用户名: 密码: 验证码:
启动氮加追氮对不同密度大豆光合生产能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2011~2012年进行。采用田间小区试验方法,在总氮量相等(60kg N·hm-2)的条件下,设置20(D1)、25(D2)和30(D3)万株·hm-23个密度(2011年未设30万株·hm-2)和4种氮素调控:氮作基肥一次性施用(N1),R3期一次性追氮(N2,2011年),启动氮18kg·hm-2(?)(?)R3追氮(N3,2011年,N2,2012年),R4期追氮42kg·hm-2(N3,2012年),测定了各时期不同冠层的叶面积,叶片、叶柄、茎秆、荚果和籽粒干物质积累量,各器官不同生育期的含氮量和可溶性糖含量,计算了叶面积指数、净同化率、光合势、各器官氮素积累量、可溶性糖积累量、光合产物的转运贡献率和同化贡献率、落英率等指标,研究启动氮加追氮对不同密度条件下大豆群体光合生产能力的影响。两年试验结果如下:
     1.相同施肥条件下,上、中和全冠层单株叶面积随着密度的增加而降低,叶面积指数随密度的增加而增加。相同密度条件下,启动氮加追氮处理能够使鼓粒期后叶面积指数维持在较高水平,减缓R5期后叶面积指数下降速率。D1N3和D2N3与D1N1和D2N1相比,R5期上、中和全冠层叶面积指数分别增加10.1%~21.7%、10.7%~22.6%和9.18%~27.3%(P<0.05);R6期上、中和全冠层叶面积指数分别增加15.5%~27.8%、10.8%~19.6%和13.5%~25.2%(P<0.05),其中2011年R6期中冠层叶面积指数差别不显著。
     2.相同施肥条件下,光合势随密度的增加而增加。密度从20万株·hm-2增加到25万株·hm-2,R4-R5期的上、中和全冠层、R5-R6期的上冠层和全冠层的净同化率在随密度增加而增加,密度增加到30万株·hm-2时,R5-R6期的中冠层和全冠层的净同化率下降。相同密度条件下,启动氮加追氮处理保持鼓粒期后具有较高的光合势和净同化率,D1N3和D2N3与D1N1和D2N1相比,上、中和全冠层R5-R6期的光合势分别增加8.34%~22.9%、10.4%~24.5%和4.93%~13.1%(P<0.05),R4-R5期的净同化率分别增加4.57%~17.2%、7.28%~50.0%和20.2%~29.7%(P<0.05);R5-R6期全冠层净同化率分别增加20.4%~116%(P<0.01)。其中启动氮加R4期追氮效果最好。
     3.相同施肥条件下,25万株·hm-2密度时各器官的可溶性糖积累量高于其他2个密度。相同密度条件下,启动氮加追氮处理与氮作基肥一次性施用相比,R5和R6期,叶片可溶性糖含量增加6.43%~23.1%、叶柄增加5.61%~22.0%、茎秆增加5.80%~20.9%(P<0.05),R6和R8期,荚果可溶性糖含量增加7.83%~19.3%(P<0.05)。
     4.相同施肥条件下,单株干物质积累量随密度的增加而降低;但R5期后,25万株·hm-2的启动氮加R4期追氮处理单株干物质积累量显著高于20万株·hm-2的氮作基肥一次性施用处理。在25万株·hm-2密度时单位面积干物质积累量和同化贡献率均高于其它2个密度。相同密度条件下,启动氮加追氮处理单位面积干物质积累量和同化贡献率均显著高于氮作基肥一次性施用处理,R6期D1N3和D2N3与D1N1和D2N1相比,全株单位面积干物质积累量增加6.82%~16.2%(P<0.05),全冠层单位面积叶片、叶柄、茎秆和荚果分别增加7.54%~24.9%(P<0.05)、8.30%~15.6%(P<0.05)、8.06%~12.8%(P<0.05)和8.53%~16.3%(P<0.05),同化贡献率增46.2%-145%(P<0.01),其中启动氮加R4期追氮效果最好。
     5.相同施肥条件下,单株荚数均随密度的增加降低,但密度为25万株.hm-2启动氮加R4期追氮的单株荚数显著高于20万株.hm-2氮作基肥一次性施用。单位面积荚数在鼓粒期之后以25万株.hm-2启动氮加R4期追氮处理为最高。相同密度条件下,启动氮加追氮处理的落荚率显著低于其它处理,其中D1N3和D2N3较D1N1和D2N1上冠层和中冠层落荚率降幅分别达到4.04%-14.3%和6.50%-39.8%(P<0.05);在收获期,D1N3和D2N3与D1N1和D2N1相比,全冠层、上冠层和中冠层单位面积荚数分别增加12.1%-24.9%、10.9%-28.5%和10.0%~27.3%(P<0.01)。
     6.相同施氮条件下,单株粒数随着密度的增加显著下降,产量在25万株.hm-2时达到最大。相同密度条件下,启动氮加追氮处理与氮作基肥一次性施用处理相比,大豆单株荚数增加10.8%~23.8%(P<0.05),单株粒数增加8.54%~20.6%(P<0.05),大豆产量增加8.23%-17.1%(P<0.05)。其中上冠层籽粒干重所占比例最大,中冠层次之,下冠层对籽粒产量的影响不大。R4追肥增产效果优于R3追肥处理。
This study investigated the effects of starting-N plus topdressing N (as compared to the common practice of all basal application) on photosynthetic capacity of soybean Glycine max (L.) Merrill) with different planting densities. A field experiment in two growing seasons (2011and2012) was conducted under the condition of applying equal total N rate, using a split-plot design with three planting densities (200000plants-ha-1, D1;250000plants·ha-1, D2;300000plants·ha-1, D3), and four N application patterns (all of60kg·N ha-1as basal fertilizer, N1; all N as topdressing at stage R3, N2in2011;18kg·N ha-1as basal fertilizer and42kg·N ha-1as topdressing at growth stages R3, N3in2011;18kg·N ha-1as basal fertilizer and42kg kg·N ha-1as topdressing at growth stages R4, N3in2012). The leaf area, dry matter accumulation in leaves, petioles, and stems at different stages, pods, grains in different canopy, and the contents of N and soluble sugar in soybean organs were determined. The leaf area index (LAI), net assimilation rate (NAR), leaf area duration (LAD), accumulation of N and soluble sugar, contribution of per-seed filling translocation assimilate to seed (CTA), contributions of post-seed filling assimilate to seed (CPA) and pod abscission rate were calculated. The main results are shown as following:
     1. Within the same fertilization pattern, LAI of the top, the middle and the whole canopy per plant decreased as planting density increases; LAI of the top, the middle and the whole canopy of population increased as planting density increases. More importantly, our results from two growing seasons consistently showed that applying starter-N plus topdressing N in comparison to applying all required N as basal fertilizer at the same planting density maintained LAI after stage R5at a higher level, decreased the declining rate of LAI after stage R5. Compared to D1N1and D2N1, LAI of the top, the middle and the whole canopy with D1N3and D2N3at stage R5increased by10.1%-21.7%,10.7%-22.6%and9.18%~27.3%(P<0.05), respectively, and at stage R6increased by15.5%-27.8%,10.8%-19.6%and13.5%~25.2%(PO.05), respectively. However, LAI of the middle canopy at stage R6in2011was no significant different.
     2. Within the same fertilization pattern, LAD increased as planting density increases. When the planting density increased from200000to250000plants·ha-1, NAR of the top, the middle and the whole canopy between stages R4and R5, and NAR of the top and the whole canopy between stages R5and R6increased, but when the planting density increased to300000plants·ha-1, NAR between R5and R6of the middle and the whole canopy diminished. Under the same planting density, applying starter-N plus topdressing N maintained LAD and NAR after stage R5at a higher level. Compared to D1N1and D2N1, LAD of the top, the middle and the whole canopy with D1N3and D2N3between stage R5and R6increased by8.34%~22.9%,10.4%~24.5%and4.93%~13.1%(P<0.05), respectively; NAR of the top, the middle and the whole canopy with D1N3and D2N3at stage R4and R5increased by4.57%~17.2%,7.28%~50.0%and20.2%~29.7%(P<0.05), respectively; NAR of the whole canopy at stage R5and R6increased by20.4%~116%(P<0.01). Starter-N plus topdressing N at stage R4was the most effective pattern for all densities.
     3. Within the same fertilization pattern, soluble sugar contents at different organs under the density250000plants·ha-1is higher than the other two planting density. Results from two growing seasons consistently showed that applying starter-N plus topdressing N in comparison to applying all required N as basal fertilizer at the same planting density, soluble sugar contents of leaves, petioles and stems during stages R5and R6improved by6.43%~23.1%(P<0.05),5.61%-22.0%(P<0.05) and5.80%~20.9%(P<0.05), respectively, and soluble sugar contents of pods during stages R6and R8improved by7.83%~19.3%(P<0.05).
     4. Within the same fertilization pattern, dry matter accumulation per plant at different soybean organs decreased as planting density increases. However, dry matter accumulation per plant with starter-N plus topdressing N at stage R4in different canopy after stage R5under the density250000plants·ha-1was significantly higher than using all N as basal fertilizer under density of200000plants·ha-1. The dry matter accumulation per m2and CPA of soybean were the highest with the density250000plants·ha-1. Under the same planting density, our results from two growing seasons consistently showed that dry matter accumulation on per m2and CPA by starter-N plus topdressing N were greater than the single application of N as basal fertilizer. Compared to D1N1and D2N1, dry matter accumulation with D1N3and D2N3increased by6.82%~16.2%(P<0.05), and dry matter accumulation of leaves, petioles, stems and pods on per m2for whole canopy increased by7.54%~24.9%(P<0.05),8.30%~15.6%(P<0.05),8.06%-12.8%(P<0.05) and8.53%~16.3%(P<0.05), respectively; CPA increased by46.2%-145%(p<0.01). Starter-N plus topdressing N at stage R4was the most effective pattern for all densities.
     5. Within the same fertilization pattern, pod number on per plant at different canopy decreased as planting density increases, however, pod number on per plant with starter-N plus topdressing N at different canopy after stage R5under the density250000plants·ha-1was significantly higher than using all N as basal fertilizer under density of200000plants·ha-1. Pod number on per m2after stage R5by starter-N plus topdressing N at R4under the density of250000plants·ha-1was the highest. Under the same planting density, starter-N plus topdressing N led to the lowest pod abscission rate. Compared to D1N1and D2N1, pod abscission rate of the top and the middle canopy with D1N3and D2N3decreased by4.04%~14.3%and6.50%~39.8%(p<0.05), respectively; compared to D1N1and D2N1, pod number of the top, the middle and the whole canopy on per m2increased by12.1%~24.9%(p<0,01),10.9%~28.5%and10.0%~27.3%(p<0.01), respectively, at stage R8.
     6. Our results consistently showed that under the condition of increasing density, number of pods and seeds per plant decreased with the increasing density, and the yield of soybean was the highest with the density250000plantsha-1. Under the same planting density, starter-N plus topdressing N could significantly improve the number of pods and seeds per plant, with increase of10.8%~23.8%(p<0.05) and8.54%~20.6%(p<0.05), and the yield of soybean increased by8.23%~17.1%(p<0.05), over that of using all N as basal fertilizer. Seed dry weight of the top canopy had the largest proportion; the middle canopy was lower than the top canopy; and the bottom canopy was no significant correlation with yield. Starter-N plus topdressing N at stage R4was higher effective pattern than that of starter-N plus topdressing N at stage R3.
引文
[1]钟金传.中国大豆产业国际竞争力研究[D].北京:中国农业大学资源与环境学院,2005.
    [2]谭林.国际大豆供求背景下的中国大豆贸易研究[D].北京:北京林业大学,2009.
    [3]Lawrence A. Kapustka and Kenneth G Wilson. The influence of soybean planting density on dinitrogen fixation and yield [J]. Plant and Soil,1990,129:145-156
    [4]M. Aslam, Naseer A. Khan, M. Siddique Mirza and Naeemullah. Effect of different row and plant spacings on soybean yield and its components [J]. Pakistan J. Agric. res.1993,14(2-3): 143-148.
    [5]Egli, D.B., Plant density and soybean yield [J]. Crop Science,1988,28,977-981.
    [6]Xiaobing Liu, Jian Jin, Guanghua Wang. Soybean yield physiology and development of high-yielding practices in Northeast China [J]. Field Crops Research,2008,105:157-171.
    [7]Egli, D. B., Bruening, W. P. Shade and temporal distribution of pod production and pod set in soybean [J]. Crop Science,2005,45,1764-1769.
    [8]Faluyi. Implications of selecting improved strains of soybeans for dry-matter accumulation and grain yield [J]. Euphytica,1990,50,197-201.
    [9]F. gourdon and C. planchon. Responses of photosynthesis to irradiance and temperature in soybean [J]. Photosynthesis Research,1982,3,31-43.
    [10]郝乃斌,戈巧英,张玉竹,等.高光效大豆光合特性的研究[J].大豆科学,1989,8(3):283-287.
    [11]解惠光.日本大豆氮素营养与施肥研究最新进展[J].大豆科学,1990,9(2):163-167.
    [12]X. J. Zhou, Y. Liang, H. Chen, S. H. Shen. Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean [J]. Photosynthetica,2006,44(4): 530-535.
    [13]勾玲,闫洁,韩春丽,等.氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J].植物营养与肥料学报,2004,10(5):488-493.
    [14]张文钊.氮素调控对大豆碳氮代谢及产量的影响[D].哈尔滨:东北农业大学,2008.
    [15]王瑛,王辅仁.夏大豆花期和结荚期追氮肥对产量和影响[J].中国油料,1984,(2):55-57.
    [16]Flavio H. Gutierrez-Boem. Late season nitrogen fertilization of soybeans:effects on leaf senescence, yield and environment [J]. Nutrient Cycling in Agro-Eco-Systems,2004,68: 109-115.
    [17]Kaveh Moradi, Bahram Mirshekari and Farhad Farahvash. Nitrogen spraying of soybeans at earlier flowering stage will be an ecological friendly fertilization management and improve crop yield [J]. World Applied Sciences Journal,2012,19(10):1388-1392.
    [18]姜魁先.大豆氮素营养[J].黑龙江八一农垦大学学报,1987,1:71-77.
    [19]刘晓洁.重迎茬大豆栽培施氮技术试验[J].大豆通报,2001,2:8-9.
    [20]Evans. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia,1989, 78(1):9-19.
    [21]倪丽,章建新,金加伟,翟云龙.氮肥施用对高产大豆根系、干物质积累及产量的影响[J].新疆农业大学学报,2004,27(2):36-39.
    [22]沈润平,王中孚,郭进耀,丁方方,连楚楚.氮磷钾营养对春大豆产量品质效应的研究[J].江西农业大学学报,1998,20(1):51-55.
    [23]孙继颖,高聚林,吕小红.施氮量对大豆抗旱生理特性及水分利用效率的影响[J].大豆科学,2007,26(4):517-522.
    [24]Hampson C. R., A. N. Azarenko, J. R. Potter. Journal of the American Society for Horti cultural [J]. Science.1996,121(6):1103-1110.
    [25]赵力汉,吴春胜,郭午.施氮对大豆生长发育的影响[J].吉林农业大学学报,1993,15(1):12-16.
    [26]TaylorR S. Nitrogen application increasesyield and early dry matter accumulation in late-planted soybean [J]. Crop Science,2005,45:854-858.
    [27]Watson D J. Variation in net assimilation rate and leaf area between species and varieties, and within and between years [J]. Annals of Botany.1947,11:41-76.
    [28]董钻等.大豆株型、群体结构与产量关系的研究[J].大豆科学.1984.3(2):110-120.
    [29]肖亦农,谢甫绨,肖万欣.不同肥密处理对超高产大豆氮素吸收和产量的影响[J].大豆科学[J].2011,30(5):770-776.
    [30]王立刚,刘景辉,刘克礼,高聚林.大豆氮素积累、分配与转移规律的研究[J].作物杂志,2004,5:20-22.
    [31]章建新,倪丽,翟云龙.施氮对高产春大豆氮素吸收分配的影响[J].大豆科学,2005,24(2):38-42.
    [32]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.
    [33]夏淑芳,等.植物生理学报[J],1981,7(2):135-141.
    [34]闫春娟.水钾耦合对大豆生理特性及产量品质的影响[D].哈尔滨:东北农业大学,2008.
    [35]董钻.大豆的器官平衡与产量[J].辽宁农业科学,1981,3:14-21.
    [36]Watson. D. J., Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years [J]. Annals of Botany.1947,11:41-76.
    [37]谢甫绨,王贺,张惠君,王海英,肖万欣.不同肥密处理对超高产大豆辽豆14的影响[J].大豆科学,2008,27(1):61-66.
    [38]金剑,刘晓冰,王光华,张秋英,HerbertS J.大豆高产群体的生态生理特征[J].中国油料作物学报,2003,25(3):100-114.
    [39]张荣贵,宋宇.大豆叶面积、净光合生产率与产量的相关性.中国农业科学.1979,(2):40-46.
    [40]董钻.大豆产量生理[M].北京:中国农业出版社.2000.
    [41]张恒善,刘金印.大豆叶面积净光合生产率与产量关系研究[J].中国油料作物学报, 1982,(3):33-37.
    [42]王继安,金阁.大豆叶面积垂直分布对产量及农艺性状的影响[J].东北农业大学学报,2000,31(1):14-19.
    [43]闵兴中,贾观钦.大豆鼓粒期源库关系研究[J].江苏农业科学,1991,7(4):13-19.
    [44]王永锋,聪慧,赛飞.大豆不同生育期去叶对其生长发育及产量的影响[J].安徽农业科学,2003,31(3):440442.
    [45]胡萌,魏湜,杨猛,等.密度对不同株型玉米光合物性及产量的影响[J].玉米科学,2010,18(1):103-107.
    [46]郭江,郭新宇,郭程瑾,等.不同株型玉米群体结构的调控效应[J].华北农学报,2008,23(1):149-153.
    [47]张敬涛.密植条件下矮秆大豆合交9525-1生育动态分析[J].黑龙江农业科学,2000,(3):9-11.
    [48]王晓梅,崔冲,房正,赵庆丽.大豆不同密度对群体结构的影响[J].吉林农业科学,1996,4:39-42.
    [49]Parvez A.Q., Gardner F. P., Boote K. J. Determinate and indeterminate type soybean cultivar responses to pattern, density, and planting date [J]. Crop Science,1989,29:150-157.
    [50]Larry C. Pureell, Rosalind A. Ball, J. D. Reaper, III, and Earl D. Vories. Radiation use efficiency and biomass produetion in soybean at different plant population densities [J]. Crop Science,2002,42(1):172-177.
    [51]Boquet D. J. Plant population density and row spacing effeets on soybean at post-optimal planting dates [J]. Agron. J.,1990,82:59-64.
    [52]孙淑贤,傅艳华,逢玉兰.密度对矮秆大豆群体生育动态的影响[J].作物杂志,1999,(2):18-19.
    [53]董钻.叶绿素含量及比叶重与大豆单株生物产量的相关性[J].沈阳农学院学报,1979,(2):7-9.
    [54]Saratha, Kumudini, David J, Hume, Godfrey Chu.-Genetic improvement in short season soybeans-I Dry matter accumulation, partitioning and leaf area duration [J]·Crop Science, 2001,41:391-398.
    [55]章建新,翟云龙,薛丽华.密度对高产春大豆生长动态及干物质积累分配的影响[J].大豆科学,2006,25(1):1-5.
    [56]程伟燕,李志刚,李瑞平.密度对大豆光合特性和产量的影响[J].作物学报,2010,4:69-72.
    [57]朱洪德,冯丽娟,于洪久,等.栽培措施对高油大豆光合生理及产量的影响[J].大豆科学,2008,27(6):966-972.
    [58]Srinivasan P S, Chandra B R, Natarajaratnam N et.al. Leaf photosynthesis, and yield potential in greengram [J]. Trop Agric,1985, (62):222.
    [59]Peng S, Krig D R, Cirma F S. Leaf photosynthetic rate is correlated with biomass and grain Productionin grain Sorghum Lines [J]. Photosyn Research,1991, (28):1.
    [60]邹冬生,郑丕尧.大豆叶片光合、蒸腾等生理特性的品种间比较研究[J].大豆科学,1990,9(1):25-32.
    [61]张贤泽,马占峰.大豆群体的光合速率测定方法及其与产量的关系[J].大豆科学,1984,3(2):127-131.
    [62]张恒善,刘金印.大豆叶面积净光合生产率与产量关系研究[J].中国油料作物学报,1982,(3):33-37.
    [63]Johston, T. Pendleton, D. B. petersand hicks [J].Crop Science,1969,9:577-581.
    [64]Cooper R.L. and Brun W.A. Response of Soybeans to a carbon dioxide enriched atmosphere [J]. Crop Science,1967, (7):455-457.
    [65]苗以农.大豆光合作用与产量研究的概述[J].大豆通报,1999,(1):26-27.
    [66]Curtis P E, Ogren R H. Varietal effects in soybean photothynthesis and Photores peration [J]. Crop Science,1969,9:323-327.
    [67]孙卓韬,董钻.大豆群体冠层的荚-粒分布[J].大豆科学,1986,(5):91-101.
    [68]朱保葛,郑跃进,王黎明,等.大豆叶片净光合速率、转化酶活性与籽粒产量的关系[J].大豆科学,2000,19(4):347-350.
    [69]孙国伦.略谈“光合势”与“净同化率”[J].安徽农业科学,1963,(4):57-59.
    [70]常耀中.大豆高产栽培的叶面积问题[J].中国农业科学,1981,(2):22-26.
    [71]张力,魏建军,张占琴.不同施肥处理下新大豆1号高产群体生理指标的研究[J].新疆农业科学,2010,47(10):1958-1962.
    [72]王晓梅,崔冲,房正,赵庆丽.大豆不同密度对群体结构的影响[J].吉林农业科学,1996,(4):39-42
    [73]Christy A. L, Porter. In govindjee photosynthesis. Vol. Ⅱ academipress [J]. New York,1982, 499-511.
    [74]郑光华.植物栽培生理[M].济南:山东科学技术出版社,1980.
    [75]翟云龙.种植密度对高产春大豆生长发育及氮磷钾吸收分配的效应研究[D].乌鲁木齐:新疆农业大学,2005.
    [76]刘建国,李俊华,张煌新,董志新,朱新在,张继生.大豆群体冠层结构及光合特性的研究[J].石河子大学学报(自然科学版),2003,7(3):188-190.
    [77]林蔚刚,许忠仁,胡立成,等.不同株型大豆品种叶荚粒垂直分布规律的初步分析[J].大豆科学,1995,14(1):53-59.
    [78]Kiniry J. R. Response to question raised by Sinclair and muchow [J]. Field Crops Research, 1999,62:245-247.
    [79]Puree U L. C. Ball R.A., ReaPer J. D. et al. Radiation use and biomass produetion in soybean at different plant population densities [J]. Crop Science,2002,42:172-177.
    [80]王景文.大豆株型数学模型与冠层中光的垂直分布[J].东北农学院学报,1982,(3):24-27.
    [81]刘晓冰,宋春雨.美国大豆产量生理研究的进展[J].大豆科学,2001,20(2):141-145.
    [82]金剑,刘晓冰,王光华,等.大豆高产群体的生态生理特征[J].中国油料作物学报.2003,25(3):109-114.
    [83]金剑,刘晓冰,王光华,李艳华.不同密度大豆生殖生长期群体冠层结构研究[J].农业系统科学与综合研究,2003,19(2):124-128.
    [84]金剑,刘晓冰,王光华,李艳华.大豆生殖生长期冠层结构及其与冠层辐射的关系研究[J].东北农业大学学报,2004,35(4):412-418.
    [85]Wells R, Burton J W, Kilen T C. Soybean growth and light interception to differing leaf and stem morphology [J], Crop Science,1993,33:520-524.
    [86]林蔚刚.大豆群体冠层叶粒与光照垂直分布规律的初步分析[J].黑龙江农业科学,1996,(3):2-4.
    [87]Kiniry JR. Response to questions raised by sinclair and muchow [J]. Field Crops Research, 1999,62:245-247.
    [88]李生秀,魏建军,刘建国,等.窄行密植对大豆群体冠层结构及光分布的影响[J].新疆农业科学,2005,42(6):412-414.
    [89]Larry C Purcell, Rosalind A Ball, J D Reaper. Radiation use efficiency and biomass production in soybean at different population densities [J]. Crop Science,2002,42:172-177.
    [90]王景文.大豆株型数学模型与冠层中光的垂直分布[J].东北农学院学报,1982,(3):24-27.
    [91]陈俊伟.糖对源库关系的调控与植物糖信号转导途径[J].细胞生物学杂志,2002,266-270.
    [92]刘厚诚,关佩聪,陈日远.长豇豆叶片14C光合产物运转与分配的研究[J].核农学报,1996,10(1):30-34.
    [93]Koch K. E. Carbohydrate modulated gene expression in plants Annu Rev Plant [J]. Physiol Plant Mol Biol.1996,47:509-540.
    [94]Champigny M. L. Integration of photosynthetic carbon and nitrogen metabolisms inplants [J]. Photosyn Res.,1998,46:117-127.
    [95]Huber J. L., Campell W. H., Huber S. C., et al. Reversible lightldark modulation of spinachleaf nitrate reductase activity involves protein phosplorylation [J]. Arch. Biochem. Biophys,1992, 296:58-65.
    [96]费家驿,唐甫林,蒋伯章.夏大豆不同生育期干物质,糖类和氮化合物质积累的初步研究[J].作物学报,1963,2(1):83-94.
    [97]刘晓冰,李文雄.春小麦子粒灌浆过程中淀粉和蛋白质积累规律的初步研究[J].作物学报.1996,22(6):736-740.
    [98]苏佩,蒋纪芸.小麦子粒蛋白质积累规律的初步研究[J].西北农业大学学报.1992,20(3):59-63.
    [99]张秋英,刘晓冰,金剑,等.R5期遮荫对大豆植株体内源激素和酶活性的影响[J].2000,19(4):362-368.
    [100]程方民,钟连进.同气候生态条件下稻米品质性状的变异及主要影响因子分析[J].2001, 15(3):187-191.
    [101]Robinson, J. M. and Baysdorfer C. Interrelationship between photosynthetic carbon and nitrogen metabolism in mature soybean leaves and isolated leaf mesophyll cells. In: Regulation of carbon partitioning in photosynthetic tissue. Health R. L. and Preiss J [J]. Plant Physiol.1985,333-357.
    [102]Rufty. T. W., Huber S. C., and Volk R. J. Alternations in leaf carbohydrate metabolism in response to nitrogen stress [J]. Plant Physiol.1988,88:725-730.
    [103]Burias N, Planchon C. Increasing soybean productivity through selection for nitrogen fixation [J]. Agron. J.,1999,82:1031-1034.
    [104]Burkey K. O., Wells R. response of soybean photosynthesis and chloroplast membrane functions to canopy development and mutual shading [J]. Plant Physiol,1991,97:245-253.
    [105]陈范骏,曹敏建.玉米对氮素营养利用的遗传差异及其生理机制[J].沈阳农业大学学报,1998,29(4):314-318.
    [106]童平,杨世民,马均,吴合洲.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].应用生态学报,2008,19(3):505-511.
    [107]Wullsehleger S. D., Costerhuis D. M., Photosynthetic carbon Production and use by developing cotton leaves and bolls [J]. Crop Science.1990,30:1259-1264.
    [108]曹树青,赵永强,温家立,王树安,张荣铣.高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究[J].中国农业科学,2000,33(6):19-25.
    [109]邹东生,郑丕尧.大豆植株光合性能与干物质及荚粒形成关系的研究[J].大豆科学,1991,10(3):217-225.
    [110]张含彬,伍晓燕,杨文钰.氮肥对套作大豆干物质积累与分配的影响[J].大豆科学,2006,25(4):404-409.
    [11 1]王红军,吴奇峰,谢映周.大豆籽粒干物质积累规律及与产量关系的研究[J].新疆农业科学,2006,43(4):268-270.
    [112]J. J. Hanwayet. A. I., Dry matter accumulation in eight soybean varieties [J], Agron. J.,1971, (63):227-230.
    [113]胡根海,章建新,唐长青.北疆春大豆生长动态及干物质积累与分配[J].新疆农业科学2002,39(5):264-267
    [114]王金陵.大豆根系的初步观察[J].农业学报,1995,6(3):262-270.
    [115]董钻,谢甫绨.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996,22(1):89-95.
    [116]刘建国,帕尼古丽,董志新,等.单位叶面积负荷量对大豆源库调节效应的研究[J].石河子大学学报(自然科学版),2003,7(4):259-262.
    [117]李少昆,等.作物产量源库性状模式及其应用的探索[J].新疆农垦利技,1999,(2):9-11.
    [118]傅金民,张康灵,苏芳,等.大豆产量形成期光合速率和库源调节效应[J].中国油料作物学报,1998,20(1):51-56.
    [119]刘晓冰,Stephen J.Herbert,金剑,等.增加光照及其与改变源库互作对大豆产量构成因 素的影响[J],大豆科学,2006,25(1):6-10.
    [120]张跃进,王永锋.不同生育期大豆去叶对生长发育的影响[J].大豆科学.1993,12(1):1-7.
    [121]贺观钦,丁邦展,蒋陵秋.大豆源库关系的研究[J].大豆科学,1989,8(2):119-136.
    [122]王滔,孙淑燕,陈存来,等.大豆叶—荚关系与产量的研究初报[J].大豆科学,1983,2(1):63-73.
    [123]李新民,许忠仁,杜维广,等.亚有限大豆源库关系的研究[J].大豆科学,1991,10(4):269-276.
    [124]Kokubun M. Soybean Cultivar Difference in Leaf Photo-synthetic Rate and Its Relation to Seed Yield [J]. Jpn. J. Crop Sci.,1988, (57):743-748.
    [125]魏建军,刘建国,董志新,等.源库调节对大豆光合速率及同化产物运转分配影响的研究[J].新疆农业科学,2004,41(2):65-68.
    [126]游明安,邱家驯,盖钓镒,等.大豆产量空间分布形成原因的探讨[J].中国油料,1995,17(3):13-16.
    [127]李新民.大豆群体结构的研究[J].大豆科学,1990,9(3).185-190.
    [128]王晓慧,李大勇,徐克章,等.3种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,2006,42(2):191-194.
    [129]Banziger M, Fell B, Stamp P. Composition between nitrogen accumulation and grain growth for carbohydrate during grain filling of wheat [J]. Agro. J.1994,34 (2):440-446.
    [130]Huppe H C, Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal. Cells [J]. Ann Rev Plant Plrysiol Plant Mol Biology.1994,45:577-607.
    [131]史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998,(2):34-36.
    [132]肖焱波,段宗颜,苏凡,等.玉米不同种植方式氮肥合理施用研究[J].玉米科学,2002,10(1):78-80.
    [133]Brent L. Black, Leslie H. Fuchigami, and Gary D. Coleman. Partitioning of nitrate assimilation among leaves, stems and roots of poplar [J]. Tree Physiol,2002,22:717-724.
    [134]方萍,陶勤南,吴平,等.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析[J].2001,7(2):159-165.
    [135]Moll RH, Jackson WA, Mikkelsen RL. Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes [J]. Crop Science,1994,34:874-881.
    [136]宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,34(3):230-238.
    [137]Evans. Nitrogen and photosynthesis in the flag leaf of wheat [J]. Plant Physiology,1983,72: 298-302.
    [138]Bergersen FJ. The central reaction of nitrogen fixation [M]. Plant foil,1971, Special Vol: 511-524.
    [139]田纪春,王学臣,刘广田.植物的光合作用与光合氮、碳代谢的关联及调节[J].2001,13 (4):145-147.
    [140]史宏志,韩锦峰,张国显,赵鹏,王爱武,姜玉琴.单色蓝光和红光对烟苗叶片生长和碳氮代谢的影响[J].河南农业大学学报,1998,32(3):258-262.
    [141]金剑.氮素积累分配与大豆产量的关系[J].大豆通报,1998,6:25-25.
    [142]薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报.2006,32(3):430-435.
    [143]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62.
    [144]Huber JL, Campell WH, Huber SC. et al. Reversible lightldark modulation of spinachleaf nitrate reductase activity involves protein phosplorylation [J]. Arch. Biochem. Biophys.1992, 296:58-65.
    [145]Champigny M.L. Integration of photosynthetic carbon and nitrogen metabolisms in plants [J]. Photosyn Research,1998,46:117-127.
    [146]S.Ferrario, C. H.Foyer and J.F.Morot-Gaudry. Coordination between nitrogen photosynthetic and respiratory metabolism. In:Jean-Francois Morot-Gaudry (ed.) Nitrogen assimilation by plants [J]. Science Publishers,1997,269-283.
    [147]赵全志,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310.
    [148]潘晓华,王永锐.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用[J].江西农业大学学报,1997,19(3):1-5.
    [149]金剑,刘晓冰,王光华,等.不同密度大豆生殖生长期群体冠层结构研究[J].农业系统科学与综合研究,2003,19(2):124-128.
    [150]杜长玉,胡兴国,何忠仁等.不同密度对大豆产量和生理指标影响的研究[J].内蒙古农业科技,2006,(2):35-36.
    [151]Purcell LC, BallR A, Reaper J D, et a.l Radiation use and biomass production in soybean at different plant population densities [J]. Crop Science,2002,42:172-177.
    [152]Board J E, Harville B G. Growth dynam ice during the vegetative period affects yield of narrow-row, late-planted soybean [J]. Agronomy Journal,1996,88:575-579.
    [153]Haile F J, Higley L G, Specht J E. Soybean leafinorphology and defoliation tolerance [J]. Agronomy Journal,1998,90:353-362.
    [154]Herbert, S. J. Growth response of short-season soybean to variations in row spacing and density [J]. Field Crops Research,1984, (9):163-171.
    [155]张代平.施肥密度及促控措施对大豆宽台栽培生育的影响[J].黑龙江农业科学,1998,2:32-33.
    [156]赵政文,继凤,小红,克勤.湘春豆19号综合高产栽培技术研究[J].湖南农业科学,2011,4:26-27.
    [157]张敬涛.密植条件下矮秆大豆合交9525-1生育动态分析[J].黑龙江农业科学,2000, (3):9-11.
    [158]宁海龙,李文霞,韩秀才,等.栽培密度对高油大豆籽粒产量及品质影响初探[J].中国油料作物学报,2002,24(1):75-76.
    [159]董灵,陈诗武,李希白,等.低丘红壤春大豆种植密度的研究[J].大豆科学,1992,11(2):97-105.
    [160]小岛,等.转引自《农业》.1979,54(3):374-380.
    [161]王忠.植物生理学[M].中国农业出版社,2000,5.
    [162]Mann C C. Genetic engineering's aim to soup up crop photosynthesis [J]. Science,1999,283: 314-316.
    [163]J.J.Hanwayet. AI, Dry matter accumulation in eight soybean varieties [J]. Agron. J.,1971, (63):227-230.
    [164]Hanway.J.J, Weber.C. R. N, P and K percentages in soybean plant [J]. Agron J.,1971,63: 406-408.
    [165]Dornhoff, G M. Variety difference in net photosynthesis of soybean leaves [J]. Crop Science, 1970,10:42-46.
    [166]小岛睦男.关于提高大豆品种光合作用能力的研究[J](苗以农等译).国外大显生理研究(译文选编),吉林省农科院,1972,65-69.
    [167]P. E. Curtis et. al. Variety effects in soybean photosynthesis and photorespiration [J]. Crop Science,1969, (9):323-327.
    [168]Bhagsari. A, Brown. R H. Leaf photosynthesis and its correlation with leaf eara[J]. Crop Science,1986,26:127-132.
    [169]Lawlor, D. W. Photosynthesis, production and environment [J]. Journal of Experimental Botany,1995,46:1389-1396.
    [170]Duncan WG et al, Net photosynthetic rate relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperature [J], Crop Science,1968,8670-8674.
    [171]Evans L. T., Xiwson H. M.. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat [J]. Aust J. Biol Science,1972,23:345-254.
    [172]Sinclair T R. Analysis of the carbon and nitrogen limitation to soybean [J]. Agron. J,1976,68: 319-324.
    [173]Pandey, C S, Sin M. Genotypic variation in photosynthetic efficiency in relation to productivity o f gram genotypes [J]. Indian J Agric Sci.,1996,66:466-469.
    [174]Bhatia V S, Tiwari S P, Joshi P. Inter-relationship of leaf photosynthesis, specific Physiol, leafweight and leaf anatomical characters in soybean [J]. Indian J Plant,1996,39:6-9.
    [175]杜维广,等.大豆品种(系)间光合活性的差异及其与产量的关系[J].作物学报,1982,(2):131-135.
    [176]张贤泽,等.大豆群体的光合速率—测定方法及其与产量的关系[J].大豆科学,1984,3(2):127-131.
    [177]Weill R R, Khalil N, Thomison P R. Canopy response of soybean affected by growth habit and late season competition [J]. Agron. J.,1990,82:534-540.
    [178]Mauney T R, Gene Guinn, Fry K E, Hesketh J D. Correlation of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum [J]. Photosynthesis,1979,13:260-266.
    [179]Makine A, Mac T, Chira K. Changes in photosynthetic capacity in rice leaves from emergence through senescenc [J]. Plant Physiol, Gn-rymatic,1984,25:511-521.
    [180]楚奎锡.高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究[J].大豆科学,1988,7(3):215-222.
    [181]杜维广等.大豆光合作用与产量关系的研究[J].大豆科学,1999,18(2):154-159.
    [182]Singh, S P Lal, K B Ram, Singh K N. Photosynthetic efficiency and productivity of pigeon pea [J]. Indian Journal of Pulses Research,1993,6:212-214.
    [183]许大全,沈允钢.光合作用与作物产量,作物高产光效生理研究进展[M].科学出版社.1992.
    [184]张宾,赵明,董志强,李建国,陈传永,孙锐.作物高产群体LAI动态模拟模型的建立与检验[J].作物学报,2007,33(4):612-619.
    [185]S. D. Koutroubas, D. K. Papakosta, A. A. Gagianas. The importance of early dry matter and nitrogen accumulation in soybean yield [J]. European Journal of Agronomy,1998, (9):1-10.
    [186]Christos A. Dordas, Christos Sioulas. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower as affected by nitrogen fertilization [J]. Field Crops Research, 2009, (110):35-43.
    [187]王金陵.大豆[M].黑龙江科学技术出版社,哈尔滨,1982.
    [188]杜吉到,郑殿峰,梁喜龙,丁希武,冯乃杰,张玉先,张晓艳,王佳辉.不同栽培条件下大豆主要叶部性状与产量关系的研究[J].中国农学通报,2006,22(8):183-186.
    [189]Brun, W. A. Assimilation. Effects of pod removal on nonstructural carbohydrate concentration in soybean tissue [J]. Academic Press. New York,1978,45-76.
    [190]董钻.大豆栽培生理[M].北京:中国农业出版社,1997.
    [191]王四清,高聚林,刘克礼,张胜.大豆源、库关系的研究[J].华北农学报,2005,20:1-4.
    [192]支金虎,聂云疆,万素梅.施锌对棉花不同生育期净同化率的影响[J].干旱地区农业研究,2010,28(1):94-98.
    [193]Gregory F G Physiological conditions in cucumber housed [J]. Third Ann Rep Exp, and Res. Sta., Cheshunt,1917,19:353-360.
    [194]Willcott J., Hurbert S. J. and Kilen T. C. Leaf Display and Light Interception in short season soybeans [J]. Crop Science,1984,9:173-182.
    [195]Burias N, Planchon C. Increasing soybean productivity through selection for nitrogen fixation [J]. Agron J.,1999,82:1031-1034.
    [196]Burkey K O, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading [J], Plant Physiology,1991,97: 245-252.
    [197]陈范骏,曹敏建.玉米对氮素营养利用的遗传差异及其生理机制[J].沈阳农业大学学报,1998,29(4):314-318.
    [198]蒋彭炎.论高产稻作的几个基本生物学规律[J].作物杂志,1984,(4):1-3.
    [199]王冀川,徐雅丽,段黄金.新疆不同密度下油葵干物质积累、分配及转移规律的研究[J].中国油料作物学报,2002,24(2):32-36.
    [200]Hanway J J, Andweber C R. A dry matter accumulation in soybean varieties [J], Agron. J., 1971,63:227-230.
    [201]Willcott J, Hurbert S J and Kilen T C. Leaf Display and Light Interception in short season soybeans [J]. Crop Science,1984,9:173-182.
    [202]胡晓青.优化施肥对大豆体内氮和可溶性糖积累及产量的影响[D].哈尔滨:东北农业大学,2010:34-37.
    [203]宋微微,杜吉到,郑殿峰,等.大豆干物质积累、分配规律的研究进展[J].大豆科学,2008,06,1062-1066.
    [204]邹兵,董召荣,王竞绍,张健,等.不同穗型小麦花后物质运转及产量对氮肥的响应[J].中国农学通报,2011,27(12):63-67.
    [205]Heitholt J J, Egli D B, Leggett J E, et al. Role of assimilate and carbon-14 photo synthate partitioning in soybean reproductive abortion[J]. Crop Science,1986,26,999-1004.
    [206]Reese R. N., Dybing C. D., White C. A., et al. Expression of vegetative storage protein in soybean raceme tissues in response to flower set [J]. Journal of Experimental Botany,1995, 46 (289):957-964.
    [207]陈新红,蔡吉风,董志新.多效哇对大豆株型的调节作用及增产效果[J].新疆农业科学,1998,(1):36-38.
    [208]Egli D B, Jiang H. Shade induced changes in flower and pod number and flower and fruit abscission in soybean [J]. Agronomy Journal,1993,85 (2):221-225.
    [209]耿涛,秦淑琴.冬小麦杂种F2代生物学产量、收获指数的研究[J].塔里木农垦大学学报,1997,9(1):16-19.
    [210]兰进好,张宝石.不同年代冬小麦品种光合特性差异的研究[J].沈阳农业大学学报,2003,34(1):12-15.
    [211]Sinclair TR. Historical changes in harvest index and crop nitrogen accumulation [J]. Crop Science,1998,38 (3):638-643.
    [212]Tadahiko Mae, Ayako Inaba, Yoshihiro Kaneta, et al. A large-grain rice cultivar, Akita 63, exhibits high yield and N use efficiency for grain production[J]. Field Crops Research,2006, 97 (23):227-237.
    [213]冯跃华,邹应斌.不同施氮量对免耕/翻耕移栽稻生长及产量形成的影响[J].作物研究,2004,(3):145-150.
    [214]杜吉到,郑殿峰.大豆复叶性状与产量形成关系的研究现状[J].黑龙江八一农垦大学学 报,2005,17(2):23-27.
    [215]卫新菊.施肥对苜蓿开花期叶面积及比叶重的影响[J].中国农学通报,2007,23(7):50-53.
    [216]孙贵荒,刘晓丽,董丽杰,陈艳秋.大豆叶面积指数消长与产量关系的研究.辽宁农业科学,2003,(4):13-14
    [217]闫艳红,杨文钰,张新全,陈小林,陈忠群.施氮量对套作大豆花后光合特性、干物质积累及产量的影响[J].草业学报,2011,20(3):233-238.
    [218]T. D. Setiyono, A. Weiss, J. E. Specht, K. G Cassman, A. Dobermann. Leaf area index simulation in soybean grown under near-optimal conditions [J]. Field Crops Research,2008, 108:82-92.
    [219]王金陵,杨庆凯,吴宗璞.中国东北大豆[M].哈尔滨:黑龙江科学出版社,1999,53-95.
    [220]魏建军,罗赓彤,张力,王晓光,董钻.中黄35超高产大豆群体的生理参数[J].作物学报,2009,35(3):506-511.
    [221]张荣贵,宋宇.大豆叶面积、净光合生产率与产量的相关性[J].中国农业科学,1979,2:40-46.
    [222]Jing Fu, Zuanhua Huang, Zhiqin Wang, Jiangchang Yang, Jianhua Zhang. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice [J]. Filed Crops Research,2011,123:170-182.
    [223]陈传永,侯海鹏,李强,等.种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响[J].作物学报,2010,36(5):871-878.
    [224]Hou Y H, Chen C Y, Hu X F, Dong S T, et al. NAR dynamic characteristics and quantitative analysis for high-yielding population of spring maize [J]. Journal of Maize Sciences,2012,20, 65-70.
    [225]Wajid A, Hussain A, Ahmad A. Effect of sowing date and plant density on growth, light interception and yield of wheat under semi arid conditions [J]. International Journal of Agriculture & Biology,2004,6,1119-1123.
    [226]夏明忠,熊仿秋.蚕豆净同化率与种植密度的关系[J].耕作与栽培,1986,3:67-69.
    [227]Ntanos, S. D. Koutroubas. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions [J]. Field Crops Research,2002,74,93-101.
    [228]Alessandro Masoni, Laura Ercoli, Marco Mariotti, Iduna Arduini. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type [J]. Europ. J. Agronomy,2007,26,179-186.
    [229]Novo Przulj, Vojislava Momcilovic. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley I. Dry matter translocation [J]. European Journal of Agronomy,2001,15,241-254.
    [230]曹艳英,大豆光合生产力的分析[J].烟台师范学报,1986,2(1):49-53.
    [231]孙晓辉.作物栽培学(各论)[M].成都:四川科学技术出版社,2002,305-336.
    [232]董雪.氮素调控对大豆光合产物积累及根瘤固氮的影响[D].哈尔滨:东北农业大学.2009:48-56.
    [233]杜长玉,胡兴国,何忠仁,等.不同密度对大豆产量和生理指标影响的研究[J].内蒙古农业科技,2006,(2):35-36.
    [234]田纪春,王学臣,刘广田.植物的光合作用与光合氮、碳代谢的藕连及调节[J].生命科学,2011,13(4):145-147.
    [235]陈温福,徐正进,等.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995,69-94.
    [236]蒋彭炎,洪晓富,冯来定,等.水稻中期成穗率与后期群体光和效率的关系[J].中国农业科学,1994,27(6):8-14.
    [237]赵波,吴丽华,金文林.小豆生长发育规律研究—小豆群体干物质生产与产量形成的关系[J].北京农学院学报,2006,21(1):24-27.
    [238]张恒善,刘金印,赵正清,王大秋.关于丰产大豆主要生理指标的探讨[J].大豆科学,1985,4(4):185-292.
    [239]唐善德,盖钧镒,马育华.中国南方大豆干物质积累、分配等生理性状与产量的关系[J].大豆科学,1990,9(4):278-284.
    [240]董钻,那桂秋,王荣先,等.大豆叶-粒关系的研究[J].大豆科学,1993,12(1):1-7.
    [241]丁秀琦,文绍金.高海拔冷凉地区引种大豆栽培技术研究[J].中国油料,1997,19(3):50-53.
    [242]岳国光.播期和密度对辽豆10号大豆生长发育和产量的影响[J].辽宁农业科学,1998,(4):41-43.
    [243]张伟,张惠君,王海英,等.株行距和种植密度对高油大豆农艺性状及产量的影响[J].大豆科学,2006,25(3):83-87.
    [244]王程,刘兵,金剑,等.密度对大豆农艺性状及产量构成因素空间分布特征的影响[J].大豆科学,2008,27(6):936-942.
    [245]孙贵荒,刘晓丽,董丽杰,等.高产大豆干物质积累与产量关系的研究[J].大豆科学,2002,21(3):41-46.
    [246]J. E. Specht, D. J. Hume and S. V. Kumudini. Soybean yield potential-a genetic and physiological perspective [J]. Crop Science,1999,9:1560-1570.
    [247]苗以农,朱长甫,石连旋,许月.从大豆产量形成生理特点探索特异高产株型的创新[J].大豆科学,1999,18(4):342-346.
    [248]滕占林.优化施肥对大豆群体质量及产量的影响[D].哈尔滨:东北农业大学,2010.
    [249]D. A. Ntanos, S. D. Koutroubas. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions [J]. Field Crops Research,2002,74: 93-101.
    [250]Alessandro Masoni, Laura Ercoli, Marco Mariotti, Iduna Arduini. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type [J]. Europ. J. Agronomy,2007, (26):179-186.
    [251]Novo Przulj, Vojislava Momcilovic. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley I. Dry matter translocation [J]. European Journal of Agronomy,2001, (15):241-254.
    [252]董钻.重新审视大豆的价值,努力发展高油大豆产业[J].杂粮作物,2003,23(5):271-273.
    [253]Geoffrey N A. Soybean Physiology [M]. Agronomy and Utilization Academic Press.1978
    [254]Sinclair and Wit. Photosynthetic and nitrogen requirements for seed production by various crops [J]. Science,1975,189:565-567.
    [255]李宗盛,李展辉,邓建军.不同时期施氮对大豆产量影响的研究[J].干早地区农业研究,1986,6:45-47.
    [256]侯立白等.应用15N示踪法对大豆不同来源氮素吸收与利用的研究[J].作物学报.1985,11(3):181-188.
    [257]陈成榕.不同大豆品种对氮肥反应的差异[J].中国油料,1992,2:48-50.
    [258]凌启鸿,张洪程,苏祖芳,等.稻作新理论—水稻叶龄模式[M].北京:科学出版社.1994.
    [259]王忠.植物生理学[M].北京:中国农业出版社,2000:131-169.
    [260]谷秋荣,薛晓娅,郭鹏旭,赵巧梅,熊淑萍.不同氮肥类型对大豆叶片光合特性及产量的影响[J].大豆科学,2010,29(5):900-905.
    [261]PurcellL C, BallR A, Reaper J. D, et al. Radiation use and biomass production in soybean at different plant population densities [J]. Crop Science,2002,42:172-177.
    [262]Board J E, Harville B G. Growth dynamic ice during the vegetative period affects yield of narrow-row, late-planted soybean [J]. Agronomy Journal,1996,88:575-579.
    [263]Haile F J, Higley L G, Specht J E. Soybean leaf morphology and defoliation tolerance [J]. Agronomy Journal,1998,90:353-362.
    [264]陶丹,王萍,宋海星,冉彦中,陈玉江,尹田夫.国外早熟大豆冠层粒重分布与产量的关系[J].2011,5(2):146-148.
    [265]吴奇峰,相吉山,董志新.大豆植株不同冠层籽粒干物质积累动态及产量分布[J].2011,8(4):596-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700