
    Mahmood, R. and K. G. Hubbard.. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J. Hydrol,2003,280:72-90.
    Marshall D. C.. Measurement of sap flow in conifers by heat transport. Plant Physiology,1958,33:385-386.
    Melanie Zeppel & Catriona M.O. Macinnis-Ng & Chelcy R. Ford & Derek Eamus The response of sap flow to pulses of rain in a temperate, Australian woodland Plant Soil (2008) 305:121-130
    Nadezhdina, N., C erma'k, J., and Ceulemans, R.2002. Radial patterns of sap flow in woody stems of dominant and understory species:scaling errors associated with positioning of sensors. Tree Physiol.22:907-918.
    Nadezhdina, N., C erma'k, J., Meiresonne, L., and Ceulemans, R.2007. Transpiration of Scots pine in Flanders growing on soil with irregular substratum. For. Ecol. Manage.243:1-9.
    Ogawa. H. and Kira. T. Method of estimating forest biomass. "primary productivity of Japanese Forest-bproductivity of terresstrial communities", Shidei. T. and Kira. T. ed. Univ. of Tokyo press, Tokyo,1997.
    Ogink Hendriks MJ.. Modelling surface and transpiration of an oak forest in the Netherlands. Agric For Meteorol,1995,74:99-118.
    Oren, R., Phillips, N., Ewers, B. E., Pataki, D. E., and Megonigal, J. P.1999. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiol.19:337-347.
    Phillips, N., Oren, R., and Zimmermann, R.1996. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell Environ.19:983-990.
    Robock, A., K. Y. Vinnokov, G. Srinivasan, J. K. Entin, S. Hollinger, N. A. Spernskaya. S. Liu, and A. Namkhai.. The global soil moisture data bank. Bull. Am. Meteorol. Soc.,2000,81:1281-1299.
    S. Catovsky, N. M. Holbrook, F. A. Bazzaz. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broadleaved tree species. Canadian Journal of Forest Research,2002,32(2):295-302.
    Sakuratani T.. A heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol,1981,37:9-17.
    Senock RS, Ham JM, Loughlin TM, Kimball BA, Hunsaker DJ, Pinter PJ, Wall GW, Garcia RL, LaMorte RL.1996. Sap flow in wheat under free-air C02 enrichment. Plant, Cell and Environment 19,147-58.
    Senock RS, Ham JM.1995. Measurements of water use by prairie grasses with heat balance sap flow gauges. Journal of Rangeland Management 48,150-8.
    Shackel K A, Johnson R S, Medawar C K and Phene C.. Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions. J. Amer. Soc. Hort. Sci. [J].1992,117:351-356.
    Soegaard H, Boegh E.1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology 166,265-82.
    Splittlehouse D. L. Black T. A.. Evalution of the Bowen ration/energy balance method for determing forest evapotranspiration. Atmosphere-ocean,1980,18:98-116.
    Steinberg S. van Bavel CHM, McFarland MJ.. A gauge to measure mass flow rate of sap in stems and trunks of woody plants. J Am Soc. Hort. Sci. [J].1989,114:466-472.
    Swanson R. H.. Seasonal course of transpiration of lodge pole pine and Engelmann spruce//Sopper W E, Lull H W. International Symposium on Forest Hydrology. Pergamon, London,1967:419-434.
    Swanson RH, Whitfied D WA.. A numerical analysis of heat pulse velocity theory and practice. Journal of Experimental Botany,1981,32(126):221-239.
    Swanson, R. H. Velocity distribution patterns in ascending xylem sap during transpiration. In Symposium on flow-its measurement and control in science and industry. Can. For. Serv. Paper No.1971,4(2):171.
    T. A. Day, E. H. DeLucia and W. K. Smith. Effect of soil temperature on stem sap flow, shoot gas exchange and water potential of Picea engelmannii (Parry) during snowmelt, Oecologia[J].1990,10:474-481.
    Tan CS, Buttery BR.1995. Determination of the water use of two pairs of soybean isolines differing in stomatal frequency using a heat balance stem flow gauge. Canadian Journal of Plant Science 75,99-103.
    Teskey, R.O. and D. W. Sheriff.1996. Water use by Pinus radiata in a plantation. Tree Physiol.16:273-279.
    Vertessy, R.A., R. G. Benyon, S.K.O' Sullivan and P. R. Gribben.1995. Relationship between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiol.15:559-567.
    Vertessy, R. A., T.J. Hatton, P. Reece, S.K.O' Sullivan and R. G. Benyon.1997. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiol.17:747-756.
    Wallker G. I.. Measurement of evaporation from soil beneath crop canopies [J].Can. J. Soil Sci.,1983,63:137-141.
    Weibel F P and Boersma K.. An improved stem heat balance method using analog heat control. Agric. Forest Meteorol,1995,75:191-208.
    Weibel F P and Vos I A d.. Transpiration measurements on apple trees with an improved stem heat balance method. Plant Soil[J].1994,166:203-219.
    Werk K S. Performance of two Picea ahies(L.)Karst stands at different stage of decline,Ⅲ Canopy transpiration of green trees.Oecolohia[J].1988,76:519-524.
    Wullschleger, S.D., and King, A.W.2000. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiol. 20:511-518.
    Yamaoka Y, Swanson RH, Hiratsuka Y. Inoculation of lodgepole pine with 4 blue-stain fungi associated with mountain pine-beetle, monitored by a heat pulse velocity (HPV) instrument. Canadian Journal of Forest Research[J].1990,20,31-6.
    Zang, D., Beadle, C. L., and White, D.A.1996. Variation of sapflow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient. Tree Physiol.16:697-703.
    常学向,赵文智,赵爱芬,黑河中游二白杨叶面积指数动态变化及其与耗水量的关系[J].冰川冻土,2006,(1)
    党志强,赵桂琴,龙瑞军.河西地区紫花苜蓿的耗水量与耗水规律初探[J].干旱地区农业研究,2004,(3)
    冯金朝等腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究植物学报1995,37(10):815-821
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京科学出版社,1999:241.
    高岩,刘静,张汝民,郭景霞.应用热脉冲技术对小美旱杨耗水量的研究[J].内蒙古农业大学学报(自然科学版),2001,(1)
    郭孟霞等,树木蒸腾耗水研究进展,中国水土保持科学2006.84(4):114-120
    郭明春六盘山叠叠沟小流域森林植被坡面水文影响的研究[D].北京:中国林业科学研究院.2005
    胡振华.王治国.普西黄土残坦区坡面的日蒸散模型 中国水土保持科学.2003,1(1)95-98
    吉春容 邹陈 李新建等.核桃树干液流特征及其与气象国子的关系,干旱区研究,2010,127(4):616-620
    贾志清,郭保贵,李昌哲.太行山石质山地植被结构优化评价[J].林业科学研究.2004,17(2):226-230.
    金红喜,刘左军,王继和,徐先英,唐进年,张盹明.热平衡茎流计在荒漠灌木植物耗水研究中的应用[J].防护林科技,2004,(6)
    康博文,侯琳,王得祥,刘建军,韩黎明.几种主要绿化树种苗木耗水特性的研究[J].西北林学院学报,2005,(1)
    李国泰.种园林树种光合作用特征与水分利用效率比较.林业科学研究.2002,15(3)291-296
    李海涛 陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J],北京林业大学学报.1998.20(1):1-5.
    李吉跃,周平,招礼军.干早胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,(9)
    李吉跃,朱妍.干早胁迫对北京城市绿化树种耗水特性的影响[J].北京林业大学学报,2006,(S1)
    李小磊.张光灿.周泽福.等.黄土丘陵区不同土壤水分下核桃叶片水分利用效率的光响应.中国水土保持科学.2005,3(1):43-47
    刘丹,陈祥伟.水分胁迫对银中杨耗水特征与水分利用的影响[J].生态学杂志,2006,(3)
    刘广全,李文华,王鸿哲,马松涛,燕爱玲.沙棘苗木蒸腾耗水对土壤水分含量的响应[J].国际沙棘研究与开发,2004,(4)
    刘广全,孟水平,王鸿哲,李文华,燕爱玲.影响沙棘苗木蒸散耗水的生理生态要素[J].国际沙棘研究与开发,2005,(2)
    刘京娟多元线性回归模型检验方法.湖南税务高等专科学校学报,2005,83(5):48-50
    刘文国等,‘中林46杨’林分耗水特性及其与环境因子的关系,河北农业大学学报,2007,30(4):40-45
    刘学师 任永信 任小林,酸枣叶片组织结构与抗旱性的研究,河南职业技术师范学院学报,2004,32(1):45-50
    刘延惠,张晓珊,胡蕖.喀斯特山地主要适生树种幼苗耗水量季节变化及对土壤干旱的响应[J].贵州林业科技,2006,(3)
    卢纹岱spss for windows统计分析,电子工业出版社,北京,2002:236
    罗青红.李志军.树木水分生理生态特性及抗旱性研究进展.塔里木大学学报.2005,17(2)29-33
    马达,李吉跃,林平,.北京山区造林树种耗水规律初探[J].山西农业大学学报(自然科学版),2006,(1)
    马达,李吉跃,聂立水,姜金璞.不同坡向对栓皮栎耗水规律的影响[J].河北林果研究,2005,(4)
    马达等,不同坡向对栓皮栋耗水规律的影响,河北林果研究,2005,20(4):323-327
    马李一 孙鹏森.马履一 油松、刺槐单木与林分水平耗水量的尺度转换北京林业大学学报.2001,23(4):2-5
    马履一 王华田.油松边材液流时空变化及其影响因子研究.北京林业大学学报,2002,24(3):23-27
    马长明翟明普,干季核桃树干液流特征及其与气象因子的关系,林业科学研究,2007,20(6):883-886
    马长明,管伟,叶兵,等.利用热扩散式边材液流探针(TDP)对山杨树干液流的研究.河北农业大学学报[J],2005,28(1):39-43.
    梅婷婷王传宽赵平等.木荷树干液流的密度特征,林业科学,2010,46(1):40-47
    任传友等,冠层尺度的生态系统光合-蒸腾耦合模型研究,中国科学D辑地球科学2004,34(增刊Ⅱ):141-151
    沈振西宁夏南部柠条、沙棘和华北落叶松的液流与蒸腾耗水特性[D].,北京:中国林业科学研究院.2005
    施雅风.中国气候与海面变化及其趋势和影响(四)——气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995.153-158.
    石青,景海涛,余新晓,杨爱荣,有祥亮.小流域水源涵养林林木耗水基于3S技术的量化分析[J].水土保持通报,2005,(1)
    石青,余新晓,李文宇,有祥亮.水源涵养林林木耗水称重法试验研究[J].中国水土保持科学,2004,(2)
    孙宏勇等,微型蒸发器测定土面蒸发的试验研究,水利学报,2004.8,8:114-118
    孙慧珍.周晓峰.康绍忠.应用热技术研究树干液流进展.应用生态学报.2004.1,5(6):1075-1078
    孙慧珍等,白桦树干液流的动态研究,生态学报,2002,22(9):1387-1391
    孙建中,盛学斌,杨明华,等.海河流域水资源与地理环境[A].刘昌明,何希吾,任鸿遵.中国水问题研究[C].北京:气象出版社,1996.98-106
    田晶会.贺康宁.王百田.等.黄土半干旱区侧柏气体交换和水分利用效率日变化研究.北京林业大学学报.2005,27(1):42-6
    王华,赵平,王权,等.马占相思夜间树干液流特征和水分补充现象的分析.生态学杂志[J],2007,26(4):476-482.
    王安志 裴铁璠.森林蒸散测算方法研究进展与展望. 应用生态学报.2001.12(6)933-937
    王百田,张府娥.黄土高原主要造林树种苗木蒸腾耗水特性[J].南京林业大学学报(自然科学版),2003,(6)
    王得祥,康博文,姜海龙,赵生惠.陕北黄土丘陵区主要成林树种耗水量研究[J].西北林学院学报,2004,(3)
    王得祥,康博文,刘建军,韩黎明,崔波.主要城市绿化村种苗木耗水特性研究[J].西北林学院学报,2004,(4)
    王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报[J],2002,26(6):661-667.
    王华田.林木耗水性研究评述.世界林业研究.2003.16(2):23-27
    王华田.邢黎峰.马履一栓皮栋水源林林木耗水尺度扩展方法研究.林业科学.2004,40(6)170-175
    王华田.邢黎峰.马履一栓皮栋水源林林木耗水尺度扩展方法研究.林业科学.2004,40(6)170-175
    王进鑫,黄宝龙,王明春,王迪海.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报,2005,(3)
    王瑞辉,奚如春,徐军亮,马履一,.用热扩散式茎流计测定园林树木蒸腾耗水量[J].中南林学院学报,2006,(2)
    王沙生,高荣孚等.植物生理学(第2版).中国林业出版社,1991
    吴力立董家文,林内蒸发量的研究,南京林业大学学报,1999.5,23(3):55-59
    吴永波,薛建辉.岷江流域冷杉树干液流的动态变化规律.南京林业大学学报(自然科学版)[J],2005,29(6):61-64.
    武思宏,毕华兴,朱清科,张晓明.晋西黄土区主要造林树种耗水量测算与分析[J].干旱区研究,2006,(4)
    谢东锋.马履一 王华田.树木边材液流传输研究述评.江西农业大学学报.2004,26(1)149-153
    谢东锋.马履一 王华田.树木边材液流传输研究述评.江西农业大学学报.2004,26(1)149-153
    邢黎峰孙明高王元军.生物生长的Richards模型.生物数学学报,1998,13(3):348-353
    熊伟,王彦辉,于澎涛,等.六盘山辽东栋、少脉锻天然次生林夏季蒸散研究.应用生态学报[J],2005,16(9):1628-1632.
    熊伟六盘山北侧主要造林树种耗水特性研究[D].北京:中国林业科学研究院.2003
    熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,(2)
    徐军亮 马履一 王华田等.树干液流进程与太阳辐射的关系,中国科技论文在线http://www.paper.edu.cn/index.php/default/releasepaper/content/200603-60
    徐军亮,马履一 阎海平,油松树干液流进程与太阳辐射的关系,中国水土保持科学,2006,4(2):103-107
    闫俊华,森林水文学研究进展(综述),热带亚热带植物学报,1999,7(4):347-356
    杨建伟,梁宗锁,韩蕊莲,孙群,崔浪军.不同干早土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,(15)
    于渲,吉腾飞,魏蒙淳,安静波,高元鹏.河套灌区新疆杨农田防护林耗水特性的研究[J].内蒙古水利,2004,(4)
    虞沐奎等,火炬松树干液流的研究,南京林业大学学报(自然科学版),2003,27(3):7-10
    岳广阳 张铜会 刘新平等.热技术方法测算树木茎流的发展及应用.林业科学,2006,42(8):102-108.
    张劲松 孟平 尹昌君 植物蒸散耗水量计算方法综述世界林业研究2001.4,14(2):23-28
    张劲松,孟平,刘尉,等.热扩散式树木液流国产化传感器性能分析.林业科学研究[J],2007,20(3):370-374.
    张明如,王学勇,翟明普等.荆条+白羊草群丛植物种多样性研究[J].内蒙古农业大学学报.2006,27(3):6-12.
    张卫强博士论文黄土半干旱区主要树种光合生理与耗水特性研究
    张小由,康尔泗,司建华,周茅先,.额济纳绿洲中柽柳耗水规律的研究[J].干旱区资源与环境,2006,(3)
    张小由等胡杨蒸腾耗水的单木测定与林分转换研究林业科学2006,42(7):28-32
    张晓明,余新晓,张学培,魏天兴,孙中锋.晋西黄土区主要造林树种单株耗水量研究[J].林业科学,2006,(9)
    张晓珊,刘延惠.贵州喀斯特山地主要造林树种生长耗水量研究[J].贵州林业科技,2005,(4)
    张永强等,植被光合、冠层导度和蒸散的耦合模拟中国科学D辑地球科学2004,34(增刊Ⅱ):152-160
    张友焱,周泽福,党宏忠,等.利用TDP茎流计研究沙地樟子松的树干液流.水土保持研究[J],2006,13(4):78-80.
    招礼军,李吉跃,于界芬,Sophie Bertin干旱胁迫对苗木蒸腾耗水日变化的影响[J].北京林业大学学报,2003,(3)
    赵平等,基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度,植物生态学报2006,30(4):655-665
    赵文飞,王迎,王华田,等.不同季节麻栎树干贮水量的动态变化.林业科学[J],2007,43(4):115-120.
    周金龙,刘丰,侯江涛,钟瑞森,.新疆平原非灌区自然植被生态耗水量的计算[J].干旱区资源与环境,2006,(4)
    周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,(Z1)
    朱广龙,酸枣生理生化特性及结构特征对梯度干旱的响应,硕士论文。2012
    朱妍,李吉跃,史剑波,.北京六个绿化树种盆栽蒸腾耗水量的比较研究[J].北京林业大学学报,2006,(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700