用户名: 密码: 验证码:
小麦体细胞杂种渐渗系山融3号抗逆相关转录因子基因家族及基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用不对称体细胞杂交渐渗技术,获得了普通小麦济南177(Triticum aestivum2n=42, JN177)与强耐盐性长穗偃麦草(Thinopyrum ponticum,2n=70,Tp)的渐渗系抗盐新品种山融3号(SR3)。前期工作发现,与亲本济南177相比,逆境肋迫下山融3号中大量抗逆相相关基因的的表达发生改变,包含多种类型的转录因子。为了研究山融3号的抗逆机理,本文利用生物信息学方法对山融3号中与抗逆相关的两个转录因子家族的基因变异规律和表达图谱进行分析,并从山融3号中克隆了2个可能与抗逆相关的转录因子,进行了功能研究,主要研究内容和结果包括:
     1. WRKY基因家族的比较和表达模式分析
     以山融3号WRKY转录因子结构域的氨基酸序列作为探针,搜索小麦的相关数据库,对获得的序列进行基因预测,共鉴定获得了129个WRKY转录因子基因序列。这些基因所编码的氨基酸序列均含有1-2个WRKYGQK七氨基酸残基核心序列和C2H2锌指结构。以Clustal X软件分别对WRKY结构域及WRKY基因构建系统发生树(Phylogenetic tree),发现基于WRKY结构域与WRKY基因的的WRKY家族进化关系类似,说明WRKY结构域在一定程度上体现了WRKY基因的进化关系,是WRKY (?)录因子的重要功能单位和基因进化单位。以小麦WRKY结构域的系统发生关系及锌指结构特征为基础,可将小麦WRKY基因分为三个组8个亚组。通过与水稻、拟南芥进一步比较所构建的WRKY域系统发生树,表明小麦第三组WRKY基因的进化较为活跃,以物种特异性的方式进行进化,可能在小麦中有抗逆等特殊功能。
     在小麦WRKY其国进化线索的基础上,对山融3号中WRKY基因序列可能发生的的突变与进化进行了初一步分析。结果表明,与亲本济南177的基因序列相比,山融3号中部分WRKY基因发生了一系列突变,主要包括SNP和小片段核苷酸的缺失或重组。
     为了研究山融3号中WRKY基因序列的改变对表达模式及其抗逆功能的影响,利用real-time RT-PCR方法分析了山融3号与济现177中18个WRKY基因在NaCl、PEG和ABA处理后的表达模式,发现其中6个基因在不同胁迫及激索处理条件下表达模式发生了改变。第一,这些基因对不同类型胁迫的应答方式不同。如WRKY62对ABA的响应更敏感,而WRKY95对PEG和ABA更敏感。第二,同一处理条件下,不同基因具有不同的调控模式。例如WRKY62,94,23,82对旱胁迫的响应时间延迟至12小时,而WRKY31和95对于旱胁迫的响应在1小时即达到高峰,之后迅速降解。第三,基因的胁迫响应模式在山融3号和济南177间存在显著差异。例如山融3号中VRKY23基因在肋迫处理的表达水平明显高于济南177,而此基因在济南177中对ABA不敏感。以上结果表明,体细胞杂交渐渗过程促进了山融3号中,WRKY基因的进化,而基因序列的突变使其表达调控模式更加复杂多样.
     2.CBF转录因子基因家族的比较和表达模式分析
     同样样,以山融3号中-已知的CBF转录砖因子为探针,搜索并鉴定了小麦,中54个CBF转录因子基因家族序列。将小麦、水稻和拟南芥中CBF转录因子构建系统发生树,在其中发现了大量的旁系同源基因和极少量的直系同源基因,表明该家族基因以物种特异性方式进行进化,其祖先可能只有极少数的的CBF-like基因,而在不同物种中CBF转录因子基因的急剧扩增是由于其因或片段的串联重复产生的。通过山融3号和济南177中几个CBF转录因子cDNA)列的比对分析,发现SR3中CBF家族进化也源于SNP及插入引起的基因变异,表明SNP和小片段插入/缺失是基因进化的源动力
     对山融3号和济南177中9个CBF转录因子成员的表达模式进行了分析。结果表明,CBF家族对不同处理的响应模式不同,如(BF40对于旱肋迫以及ABA的响应更迅速。其次,在盐肋、迫下有明显农达变化的4个基因中,(BF40的响应起始时间较逃,CBF46在1小时出现表达峰后迅速降解,而CBF51和12则能够多对盐胁迫持续响应。别外,在济南177和和山融3中CBF12对ABA表达调控模式也不一样,在山融3号中的响应更为敏感。以上结果表明,CBF转录因子家族在山融3号中基因序列发生的突变使其表达模式在不同层次上均表现出复杂多样性。
     3.小麦抗逆相关基因TaZF13的克隆及初步功能分析
     从济南177和山融3号中分别克隆了一个具有RanBP结构的锌指蛋白基因TaZF13及其等位变异基因tazf13,它们的cDNA序列存在27bp差异。为了研究这突变的原因,进一步克隆了济南177、山融3号和长穗偃麦草中TaZF13同源基因的基因组序列,结果表明山融3号的tazf13是一个嵌合基?,而cDNA中27bp的插入片段来源于长穗偃麦草。为了验证这一突变对其表达模式的影响,通过RT-PCR的方法研究其在不同胁迫处理后表达变化。分析发现盐胁迫下TaZF13和tazf13的表达在济南177和山融3号中均明显上调,但其表达不受ABA的影响。亚细胞定位表明TaZF13是一个细胞核与细胞质均存在的蛋白。除了花之外,TaZF13和tazf13在植株的不同组织部位均有表达。过量表达tazf13的转基因小麦和拟南芥株系的抗盐能力明显增强。通过转基因拟南芥中一些盐肋迫信号转导相关Marker基因的表达变化,发现tazf13可能在ABA-非依赖的盐胁迫信号途径中发挥作用。
     4小麦抗盐相关基因TaCBFB27的克隆和初步分析
     根据上述CBF家族的系统分析结果,从山融3号和济南177中克隆了一个CCAAT结合型转录因子基因TaCBFB27。结果发现,TaCBFB27的山融3号和济南177基因组序列间存在SNP和短片段的置换,表明它也是一个嵌合基因。但有趣的是,与TaZFl3不同,其cDNA序列没有变化。在不同胁迫和激素处理后,TaCBFB27的表达迅速上调,而且山融3号中的表达量明显高于济南177,对ABA的响应更为敏感。通过洋葱表皮亚细胞定位方法,发现在细胞核与细胞质中均能检测到TaCBFB27-GFP信号,推测可能是TaCBFB27核定位信号区发生突变引起的,而这种突变在其他物种的同源工因中也存在,可能具有特殊的生物学意义。ESMA试验表明,TaCBFB27可以和CCAAT基序特异结合,具有生物学功能。过表达TaCBFB27(?)的转基国烟草对盐的敏感性显著降低,脯氨酸含量明显增强,暗示TaCBFB27可能通过ABA依赖型信号通路,增加脯氨酸含量,提高植株耐盐性。
     总之,以上研究结果首次研究了小麦WRKY和CBF转录因子家族的进化特征及其在山融3号和济南177间的序列变异和胁迫应答模式,分析了这种变化与山融3号抗逆性的的关系。并根据这些信息,克隆了山融3号中发生变异的转录因子基因tazf13和TaCBFB27,对其表达模式和功能进行研究,表明它们可能参与到山融3号复杂的抗逆信号转导途径中。
Wheat is one of the most important crops worldwide, but wheat growth and productivity are adversely affected by abiotic stresses, including low temperature, drought and high salinity, urging us to breed stress-tolerant wheat cultivar. In our previous work, a new somatic hybrid introgrcssion line Shanrong No.3(SR3) was generated using common wheat Jinan177(JN177) and Thinopyum ponticum, a salt and drought tolerant grass. SR3has dramatically higher stress tolerance than JN177, and their transcriptional and proteomic profiles also show great difference under stressful and non-stressful conditions, suggesting the unique characteristics of stress toleranee mechanism of SR3. In order to investigate the mechanism of SR3in response to stress, in this work, a bioinformatics study on evolutionary characteristics and stress-responsive expression patterns of CBF and WRKY transcription factor families from wheat was conducted; two stress tolerance associated transcription factors, TaZF13and TaCBFB27, were cloned and their functions involved in stress toleranee were analyzed. The main research contents and results achieved in this work were summarized as follows.
     1. The allelic variation and expression patterns of WRKY gene family in wheat
     Using multiple BLAST searches against the wheat databases with the WRKY domain sequences as query,129WRKY protein coding genes in wheat were identified, and almost all of their deduced amino acid sequences contained one or two WRKY domains as well as C2H2zinc finger domains. The unroot-phylogenetie-trees of WRKY family were depicted using WRKY domains and WRKY genes respectively by the CLUSTAL X program, both of which similarly showed the evolutionary relationship among WRKY family. Based on the clustering features of WRKY domains and their phylogenies, the wheat WRKY gene family can be classified into three groups (Ciroup Ⅰ,Ⅱ,Ⅲ) and eight subgroups, which was similar to the cluster classification of WRKY families from the rice (Oryza.saliva L.) and Arahidopsis thaliana. The sequence variation analysis showed that some WRKY genes in group Ⅲ were evolved more actively than others in a species-specific manner, suggesting their special roles in stress response.
     More interestingly, in comparison with JN177, sequences of homoeotic genes of WRKY family in SR3were found to have allelic variations, including SNP, short fragment delete and crossover, indicating the fast evolution of WRKY family during somatic hybridization.
     In order to address the effect of allelic variation on transcription in response to stress,18WRKY genes in SR3and JN177were randomly selected to conduct real-time RT-PCR analysis. Of them, six were induced by high salinity, drought and exogenous ABA. Firstly, these genes showed different expression patterns to different stress. WRKY62was induced by ABA earlier than other stress, whereas WRKY95was more sensitive to PEG and ABA than NaCl. Secondly, these genes had different expression patterns under a certain stress. When treated by PEG, WRKY62,94,13and82had the highest expression level after12hours, while WRKY31and95had a transcription pick at1hour. Thirdly, these genes showed expression patterns in SR3and JN177. For example, WRKY23was more sensitive to stress in SR3than in JN177. These results demonstrated that the allelic variation of WRKY family in SR3offered the alternation of its expression modulation in response to stress.
     2. The allelic variation and expression patterns of CCAAT-binding transcription factor (CBF-TF) family in wheat
     With the same method, using the amino acid sequences of several CBF genes as query probes,54CBF-TF genes were identified in wheat. In combination with CBF-TFs in rice and Arabidopsis, these54genes were phylogenetically classified into three subfamilies based on amino acid sequence, containing a lot of paralogy genes. This result hints that the evolution of this family may happen in a species-specific manner, and new members were produced mainly through tandem duplication events. As above, allelic variation such as SNP and indel of this family between SR3and JN177was also found.
     Of9CBF-TF genes, four were found to be stress-responsive. CBF40had stronger mRNA abundances under drought stress and ABA treatment than salinity stress. The transcript of CBF46had a sharp peak at1hour during stressful conditions, whereas those of CBF51and12were higher during the whole stressful course than the control. Besides, CBF12had significantly different ABA-responsive patterns between SR3and JN177, with a more sensitive response in SR3. These results displayed the diverse roles of CBFs in stress tolerance, and the putative correlation between the allelic variations of CBFs with high salinity tolerance of SR3.
     3. Cloning of TaZF13and its function involved in salt stress
     A RanBP zinc finger protein gene TaZF13and its allelic variant gene tazf13were cloned from JN177and SR3, respectively. The cDNA of tazf13had a27bp insertion in comparison with TaZF13. The alignment among genomic sequences of TaZF13and tazfl3and their homolog gene of Th. ponticum showed that the27bp insertion had an absolutely identity to the TaZF13homolog gene of Th. ponticum. This indicated that tazfl3was a mosaic gene of its homolog genes from biparent of SR3.
     RT-PCR analysis indicated that the transcriptions of TaZF13and tazf13were both up-regulated by salt and drought stress, and kept constant under the ABA treatment. Except for flower, TaZF13and tazf'13were expressed in the whole seedlings of wheat. Their products localized in nuclei and cytoplasm. The transgenic Arabidopsis and wheat lines over-expressing tazf13exhibited enhanced salinity tolerance. The expression of some marker genes involved in ABA-independent signal transduction pathway in transgenic Arabiclopsis was obviously altered.
     4. Cloning of TaCBFB27and its function involved in salt stress
     Based on above CBF family analysis, TaCBFB27was cloned from SR3. Its genomic sequence of SR3showed SNP and insertion variation in comparison with that of JN177. Unlike TaZF13, however, the cDNAs between SR3and JN177were absolutely identical. The transcription of TaCBFB27gene is up-regulated in both SR3and JN177under saline stress, oxidative stress and ABA treatment. HMSA result showed that TaCBFB27had specific binding ability to CCAAT motif. The ectopic expression of TaCBFB27in tobacco improved the tolerence to salinity, in addition, the proline contents in transgenic plants were obviously higher than those in wildtype plants under normal condition, implying that such salinity tolerance enhancement may be achieved through ABA-dependent pathway.
     In summary, phylogenetic analysis of WRKY and CBF transcription factor families in wheat as well as characteristics of their variation and transcription in SR3and JN177gave us a family-level view into the mechanism of SR3's stress tolerance. From these results, two stress-responsive transcription factors, tazf13and TaCBFB27were identified and confirmed to have positive roles in salinity tolerance.
引文
1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, and Shinozaki K. (1997). Role of Arabidopsis Myc and Myb Homologs in Drought and Abscisic Acid Regulater Gene Expression, The plant cell 9:1859-1868.
    2. Abe H, Urao T, Ito T, Seki M, and Shinozaki K. (2003). Arabidopsis Atmyc2 (Bhlh) and Atmyb2 (Myb) Function as Transcriptional Activators in Abscisic Acid Signaling, Plant Cell.15:63-78.
    3. Abe H, Yamaguehi-Shinozaki K, and Urao T. (1997). Role of Arabidopsis Myc and Myb Homologs in Drought-and Abscisie Acid-Regulated Gene Expression, Plant Cell.9:1859-1868.
    4. Agarwal M, Hao Y, Kapoor a, Dong C H, Fujii H, Zheng X W, and Zhu J K. (2006). A R2r3 Type Myb Transcription Factor Is Involved in the Cold Regulation of Cbf Genes and in Acquired Freezing Tolerance, Journal of Biological Chemistry 281:37636-37645.
    5. Alam S L, Sun J, Payne M, Welch B D, Blake B K, Davis D R, Meyer H H, Emr S D, and Sundquist W I. (2004). Ubiquitin Interactions of Nznf Zinc Fingers, EMBO J.23,:1411-1421.
    6. Anil G, and Avnish K. (2001). Understanding Molecular Alphabets of the Plant Abiotic Stress Responses, CurrentSeienee.80:206-215.
    7. Apse M P, Aharon G S, Snedden W A, and Blumwald E. (1999). Salt Tolerance Conferred by over Expression of Avacuolar Na+/H+ Antiport Inarabidopsis, Science.285:1256-1258.
    8. Aroa E-M, Virginb I, and Andersson B. (1993). Photoinhibition of Photosystem Ii. Inactivation, Protein Damage and Turnover. Biochimica et Biophysica Acta 1143:113-134
    9. Bailey D O. (2007). Hare P. Transmembrane Bzip Transcription Factors in Er Stress Signaling and the Unfolded Protein Response, Antioxid Redox Signal 9: 2305-2322.
    10. Bernadt C T, Nowling T, Wiebe M S, and Rizzino A. (2005.). Nf-Y Behaves as a Bifunctional Transcription Factor That Can Stimulate or Repress the Fgf-4 Promoter in an Enhancer-Dependent Manner, Gene Expr..12:193-212.
    11. Bhandal I S, and Malik C P. (1988). Potassium Estimation, Uptake, and Its Role in the Physiology and Metabolism of Flowering Plants. International Review of Cytology.110:205-254.
    12. Blaha G, Stelzl U, Spahn C M T, Agrawal R K, Frank J, and Nierhaus K H. (2000). Preparation of Functional Ribosomal Complexes and Effect of Buffer Conditions on Trna Positions Observed by Cryoelectron Microscopy, Methods in Enzymology 317:292-309.
    13. Blumwald E. (2000). Sodium Transport and Salt Tolerance in Plants, Curr. OPin. Cell Biol.12:431-434.
    14. Bohnert H J, and Sheveleva E. (1998). Plant Stress Adaptations-Making Metabolism Move, Curr.OPin.Plant Biol.1:267-274.
    15. Bohnert H J, Donals N, and Richard G J. (1995). Adaptations to Environmental Stress, Plant cell.7:1099-1111.
    16. Borsani O, Valpuesta V, and Botella M A. (2001). Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by Nacl and Osmotic Stress in Arabidopsis Seedlings, Plant physiology and biochemistry.126:1024-1030.
    17. Buck M J, and Atchley, W R. (2003.). Phylogenetic Analysis of Plant Basic Helix-Loop-Helix Proteins,J.Mol. Evol.56:138-149.
    18. Buck M J, and Atchley W R. (2003). Buck Mj, Atchley Wr. Phylogenetic Analysis of Plant Basic Helix-Loop-Helix Proteins.,J. Mol Evol.56:742-750.
    19. Casaretto J, and Ho T H. (2003). The Transcription Factors Hvabi5 and Hvvpl Are Required for the Abscisic Acid Induction of Gene Expression in Barley Alcurone Cells, Plant Cell.15:271-284.
    20. Cattivelli L, and Bartels D. (1990). Molecular Cloning and Characterization of Cold Regulated Genes in Barley, Plant Physiol.93:1504-1510.
    21. Ccribelli M, Dolfini D, Merico D, Gatta R, Vigano Am, Pavesi G, and Mantovani R. (2008). The Histone-Like Nf-Y Is a Bifunctional Transcription Factor., Mol Cell Biol.28:2047-2058.
    22. Chandler P M. (1994.). Gene Expression Regulated by Abscisic Acid and Its Relation to Stress Tolerance, Annu. Rev. Plant Phvsiol. Plant Mol. Biol.45: 113-141.
    23. Chang P, Li B, Ni X, Xie Y, and Cai Y. (2007). Molecular Cloning and Expression Analysis of a Ranbp2 Zinc Finger Protein Gene in Upland Cotton (Gossypium Hirsutum L.), Colloids and Surfaces B:Biointerfaces.55:153-158.
    24. Chattopadhyay S,Ang L H, and Puente P (1998). Arabidopsis Bzip Protein Hys Direetly Interacts with Light-Responsive Promaters in Mediating Light Control of Gene Expression, Plant Cell.10:673-683.
    25. Chen M and Ni M. (2006). Rfiz, a Ring-Domain Zinc Finger Protein, Negatively Regulates Constans Expression and Photoperiodie Flowering., Plant J.46: 823-833.
    26. Chen M S, Presting G, Barbazuk W B, Goicoecheaa J L, Blackmona B, Fanga G, Kima H, Frischa D, Yua Y, Suna S, Higingbottoma S, Phimphilaia J, Phimphilaia D, Thurmonda S, Gaudettea B, Lib P Et,Al. (2002). An Integrated Physical and Genetic Map of the Rice Genome, Plant Cell.14:537-545.
    27. Cheng S H, Willmann M R, Chen H C, and Sheen J. (2002). Caleium Signaling through Protein Kinases:The Arabidopsis Caleium-Dependent Protein Kinase Gene Family, Plant Physiol.129:469-485.
    28. Chern M S, Bobb a J, and Bustos M M. (1996). The Regulator of Mat2 (Rom2) Protein Binds to Early Maturation Promoters and Represors Pvalf Activated Transcription, plant cell 8:305-321.
    29. Chien C T, Bartel P L, Stemglanz R, and Fields S. (1991). The Two-Hybrid System:A Method to Identify and Clone Genes for Proteins That Interact with a Protein of Interest, Proe.Natl.Aead.Sei. USA,.88:9578-9582.
    30. Chinnusamy V, and Zhu J K. (2009). Epigenetic Regulation of Stress Responses in Plants Current Opinion in Plant Biology.12:133-139.
    31. Choi H, Hong J, Ha J, Kang J, and Kim S Y. (2000). Abfs, a Falmily of Aba-Responsive Element Binding Factors, Biol.Chem.275:1723-1730.
    32. Christianson J A, Dennis E S, Llewellyn Elizabeth S, and Wilson L W. (2010). Ataf Nac Transcription Factors:Regulators of Plant Stress Signaling, plant.5:
    33. Cook D, Fowler S, Fielin O, and Thomashow M F, andSei. (2004). A Prominent Role for the Cbf Cold Response Pathway in Configuring the Low-Temperature Metabolome of Arabdopsis, Proe.Natl.Aead.Sei.USA,.101:15243-15248.
    34. Correa L G, Riano-Pachon D M S, Chrago C G, Dos Santos R V, Mueller-Roeber B, and Vincentz, M. (2008). The Role of Bzip Transcription Factors in Green Plant Evolution:Adaptive Features Emerging from Four Founder Genes, PLoS ONE.3 e2944.
    35. Delfine S, Alvino a, Villani M C, and Loreto F. (1999). Restrictions to Carbon Dioxide Conductance and Photosynthesis in Spinach Leaves Recovering from Salt Stress Plant physiology and biochemistry.119:1101-1106.
    36. Doherty C J, Buskirka H A V, Myersa S J, and Thomashowa M F. (2009)). Roles for Arabidopsis Camta Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance, The Plant Cell 21:972-984.
    37. Dong J, Chen C, and Chen Z. (2003). Expression Profiles of the Arabidopsis Wrky Gene Superfamily during Plant Defense Response, Plant Mol.Biol.51: 21-37.
    38. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, and Dubouzet E G. (2003). Osdreb Genes in Rice, Oryza Sativa L., Encode Transeription Activators That Function in Drought-, High-Salt and Cold-Esponsive Gene Expression, Plant J.33:751-763.
    39. E Little, M Ramakrishnan, B Roy, G Gazit and as Lee. (1994). The Glucose Regulated Proteins (Grp78 and Grp94):Functions, Gene Regulation, and Application, Crit Rev Eukaryotic Gene Exp 4:1-18.
    40. Eulgem T, Rushton P J, Robatzek S, and Somssich I E. (2000). The Wrky Superfamily of Plant Transcription Factors, Trends Plant Sci.5:199-206.
    41. Evans P C, Ovaa H, Hamon M, Kilshaw P E, Hmrn S, Bauer S, Ploegh H L, and Smith T S. (2004). Zinc-Finger Protein A20, a Regulator of in Xanunation and Cell Survival, Has De-Ubiquitinating Activity, Bio,chem.J.378:727-734.
    42. Everett R D, Barlow P, Miiner a, Luisib, Orr a, and Hope G A. (1993). Novel Arrangement of Zinc-Binding Residues and Secondary Structure in the C3hc4 Motif of an Alpha Herpes Virus Protein Family, Mol.Biol.234:1038-1047.
    43. Finkclstein R R, and Lynch T J. (2000). The Arabidopsis Abscisic Acid Response Gene Abi5 Encodes a Basic Leueine Zipper Transeription Factor, Plant Cell.12: 599-509.
    44. Foka P, Koustcni S, and Ramji D P. (2001). Molecular Characterization of the Xenopus Ccaat-Enhancer Binding Protein Beta Gene Promoter, Biochem Biophvs Res Commun.285:430-4361.
    45. Francois L E, Maas E V, Donovan T J, and Youngs V L. (1986). Effect of Salinity on Grain Yield and Quality, Vegetative Growth, and Germination of Semi-Dwarf and Durum Wheat, Agronomy Journal.78:1053-1058
    46. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Scki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, and Yamaguchi-Shinozaki K. (2005). Arcbi Is a Transcription Activator of Novel Abre-Dependent Aba-Signaling That Enhances Drought Stress Tolerance in Arabidopsis, Plant Cell.17:3470-3488.
    47. Gamsjaeger R, Liew C K, Loughlina F E., Crossleya M,and Mackaya J P. (2007). Sticky Fingers:Zinc-Fingers as Protein-Recognition Motifs Trends in Biochemical Sciences.32:63-70
    48. Goff S a, Ricke D, Lan T H, Prestingg, Wailg R, Dunn M, Glazebrook J, Sessions a, Oeller P, Varma H, Hadley D, Hutehison D, Martin C, Katagiri F, Lange B M, Moughamer M, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W, Chen L, Cooper B, Park S, Wbod T C, Mao L, Quail P, Wang R, Dean R, Yu Y, Zharkikh a, Shen R, Sahasrabudhe S, Thomas a, Cannings R, Gutin a, Pruss D, Reid J, Tavigian S, Mitehell J, Eldredgeqseholl T, Miller R M, Bhatuagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant a, and Briggs S. (2002). A Draft Sequence of the Rice Genome (Oryza Sativa L.Ssp.Japonica), Science.296:92-100.
    49. Gong D, Guo Y, Sehumaker K S, and Zhu J K. (2004). The Sos3 Family of Caleium Sensors and Sos2 Family of Protein Kinases in Arabidopsis, Plant Physiol.13:919-926.
    50. Grainger D C, Aiba H, and Hurd D. (2007). Transcription Factor Distribution in Escherichia Coli:Studies with Fnr Protein, Nucleic Acids Res.,35:269-278.
    51. Greenway H and Munns R. (1980). Annual Review of Plant Physiology, Ann. Rev. Plant Physiol.31:149-190.
    52. Guo Z J, Kan Y C, Chen Xj, Li D B, and Wailg D W. (2004). Characterization of a Rice Wrky Gene Whose Expression Is Induced Upon Pathogen Attack and Mechanical Wounding, Acta Bot.Sin.46:955-964.
    53. Hasegawa P M, Zhu J K, Bohnert H J, and Bressan R A. (2000). Plant Cellular and Molecular Responses to High Salinity [Review], Annual Review of Plant Physiology and Plant Molecular Biology 51:463-499.
    54. He X, and Zhang J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution, Genetics 169:1157-1164.
    55. Heim M a, Jakoby M, Werber M, Martin C, Weisshaar B, and Bailey P C. (2003). The Basic Helix-Loop-Helix Transcription Factor Family in Plants:A Genome-Wide Study of Protein Structure and Functional Diversity. Mol Biol Evol. 20:735-747.
    56. Hertwig B, Streb P, and Feierabend J. (1992). Light Dependence of Catalase Synthesis and Degradation in Leaves and the Influence of Interfering Stress Conditions, Plant physiology and biochemistry.100 1547-1553.
    57. Huq E, and Quail P H. (2002). Pif4, a Phytochrome-Interacting Bhlh Factor, Functions as a Negative Regulator of Phytochrome B Signaling in Arabidopsis, Embo J.21:2441-2450.
    58. Hynes Mj, Draht Ow, and Davis Ma. (2002). Regulation of the Acuf Gene, Encoding Phosphoenolpyruvate Carboxykinase in the Filamentous Fungus Aspergillus Nidulans J Bacteriol.184:183-1901.
    59. Iba K. (2002). Acclimative Response to Temperature Stress in Higher Plants: Approaches of Gene Engineering for Temperature Tolerance, Anna Rev Plant Bioal 53:225-245.
    60. Ingram J and Bartels D. (1996). The Molecular Basis of Dehydration Tolerance in Plants, Annu.Rev.Plant.47:
    61. Iuchi S (2001). Three Classes of C2h2 Zinc Finger Proteins, Cell.Mol. Life Sci 58: 625-635.
    62. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedcmann J, Kloj T, Andpareye. (2002). Bzip Transcription Factors in Arabidopsis. Trends Plant Sci.7:106-111.
    63. Jcbara S, Jebara M, Limam F, and Aouani M E. (2005). Changes in Ascorbate Pcroxidase, Catalase, Guaiacol Pcroxidasc and Superoxide Dismutasc Activities in Common Bean (Phaseolus Vulgaris) Nodules under Salt Stress, Journal of Plant Physiology.162:929-936
    64. Leung J and Giraudat J. (1998). Abscisic Acid Signal Transduction, Annual Review of Plant Physiology and Plant Molecular Biologv.49:199-222
    65. Jin H, nd Martin C. (1999). Multifunctionality and Diversity within the Plant Myb-Gene Family., Plant Mol. Biol.41:577-585.
    66. Kalderon D, Richardson W D, Markham a F, and Smith a E. (1984). Sequence Requirements for Nuclear Location of Simian Virus 40 Large2t Antigen, Nature. 311:33-38.
    67. Kasuga M, Miura S, Shinozaki K, and Yamaguehi-Shinozaki K. (2004). A Combillation of the Arabidopsis Drebla Gene and Stress-Inducible Rd29a Promoter Improved Drought-and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer., Plant Cell Physiol.45:346-350.
    68. Kim H S, and Dclaney T P. (2002). Over-Expression of Tga5, Which Encodes a Bzip Transcription Factor That Interacts with Niml/Nprl, Confers Sar-Independent Resistance in Arabidopsis Thaliana to Peronospora Parasitica, The Plant Journal.32:151-163.
    69. Kim I S, Sinha S, Crombrugghe B De, and Maity S N. (1996). Determination of Functional Domains in the C Subunit of the Ccaat-Binding Factor (Cbf) Necessary for Formation of a Cbf-DNA Complex:Cbf2b Interacts Simultaneously with Both the Cbf2a and Cbf2c Subunits to Form a Heterotrimeric Cbf Molecule, Mol Cell Biol.16:4003-4013.
    70. Kim S, Kang J Y, and Cho D I. (2004). Abf2, an Abre2binding Bzip Factor, Is an Essential Component of Glucose Signaling and It S Overexpression Affect S Multiple St Ress Tolerance, Plant J.40:75-87.
    71. Knight H, and Knight M R. (2001). Abiotic Stress Signaling Pathways:Specificity and Cross-Talk, Trend PlantSci.6:262-267.
    72. Kobayashi Fuminori, Terashima a, Kawaura K, Ogihara Y, and X Takumi Y. (2008). Development of Abiotic Stress Tolerance Via Bzip-Type Transcription Factor Lip 19 in Common Wheat, J. Exp. Bot.
    73. Koini M a, Alvey L, Allen T, Tilley C a, Harberd N P, Whitelam G C, and Franklin K A. (2009). High Temperature-Mediated Adaptations in Plant Architecture Require the Bhlh Transcription Factor Pif4, current biology 19: 408-413.
    74. Kong H, Landherr L L, Frohlich M W, Leebens-Mack J, Ma H, and Pamphilis Cw. (2007). Patterns of Gene Duplication in the Plant Skp1 Gene Family in Angiosperms:Evidence for Multiple Mechanisms of Rapid Gene Birth, Plant J 50:873-885.
    75. Lange P S, Chavez J C, Pinto J T, Coppola G, Sun C W, Townes T M, Geschwind D H, and Ratan R R.(2008). Atf4 Is an Oxidative Stress-Inducible, Prodeath Transcription Factor in Neurons in Vitro and in Vivo, the journal of exprerimental emdicine.205:1227-1242
    76. Lee M S, Gippert G P, and Soman K V. (1989). Three-Dimensional Solution Structure of a Single Zinc Finger DNA-Binding Domain Science 245 635-637.
    77. Lee S C, Choi H W, and Hwang I S. (2006). Functional Roles of T He Pepper Pat Hogen2induced Bzip T Ranscription Factor, Cabzip1, in Enhanced Resistance to Pat Hogen Infection and Environmental St Resses, Planta.224:1209-1225.
    78. Leopold A C and Willing R P. (1984). Evidence for Toxicity Effects of Salt on Membranes Plant physiology and biochemistry.19:67-76.
    79. Levitt J. (1980). Responses of Plants to Environmental Stresses. Volume Ii. Water, Radiation, Salt, and Other Stresses. Academic Press.12:256.
    80. Li X Y, Mantovani R, Hooftvanhuijsduijnen R, Andre I, Benoist C, and Mathis D. (1992.). Evolutionary Variation of the Ccaat-Binding Transcription Factor Nf-Y., Nucleic Acids Res.20:1087-1091.
    81. Li J, Brader G, and Palva E T. (2004). The Wrky70 Transcription Factor:A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense, Science s STKE.16:319-331.
    82. Li S J, Fu Qt, Huang W D, and Yu D Q. (2009). Functional Analysis of an Arabidopsis Transcription Factor Wrky25 in Heat Stress Plant Cell Reports.28: 683-693.
    83. Li S, Xu C H, Yang Y N, and Xia G M. (2010). Functional Analysis of Tadi19a, a Salt-Responsive Gene in Wheat, Plant, Cell & Environment.33 117-129.
    84. Li T and Brouwer M. (2007). Hypoxia-Inducible Factor, Gshif, of the Grass Shrimp Palaemonetes Pugio:Molecular Characterization and Response to Hypoxia. Comp Biochem Physiol B Biochem Mol Biol.147:11-19.
    85. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, and Yin J.(2006). Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis, Plant Physiol.141:1167-1184.
    86. Liljegren S J, Dita G S, Eshed Y, Savidge B, Bowman J L, and Yanofsky M F. (2000). Shatter Proof Mads-Box Genes Control Seed Dispersal in Arabidopsis Nature.404:766-770.
    87. Lijavetzky D, Carbonero P, Vicente-Carbajosa J. (2003). Genome-Wide Comparative Phylogenctic Analysis of the Rice and Arabidopsis Dof Gene Families, BMC Evol Biol.3:17.
    88. Liu H, Liu S, Xia G. (2009)..Thcor. Appl. Genet., Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass.118:1193-1198.
    89. Liu L, White M J, and Macrae T H (1999). Transcription Factors and Their Genes in Higher Plants Functional Domains, Evolution and Regulation, Eurr.J. Biochem.262:247-257.
    90. Liu S W, Zhao F, Gao X, Chen F G, and Xia G M. (2010). A Novel High Molecular Weight Glutenin Subunit from Australopyrum Retrofractum, Amino Acids. Revision submitted.
    91. Liu X, Bai X, Wang, and Chu C. (2007). Oswrky71, a Rice Transcription Factor, Is Involved in Rice Defense Response, Journal of Plant Physiology.164:969-979.
    92. Loughlin F E and Mackay J P. (2006). Zinc Fingers Are Known as Domains for Binding DNA and RNA. Do They Also Mediate Protein-Protein Interactions?, IUBMB Life.58:731-733
    93. Lu C M and Zhang J H. (1999). Effects of Salt Stress on Psii Function and Photoinhibition in the Cyanobacterium Spirulina Platensis, J. Plant Physiol.155: 740-745.
    94. Maathuis F J M and Amtmann A. (1999). K+Nutrition and Na+ Toxicity:The Basis of Cellular K+/Na+ Ratios, Annals of Botany.84:123-133.
    95. Maeo K, Hayashi S, Kojima-Suzuki H, Morikami a, and Nakamura K. (2001). Role of Conserved Residues of the Wrky Domain in the DNA-Binding of Tobaccowrky Family Proteins, Biosei.Bioteehnol.Bioehem.65:
    96. Mantovani R. (1998). A Survey of 178 Nf-Y Binding Ccaat Boxes, Nucletic Acids Res.26:1135-11431.
    97. Mareotte J W R, Russell S H, and Quatrano R S. (1998). Abcisic Acid Responsive Sequences from the Em Gene of Wheat, Plant Cell.23:969-976.
    98. Marziali G, Perrotti E, and Ilari R (1997). Transcriptional Regulation of the Ferritin Heavy-Chain Gene:The Activity of the Ccaat Binding Factor Nf-Y Is Modulated in Heme-Treaed Friend Leukemia Cells and During Monocyte- to -Macrophage Differentiation, Mol Cell Biol.17:1387-13951.
    99. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, and Yamaguchi-Shinozaki K. (2010). Comprehensive Analysis of Rice Dreb2-Type Genes That Encode Transcription Factors Involved in the Expression of Abiotic Stress-Responsive Genes., Molecular Genetics and Genomics.283: 185-196.
    100. Meissner R C, Jin H, Cominelli E, and Denekam P M. (2006). Function Starch in a Large Transeription Factor Gene Family in Arabidopsis:Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in Rzr3 Myb Genes, Plant Cell.25:1827-1840.
    101. Meyer H H, Wang Y, and Warren G. (2002). Direct Binding of Ubiquitin Conjugates by the Mammalian P97 Adaptor Complexes, P47 and Ufd1-Np14, EMBO Journal 21:5645-5652.
    102. Michaels S D, Dita G G Ustafson-Brown C, Pelaz S, Yanofsky M, and Amasino R M (2003). A G124 Acts as a Promoter Off Lowering in Arabidopsis and Is Positively Regulated Vernalization, Plant J.33:867-874.
    103. Milla M a R, Townsend J, Chang I-F, and Cushman J C. (2006). The Arabidopsis Atdi 19 Gene Family Encodes a Novel Type of Cys2/His2 Zinc-Finger Protein Implicated in Aba-Independent Dehydration, High-Salinity Stress and Light Signaling Pathways Plant Molecular Biology.61:13-30.
    104. Miller J, Mclachlan a D, and Klug A. (1985). Repetitive Zinc-Binding Domains in the Protein Transcription Factor Iiia from Xenopus Oocytes EMBO J 4: 1609-1614.
    105. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carre I A, and Coupland G. (2002). Lhy and Ccal Are Partially Redundant Genes Required to Maintain Circadian Rhythms in Arabidopsis. Dev. Cell 5:
    106. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R,Carre l a, and Coupland C. (2002). Lhy and Ccal Are Partially Redundant Genes Required to Maintain Circadianr Hythms in Arabidopsis. Dev.Cell.2:629-641.
    107. Moore R C and Purugganan M D. (2005). The Evolutionary Dynamics of Plant Duplicate Genes, Curr Opin Plant Biol 8:122-128.
    108. Morrison A A, Viney R L, and Ladomery M R. (2008). The Post-Transcriptional Toles of Wt1, a Multifunctional Zinc-Finger Protein Biochim Biophys Acta 1785: 55-62.
    109. Mount DW, and钟扬等译.(2003)生物信息学北京:高等教育chubanshe.
    110. Munns R, and Sharp R E. (1993). Involvement of Abscisic Acid in Controlling Plant Growth in Soil of Low Water Potential, Australian Journal of Plant Physiology.
    111. Munns R and Termaat A. (1986). Whole-Plant Responses to Salinity, Australian Journal of Plant Physiology 13:143-160
    112. Munns R, Cramer G R, and Ball M C. (1999) Interactions between Rising Co2, Soil Salinity and Plant Growth. In:Luo Y, Mooney H A, ed.Carbon Dioxide and Environmental Stress. London:Academic Press,139-167.
    113. Munns R, Husain S, Rivelli a R, James R A, Condon a G, Lindsay M P, Lagudah E S, Daniel P S, and Ray a H. (2002). Avenues for Increasing Salt Tolerance of Crops, and the Role of Physiologically Based Selection Traits Plant and Soil.247:93-105.
    114. Nagano Y, Inaba T, Furuhashi H, and Sasaki Y. (2001.). Trihelix DNA-Binding Protein with Specificities for Two Distinct Cis-Elements:Both Important for Light Down-Regulated and Dark-Inducible Gene Expression in Higher Plants, J. Biol. Chem.276:22238-22243.
    115. Nakashima K, Ito Y, Andyamaguchi-Shinozaki K. (2009). Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses, Plant Physiology 149:88-95.
    116. Nakashima K, Tran Pl-S, Nguyen D V, Fujita M, Maruyama K, Todaka D, Lto Y, Hayashi N, Shinozaki K, and Yamaguchi-Shinozaki K.(2007). Funetional Analysis of a Nac-Type Transeription Factor Osnac6 Involved in Abiotic and Biotic Stress-Responsive Gene Expression in Rice, Plant J.51:617-630.
    117. Nam J, Kim J, Lee S, Ma H, and Nei M. (2004.). Type I Mads-Box Genes Have Experienced Faster Birth-and-Death Evolution Than Type Ii Mads-Box Genes in Angiosperms. Proc. Natl. Acad. Sci. U.S.A.101:1910-1915.
    118. Nantel a, and Quatrano R S. (1996). Characterization of Three Rice Basic Leucine Zipper Factors Including Two Inhibitors of Embp-1 DNA Binding Activity, The Journal of Biological Chemistry.271:31296-31305.
    119. Neale P J, and Melis A. (1989). Salinity Stress Enhances Photoinhibition of Photosynthesis in Chlamydomonas Reinhardtii, J. Plant Physiol.134:619-622.
    120. Nei M, Kumar S, and吕宝钟等译.(2002)分子进化与系统发育北京:高等教育出版社.
    121. Nesi N, Debeaujon I, Jond C, Stewart a J, Jenkins G I, Caboche M, and Lepiniec L. (2002). The Transparent Testa16 Locus Encodes the Arabidopsis Bsister Mads Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat. Plant Cell 14:2463-2479.
    122. Neumann P M. (1995). The Role of Cell Wall Adjustments in Plant Resistance to Water Deficits, Crop Sci 35 1258-1266.
    123. Nishiyama C, Takahashi K, Ohtake Y, Yokota T, Okumura K, Ogawa H, and Ra C. (2002). Analysis of Transactivation Region of Elf-L by Using a Yeast One-Hybrid System, Biosei.Bioteehnol Bioehem.66:1105-1107.
    124. Nishizawa a, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, and Shigeoka S. (2006). Arabidopsis Heat Shoek Transeription Factor A2 as a Key Regulator in Response to Several Types of Environmental Stress, Plant J.48:535-547.
    125. Rapp R a, and Wendel J F (2005). Epigenetics and Plant Evolution, New Phytol 168:81-91.
    126. Peng Z Y, Wang M C, Li C L, Li F, Liu C, and Xia G M (2009). A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat, Molecular & Cellular Proteomics.10:2676-2686.
    127. Piskaceka S, Gregorb M, Nemethovac M, Grabnerd M, Kovarike P, and Piskacekf M.(2007). Nine-Amino-Acid Transactivation Domain:Establishment and Prediction Utilities, Genomics.89:756-768.
    128. Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S(2008). Soybean WRKY-Type Transcription Fantor gcnes,GmWRKY13,GmWRKY21,and GmWRKY54,xonfcr differential tolerance to abiotic stresses in transgenic Arabidopsis plants. plant Biotechnology J.6:486-503
    129. Rodriguez-Navarro A. (2000). Potassium Transport in Fungi and Plants, Biochim BiophysActa 1469:1-30.
    130. Rounsley S D, Ditta G S, and Yanofsky M F. (1995). Diverse Roles for Mads Box Genes in Arabidopsis Development, the plant cell 7:1259-1269.
    131. Rushton P J, Somssich I E, Ringler P, Shen Q J (2010). Wrky Transcription Factors, Trends in Plant Science.
    132. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, and Iwabuehi M. (2004). Arabidopsis Cys2/His2-Type Zinc-finger Proteins Function as Transcription Repressors under Drought-, Cold-, andHigh-Salinity-Tress Conditions, Plant Physiol.136:2734-2746.
    133. Sanchez- Barrens M J, Matinez-Ripoll M, Zhu J K, and Albert A J. (2005). The Structure of the Arabidopsis Thaliana Sos3:Molecular Mechanism of Sensing Caleium for Salt Stress Response, Mol.Biol.345:1253-1264.
    134. Schiefelbein J. (2003). Cell-Fat Especification in the Epiderm Is a Common Patterning Mechanism in the Root and Shoot, Carr.Opin.Plant Biol.6:
    135. Sedaghat Y, Miranda W F, Sonnenfeld Mj. (Development). The Jing Zn-Finger Transcrip-Tion Factor Is a Mediator of Cellular Differentiation in the Drosophila Cns Midline and Trachea,2002 129:2591-2606.
    136. Seewald M J, Kraemer a, Farkasovsky M, Korner C, Wittinghofer a, and Vetter I R. (2003,). Biochemical Characterization of the Ran-Ranbpl-Rangap System:Are Ranbp Proteins and the Acidic Tail of Rangap Required for the Ran-Rangap Gtpase Reaction?, Molecular and Cellular Biology.23:8124-8136.
    137. Sehweeh H C, and Bevan M. (1998). The Regulation of Transcription Factor Activity in Plants, Trendin in plant Seience.3:278-283.
    138. Serrano R, Mulet J M, Rios G, Marquez J a, Delarrinoa I F, Leube M P, Mendizabal I, Paseual-Ahuir a, Proft M, Ros R, and Montesinos C. (1999). A Glimpse of the Meehanisms of Ion Homeostasis during Salt Stress, J.EXP.Bot.50: 1023-1036.
    139. Sharma P K and Hall D O. (1991). Interaction of Salt Stress and Photoinhibition on Photosynthesis in Barley and Sorghum, J. Plant Physiol.138:614-619
    140. Shen H S, Cao K M, and Wang X P. (2007). A Conserved Proline Residue in T He Leucine Zipper Region of Atbzip34 and Atbzip61 in Arabidopsis T Haliana Interferes Wit H T He Formation of Homodimer, Biochem Biophys Res Commun. 362:425-430.
    141. Shi H, Lee B H, Wu S J, and Zhu J K. (2003). Over Expression of a Plasma Membrane Na+/H+ Antiporter Gene Improves Salt Tolerance in Arabidopsis Thaliana, Nature Biotech.21:
    142. Shubha V, and Akhilesh K T. (2006). Genome-Wide Analysis of the Stress Assoeiated Protein (Sap) Gene Family Containing A20/Anl Zinc-Finger(S)in Rice and Their Phylogenetic Relationship with Arabidopsis, Mol.Gen.Genomics. 276:565-575.
    143. Sinha S, Kim I S, Sohn K Y, Crombrugghe B De, and Maity S N. (1996). Three Classes of Mutations in the a Subunit of the Ccaat-Binding Factor Cbf Delineate Funtional Domains Involved in the Three Step Assembly of the Cbfdna Complex, Mol Cell Biol.16 328-337.
    144. Smimoff N. (1998). Plant Resistance to Environmental Stress, Curr.OPin.Bioteeh. 9:214-219.
    145. Smolen G a, Pa Wlowski L, W Ilensky S E, and Bender J. (2002). Dominant Alleles of the Basic Helix-Loop-Helix Transcription Factor Atr2 Activate Stress-Responsive Genes in a Rabidopsis, Genetics.61:
    146. Spelt C, Quattrocchio F, Mol J N M, and Koes R. (2000). Anthocyaninl of Petunia Encodes Abasic Helix-Loop-Helix Proteint That Directly Activates Transcription of Structural Anthocyanin Genes. PlantCell.12:1619-1631.
    147. Sridha S, and Wu K. (2006). Identification of Athd2c as a Novel Regulator of Abscisic Acid Responses in Arabidopsis,, Plant J 46:
    148. Szabolcs I. (1994) Soils and Salinization. In:M Pessarakli,ed.Handbook of Plant and Crop Stress. New York:Marcel Dekker,3-11.
    149. Takatsuji H (1998). Zinc Finger Transcription Factors in Plant, Cellular and Molecular Life Sciences.54:582-596.
    150. The Arabidopsis Genome Initiative. (2002). Anaylisis of the Genome Sequece of the Flowering Plant Arabidopsis Thaliana, nature.408:796-815.
    151. Thomashow M F. (1999). Plant Cold Acclimation:Freezing Tolerance Genes and Regulatory Mechanisms, Annu Rev Plant Physiol Plant Mol Biol.50:
    152. Toledo-Ortiz G, Huq E, and Quail Ph. (2003). The Arabidopsis Basic Helix-Loop-Helix Transcription Factor Family, Plant Cell.15:1749-1770.
    153. Tran P L S, Nakashima K, Sakuma Y, Fujita Y, Osakabe Y, Qin F, Simpson S D, Maruyama K, Fujita Y, Shinozaki K, and Yamaguehi-Shinozaki K. (2007). Co-Expression of the Stress-Inducible Zinc Finger Homco Domain Zfhd1 and Nac Transcription Factors Enhances Expression of the Erd1 Gene in Arabidopsis, Plant J.49:46-63.
    154. Urao T, Yamaguehi-Shinozaki K, and Urao S. (1993). An Arabidopsis Myb Homologis Induced by Dehydration Stress and Its Gene Product Binds to the Conserved Myb Recognition Sequence, PlantCell.5:1529-1539.
    155. Vandepoele K, Saeys Y, Simillion C, Raes J, and Van De Peer Y. (2002). The Auto Matic Detection of Homologous Regions (Adhore) and Its Application to Microco Linearity between Arabidopsis and Rice, Genome Res.12:1792-1801.
    156. Virginia as, J Ian Ms, and Lin L. (2003). Chromatin Immunoprecipitation:A Tool for Studying Histone Acetylatlon and T Ranscription Factor Binding, Methods.31: 672-675.
    157. Wang Q F, and Friedman a D. (2002). Ccaatp Enhancer-Binding Protein Are Required for Granulopoicsis Independent of Their Induction of the Granulocyte Colony-Stimulating Factor Receptor, Blood,99:2776-27851.
    158. Wilkins O, Nahal H, Foong J, Provart N J, and Campbell M M. (2009). Expansion and Diversification of the Populus R2r3-Myb Family of Transcription Factors Plant Physiology 149:
    159. Wu G, Shortt B J, Lawrence E B, Levine E B, Fitzsimmons K C, and Shah D M.(1995). Disease Resistance Conferred by Expression of a Gene Encoding H2o2-Generating Glucose Oxidase in Transgenic Potato Plants, THE PLANT CELL 7:1357-1368.
    160. Wyn J R G, Brady C J, and Spears J. (1979) Ionic and Osmotic Relations in Plant Cells.. In:Laidman D L, Wyn Jones R G,ed.London:Academic Press,63-103.
    161. Xie Z, Zhang Z L, Zou X, Yang G, Komatsu S, and Shen Q J. (2006). Interactions of two abscisic acid induced WRKY genes in Repressing Gibberellin Signallg in aleurone cell. Plant J.46,231-242
    162. Yadav V, Mallappa C, Ganggappa S N, Bhatia S, and Chattopadhyay S. (2005). A Basic Helix-Loop-Helix Transeription Factor in Arabidopsis, Myc2, Acts as a Repressor of Blue Light-Mediated Photomorphogenic Growth, Plant Cell.17: 1953-1966.
    163. Yamaguehi-Shinozaki K, and Shinozaki K. (2006). Transeriptional Regulatory Net Works in Cellular Responses and Tolerance to Dehydration and Cold Stresses, Annu. Rev.Plant Biol.57:781-803.
    164. Yeo a R, Lee S, Izard P, Boursier P J, and Flowers T J. (1991). Short- and Long-Term Effects of Salinity on Leaf Growth in Rice (Oryza Sativa L.) Journal of Experimental Botany.42:881-889.
    165. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K and Shinozaki K. (1997). Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress., Plant and Cell Physiology.38 1095-1102.
    166. Zelilinger S, Ebner a, Marosits T. (2001). The Hypocrea Jecorina Hap2p3p5 Protein Complex Binds to the Inverted Ccaat-Box within the Cbh-Activating Element Mol Genet Genomics 266:56-631.
    167. Zhang Y, and Wang L. (2005.). The Wrky Transcription Factor Superfamily: It's Origin in Eukaryotes and Expansion in Plants. BMC Evol. Biol.5:1-13.
    168. Zhang L,,Ge L, Tran T, and Prouty S M. (2001). Solation and Characterization of the Human Stearoy L-Coa Desaturase Gene Promoter:Requirement of a Conserved Ccaat Cis-Element, Biochem 357:183-193.
    169. Zhang Y, and Wang L (2005). The Wrky Transcription Factor Superfamily:It's Origin in Eukaryotes and Expansion in Plants. BMC Evolutionary Biology.5:1.
    170. Zhao L Q, Zhang F, Guo J K, Yang Y L, Li B B,and Zhang L X (2004). Nitric Oxide Functions as a Signal in Salt Resistance in the Calluses from Two Ecotypes of Reed, Plant Physiology 134:849-857.
    171. Zheng X N, Chen B, Lua G J, and Han B (2009). Overexpression of a Nac Transcription Factor Enhances Rice Drought and Salt Tolerance Biochemical and Biophysical Research Communications.379:985-989
    172. Zhu J K. (2001). Plant Salt Tolerance, Trends Plant Sci.6:66-61.
    173. Zhu J K. (2002). Salt and Drought Stress Signal Transduetion in Plants, Annu.Rev.Plant Biol.53:247-273.
    174.陈晓军.(2000).抗冻蛋白研究进展,生命的化学20:170-173.
    175.邓江明,简令成.(2001).植物抗冻机理研究新进展:抗冻基因表达及其功能,植物学通报,18:521-530.
    176.郝林,徐昕.(2004).植物转录因子wrky家族的结构及功能,植物生理学通讯.40:260-265.
    177.黄骥,王建飞,张红生.(2004).植物czhz(?)型锌指蛋白的结构与功能,遗传:26:414-418.
    178.黄骥,张红生,曹雅君,王东,王建飞,杨金水.(2002).一个新的水稻czhz型锌指蛋白cdnal(?)的克隆与序列分析,南京农业大学学报,25:110-112.
    179.黄升谋.(2009).干旱对植物的伤害及植物的抗旱机制,安徽农业科学,37:10370-10372.
    180.蒋明义,郭绍川(1996).水分亏缺诱导的氧化胁迫和植物的抗氧化作用,植物生理学通讯.32:144-150.
    181.李荃宝,童耕雷,郑雪松.(2002).试论生物对环境的调节作用,生态学杂志.21:49-52.
    182.刘强,张贵友,陈爱宜.(2000).植物转录因子的结构与调控作用,科学通报.45:1465-1474.
    183.阮海华.沈文飚, 叶茂炳,徐朗莱.(2001).一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应,科学通报,46:1993-1997.
    184.史刚荣.(2003).环境胁迫下的植物细胞程序性死亡及其意义,生物学通报.38:3-4.
    185.王洪春.(1981).植物护性生理,植物生理学通讯.3:24-29.
    186.吴华玲,倪中福,姚颖垠,郭刚刚,孙其信.(2008).15个普通小麦wrky基 因的克隆与表达分析,自然科学进展18:378-388.
    187.吴乃虎.(1998)基因工程原理(第二版)科学出版社.
    188.尹明安,崔鸿文,樊代明,郭立.(2001).抗冻蛋白及其在植物抗冻基因工程中的应用,西北植物学报,21:8-13.
    189.张正斌.(2000).植物对环境胁迫整体抗逆性研究若干问题,西北农业学报,9:
    190.赵可夫,李法曾,樊金,冯立田.(1999).中国的盐生植物,植物学通报.16:201-207.
    191.朱新广,张其德(1999).Nac1胁迫对psii光能利用和耗散的影响,生物物理学报15:787-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700