用户名: 密码: 验证码:
沼泽湿地垦殖前后土壤有机碳垂直分布及其稳定性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳库的变化与气候变化密切相关。土壤有机碳库并非均质,而是分为对气候和人类活动影响反应敏感并决定土壤有机碳流通的活性库,以及作为大气CO2长期碳汇,控制和保持土壤有机碳的稳定库。深层土壤有机碳储量大,且特有其稳定性,对于储碳层较厚的土壤类型,研究有机碳垂直分布规律以便精确估算更深层土壤有机碳储量更符合其有机碳库的实际情况。湿地土壤储碳层一般较厚,有机碳密度普遍较高,三江平原作为我国最大的淡水沼泽湿地分布区,是我国北方重要的土壤有机碳库。近几十年来三江平原沼泽湿地经历了多次大面积垦殖,湿地农田化现象严重,农田成为本区的主要景观类型。湿地变成农田改变了湿地生态系统原有的碳循环模式,影响了湿地土壤有机碳库状况。
     本研究针对三江平原大面积沼泽湿地农田化,区域土地利用方式剧烈变化这一现状,在湿地农业开发较早的兴凯湖地区选择土壤类型同为泥炭沼泽土的湿地及由其垦殖而来的旱田(大豆田)和水田(水稻田),运用野外调查、室内分析测试及室内控制实验相结合的方法研究湿地垦殖前和垦殖后有机碳处于稳定阶段时土壤有机碳的垂直分布、储量及稳定性特征,并探讨植物、土壤微生物特性以及可溶性有机碳的垂直迁移对土壤有机碳含量和垂直分布的影响。以期丰富三江平原碳循环研究,为土地利用剧烈变化情景下对三江平原区域土壤有机碳库进行精确估算和预测提供数据支撑;为明确垦殖对三江平原土壤有机碳库的长期影响及在兼顾固碳减排和保证粮食生产的原则下调整优化区域土地利用结构提供科学依据。通过研究,得出以下主要结论:
     (1)垦殖显著降低湿地0-40cm土层土壤有机碳含量,垦殖前后土壤有机碳含量在0-50cm土层随深度增加降低更明显,50cm以下随深度增加有机碳含量变化不大;垦殖降低了湿地土壤有机碳密度,且大豆田土壤有机碳密度高于水稻田,三者1m深土壤有机碳均是大部分储存在0-50cm土层中。垦殖改变了湿地剖面土壤有机碳含量,但是并未改变土壤有机碳含量随土壤深度的变化规律,垦殖前后土壤有机碳含量与深度之间的关系均可用指数函数来描述。
     (2)垦殖后,生长季末归还土壤的植物残体量降低,大豆田高于水稻田。垦殖后植物残体含碳总量也降低,沼泽湿地、大豆田和水稻田残体中含碳总量分别1694.54g/m2,299.77g/m2和240.71g/m2。这与垦殖后土壤有机碳含量和密度降低,大豆田高于水稻田的结论相符合。归还土壤的植物残体中,地上部分C:N水稻田高于沼泽湿地,沼泽湿地高于大豆田;地下部分C:N大豆田高于水稻田,水稻田高于湿地。
     (3)垦殖降低了土壤微生物数量:垦殖后,0-5cm、5-10cm、10-20cm、20-30cm四个土层土壤微生物量碳和微生物量氮含量均降低,大豆田微生物量碳低于水稻田,微生物量氮大豆田高于水稻田。垦殖降低了土壤微生物活性:垦殖后土壤基础呼吸降低,大豆田基础呼吸低于水稻田,水稻田土壤微生物活性更高。0-5cm和5-10cm表层土壤在5-7月旱地大豆田比有淹水的水稻田和沼泽湿地微生物代谢熵更高,8月、9月水稻田积水排干后,水稻田微生物代谢熵急剧增加,高于大豆田和有积水的沼泽湿地,淹水情况下,微生物活性受到抑制。对于10-20cm和20-30cm的下层土壤,沼泽湿地和水稻田土壤微生物代谢熵高于旱地大豆田。
     (4)土壤溶液中可溶性有机碳含量20-60cm以及20-100cm的降低幅度均是大豆田高于沼泽湿地和水稻田,沼泽湿地和水稻田的降低幅度基本相同,旱地大豆田对可溶性有机碳的截留效果较有积水的沼泽湿地和水稻田更明显,沼泽湿地和水稻田土壤对可溶性有机碳的截留效果大致相当。
     (5)垦殖后可溶性有机碳、微生物量碳、易氧化有机碳和易矿化有机碳这些活性有机碳组分含量和储量降低,大豆田低于水稻田。垦殖后,活性有机碳储量占土壤有机碳储量的比例大豆田低于水稻田。垦殖后4个土层<0.25mm微团聚体内有机碳储量及其占土壤有机碳储量的比例增加,大豆田高于水稻田。此外,土地利用方式、季节、温度和土壤含水量这些单因素对土壤有机碳矿化产生显著影响。季节和土地利用方式、季节和温度、季节和水分、土地利用方式和温度、土地利用方式和水分、温度和水分对土壤有机碳矿化的两两交互影响显著。垦殖后土壤有机碳矿化速率降低,且相同土壤含水量条件下矿化速率随温度变化升高的幅度也降低,大豆田土壤有机碳矿化速率低于水稻田。垦殖后土壤有机碳总量和活性组分均减少,但垦殖后土壤有机碳以更加稳定的形式存在,垦殖为大豆田比垦殖为水稻田更加有利于土壤有机碳的长期保存。
Change in soil organic carbon (SOC) pool and climate change are closely related.SOC pool is not homogeneous, but divided into active SOC pool and stable SOC pool.The active pool is sensitive to climate change and humanactivities and decides theSOC fluxes. The stable pool controls and maintains SOC as a long-term carbon sinkof atmospheric CO2. SOC storage in deeper soil layers is large and unique to itsstability. For some soil types whose SOC storage layer is thicker, studying on SOCvertical distribution in order to accurately estimate SOC storage in deeper soil layersis more in line with the realities of their SOC pool. Generally, SOC storage layer isthicker and SOC density is higher in wetland. As China’s largest distribution area offresh water marsh, the Sanjiang Plain is the important SOC pool in North China. Inrecent decades, large area of wetland in Sanjiang Plain has been reclaimed manytimes, farmland has become to the main landscape. Wetland becoming to farmlandhas changed the carbon cycle model of wetland and affected SOC pool.
     In this study, the state that large area wetland had become to farmland, and landuse had changed severly were took into account. Wetland, upland fields (soybean field)and paddy field which have the same soil type peat marsh soil were chosed as sampleplots in Xingkai Lake area in which agriculture development is very early. Fieldsurvey, indoor analysis and control experiment were used to research verticaldistribution, storage and stability of SOC, and probe the effect of plant, soil microbeand vertical migration of dissolved organic carbon (DOC) on SOC content andvertical distribution. This study was with a view to enriching the studies on carboncycle in the Sanjiang Plain; and providing data for accurate estimates and projectionsof SOC pool under severe land use change in Sanjiang Plain; and providing scientific basis to identify the long-term effects of reclamation on SOC pool, and to adjust theland use structure in the balance between carbon sequestration and emission reductionand guaranting food production. Through research, main conclusions have beenreached as follows:
     (1)After reclamation, SOC content in0-40cm soil layers decreased significantly;SOC content in0-50cm soil layers decreased more obviously with soil depthincreased, below50cm it changed little with soil depth increased. Because ofreclamation, SOC density also decreased, and that in soybean field was higher than inpaddy field; most SOC were stored in0-50cm soil layers in wetland, soybean fieldand paddy field. Reclaiming changed the SOC content in the soil profile of wetland,but dinn’t alter the SOC content variation rule with soil depth increase; before andafter reclamation, relationships between SOC content and soil depth could bedescribed by the exponential function.
     (2)After reclamation, the amount of plant residues returned to soil in the end ofgrowth season decreased, and that in soybean field was more than that in paddy field.The total carbon content in plant residues also decreased, the total carbon in plantresidues in wetland, soybean field and paddy field were1694.54g/m2,299.77g/m2and240.71g/m2, respectively. It was consistent with the conclusion that SOC contentdecreased, and that in soybean field was higher than that in paddy field afterreclamation. The C:N of overground part of plant residues returned to soil in paddyfield was higher than that in wetland, that in wetland higher than that in soybean field;the C:N of belowground part of plant residues returned to soil in soybean field washigher than that in paddy field,and that in paddy field higher than that in wetland.
     (3) Microbial biomass decreased due to reclamation. After reclamation, in0-5cm,5-10cm,10-20cm and20-30cm soil layers Microbial Biomass Carbon (MBC)and Microbial Biomass Nitrogen (MBN) decreased, MBC and MBN in soybean fieldwere lower and higher than in paddy field respectively. At the same time MBC/MBNdecreased, microbial community structure changed, and MBC/MBN in soybean fieldwas lower than that in paddy field. Microbial activity decreased due to reclamation. Basal Respiration (BR) decreased, and that in soybean field was lower than that inpaddy field, microbial activity in paddy field was higher. In0-5cm and5-10cmtopsoil layers in May to July, Respiration Quotient-qCO2(qCO2) was higher insoybean field than that in paddy field and wetland, both were in water logging; whilein August and September logging water was drained up, qCO2in paddy fieldincreased dramatically to be higher than that in soybean field and wetland. Underwaterlogged conditions, microbial activity is subdued. In10-20cm and20-30cmsubsoil layers, qCO2were higher in wetland and paddy field than that in soybeanfiled.
     (4) Reduction ranges of dissolved organic carbon (DOC) in soil solution from20cm to60cm soil depth and from20cm to100cm soil depth were all higher insoybean filed than those in wetland and paddy field. That was essentially the same inwetland as that in paddy field. The retention of DOC was more obvious for soybeanfarming than wetland and rice farming, and that was roughly the same for wetland asrice farming.
     (5) After reclamation, content and storage of labile organic carbon componentssuch as dissolved organic carbon (DOC), microbial biomass carbon (MBC),easily-oxidized organic carbon, and easy mineralizable organic carbon decreased, andthose in soybean field were lower than in paddy field. After reclamation, ratio oflabile organic carbon storage to total SOC storage in soybean field was lower than inpaddy field. In0-5cm,5-10cm,10-20cm and20-30cm soil layers, SOC storage ofmicro-aggregates (<0.25mm) and its share in total soil SOC increased, those insoybean were higher than that in paddy field. In addition, land use patterns, season,temperature and soil water content had a significant impact on soil organic carbonmineralization. Interactions influence of seasons and land use patterns, season andtemperature, season and soil water content, land use patterns and temperature, landuse patterns and soil water content, temperature and soil water content on soil organiccarbon mineralization were also sifnificant. After reclamation, soil organic carbonmineralization rate decreased and that in soybean field was lower than in paddy field; mineralization rate rise range with temperature rise decreased under the same soilwater content. Due to reclamation, total SOC storage and labile components storagedecreased, but after reclamation SOC was stored in more stable form, soybeanfarming is more friendly for sustainable SOC residence in the soils than rice farming.
引文
Agbenin JO, Adeniyi T.The microbial biomass properties of a savanna soil under improved grassand legume pastures in northern Nigeria [J].Agriculture, Ecosystems and Environment.2005,109(4):245-254.
    Allen AS, Schlesinger WH. Nutrient limitations to soil microbial biomass and activity in loblollypine forests [J]. Soil Biology and Biochemistry.2004,36:581-589.
    Amundson R.The carbon budget in soils [J].Annual Review of Earth and Planetary Science.2001,29:535–562.
    Anderson JD, Ingranm LJ, Stahl PD. Influence of reclamation management practices on microbialbiomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming[J]. Applied Soil Ecology.2008,40:387-397.
    Baisden WT, Amundson R, Cook A C, et al. Turnover and storage of C and N in five densityfractions from California annual grassland surface soils[J]. Global Biogeochemical Cycles,2002a,16(4):1117. doi:10.1029/2001GB001822.
    Baisden WT, Parfitt RL. Bomb C14enrichment indicates decadal C pool in deep soil?[J].Biochemistry,2007,85(1):59-68.
    Baldock J.A, Masiello C.A, Gelinas Y,et al.Cycling and composition of organic matter interrestrial and marine ecosystems [J].Marine Chemistry.2004,92:39-64.
    Baldock JA, Nelson PN.Soil organic matter. In: Summer, M.(ed.) Handbook of soil science. CRCPress, Boca Raton FL,2000:25-84.
    Baldock JA, Oades JM, Waters AG, et al.Aspects of the chemical structure of soil organicmaterials as revealed by solid-state13C NMR spectrometry [J].Biogeochemistry,1992,16:1-42.
    Baldock J.A, Skjemstad J.O.Role of the soil matrix andminerals in protecting natural organicmaterials against biological attack [J].Org. Geochem,2000,31:697-710.
    Barbhuiya AR, Arunachalam A, Pandeyb HN, et al. Dynamics of soil microbial biomass C, N andP in disturbed stands of a tropical wet-ever-green forest [J]. European Journal of SoilBiology.2004,40:113-121.
    Bardgett R.D, Bowman W.D, Kaufmann R,et al.A temporal approach to linking aboveground andbelowground ecology [J].Trends in Ecoloogy and Evolution,2005,20:634-641.
    Batjes N H. Total carbon and nitrogen in the soils of the world [J]. European Journal of SoilScience,1996,47(2):151-163.
    Bauhus J, Pare D, Cote L. Effects of tree species, standage and soil type on soil microbial biomassand its activity in a southern boreal forest [J]. Soil Biology and Biochemistry.1998,30:1077-1089.
    Bayer C,Mielniczuk J,Martin N L et al.Stocks and humification degree of organic matter fractionsas affected by no-tillage on a subtropical soil[J].Plant and Soil,2002,238:133-140.
    Becker-Heidmann P, Scharpenseel H.W.Studies of soil organic matter dynamics using naturalcarbon isotopes [J].Science of Total Environment,1992,117:305–312.
    Bending G D, Turner M K, Jones J E.Interaction between crop residue and soil organic matterquality and functional diversity of soil micronial communities[J].Soil biology andBiochemistry.2002,34:1073-1082.
    Bennett P C,Rogers J A,Hiebert F K et al.Silicates, silicate weathering, and microbial ecology[J].Geomicrobiology Journal,2001,8:3-19.
    Berg B.Litter decomposition and organic matter turnover in northern forest soils [J].ForestEcology Management,2000,133:13-22.
    Berger TW,Neubauer C,Glatzel G.Factors controlling soil carbon and nitrogen stores in purestands of Norway spruce (Picea abies) and mixed species stands in Austria [J].Forest Ecologyand Management,2002,159:3-14.
    Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect onatmospheric carbon dioxide over the past100million years [J].American Journal of Science,1983,283:641-683.
    Bills J S, Jacinthe P A, Tedesco. L P.Soil organic carbon pools and composition in a wetlandcomplex invaded by reed canary grass[J].Biology and Fertility of Soils,2010,46:697-706.
    Bird M.I, Chiras A.R, Head J.A latitudinal gradient in carbon turnover times in forest soils[J].Nature,1996,381:143–146.
    Blair G J,Lefroy R D B,Lisle L.Soil carbon fractions based on their degree of oxidation,anddevelopment of a carbon management index for agricultural systerms[J].Australian Journal ofAgricultural Research,1995,46(7):1459-1466.
    Bordovsky D G,Choudhary M,Gerard C J.Efect of til1age,cropping,and residue management onsoil properties in the Texas rolling plains[J].Soil Science,1999,164:331-340.
    Bossuyt H, Denef K, Six J, et al. Influence of microbial populations and residue quality onaggregate stability [J]. Applied Soil Ecology,2001,16(3):195-208.
    Braakhekke M C, Reichstein M., Kruijt B, et al. The Importance of vertical heterogeneity in soilorganic matter for determining soil respiration and carbon sequestration with globalecosystem models [A]. American Geophysical Union, Fall Meeting2007. B23D-1576.
    Bragazza L,Sifi C,Iacumin P,et a1.Mass loss and nutrient release during litter decay in peatland:the role of microbial adaptability to litter chemistry [J].Soil Biology andBiochemistry.2006,1:257-267.
    Bragg O M. Hydrology of peat-forming wetlands in Scotland [J].The Science of the TotalEnvironment,2002,294:111-129.
    Briones M J I, Poskitt J, Ostle N.Influence of warming and enchytraeid activities on soil CO2andCH4fluxes [J].Soil Biology and Biochemistry,2004,36:1851-1859.
    Caldeira MC, Fangueiro D, Lecomte X, et al.Soil Microbial Biomass And Activity In A Cork OakSavanna [J].nature precedings.2010, doi:10.1038/npre.2010.5401.1.
    Cambardella C A, Elliott E T.Particulate soil organic matter changes across a grassland cultivationsequence [J].Soil Science Society of American Journal,1992.56:777–783.
    Campbell R, Greaves M P. Anatomy and community structure of the rhizosphere. In TheRhizosphere. Ed. J M Lynch. John Wiley&Sons Ltd, Essex.1990:11-34.
    Cao M K,Woodward F I.Dynamic responses of terrestrial ecosystem carbon cycling to globalclimate change [J].Nature,1998,393:249-252.
    Chapin S F III,Matson P,Mooney H A.Principles of terrestrial ecosystem ecology[M].SpringerVerlag,New York,Inc,2002.
    Chenu C,Plante A.F,Puget P.Organo-Mineral Relationships[J].Encyclopedia of SoilScience,2006,DOI:10.1081/E-ESS-120006622
    Christensen B.T.Physical fractionation of soil and organic matter in primary particle size anddensity separates [J].Advances in soil sciences,1992,20:1-90.
    Christensen B.T.Physical fractionation of soil and structural and functional complexity in organicmatter turnover [J].European Journal of Soil Science,2001,52:345-353.
    Conant R T, Paustian K.Potential soil carbon sequestration in overgrazed grassland ecosystems [J].Global Biogeochemical Cycles,2002,16(4):1143, doi:10.1029/2001GB001661.
    Craft C, Redlinski I, Vymazal J, et al.Soil Properties, Carbon Sequestration and Nutrient (N, P)Accumulation in Wet Meadows&Peat Bogs, Czech Republic,2011.
    Davidson E A,Trumbore S E,Amundson R.Soil warming and organic carbon content[J].Nature,2000,408(14):789-790.
    Degens B. Decreases in microbial functional diversity do not result in corresponding changes indecomposition under different moisture conditions[J].Soil Biology andBiochemistr.1998,30(14):1989-2000.
    Denef K, Six J.Claymineralogy determines the importance of biological versus abiotic processesform acroaggregate formation and stabilization [J].European Journal of Soil Science,2005,56:469-479.
    Derenne S, Largeau C.A review of some important families of refractory macromolecules:Composition, origin, and fate in soils and sediments [J].Soil Science,2001,166:833–847.
    Dilly O, Munch JC. Ratios between estimates of microbial biomass content and microbialactivityin soils [J].Biology and Fertility of Soils27:374-379.
    Eghball B,Mielke L N,Doran J W. Distribution of organic carbo n and inorganic nitrogen in a soilunder various tillage and crop sequences[J].Journal of Soil and WaterConservation,1994,49:201-205.
    Ellert B H. Gregorich E G. Management-induced changes in the actively cycling fractions of soilorganic matter[A].In:Mcfee W W, Kelly J M (eds).Carbon Forms and Functions in ForestSoils[C]. Wisconsin,Madison,USA:Soil Sci Soc Am,lnc,1995,119-138.
    Eusterhues K, Rumpel C, Kleber M, et al.Stabilization of soil organic matter by interactions withminerals as revealed by mineral dissolution and oxidative degradation [J].Org. Geochem,2003,34:1591-1600.
    Eusterhues K, Rumpel C, K gel-Knabner I.Stabilization of soil organic matter isolated viaoxidative degradation [J].Org. Geochem,2005,36:1567-1575.
    Ewing S A, Sanderman J, Baisden W T, et al. Role of large-scale soil structure in organic carbonturnover: evidence from California grassland soils [J]. Journal of Geophysical Research,2006,111:G03012. doi:10.1029/2006JG000174.
    Falloon P.D, Smith P.Modeling refractory soil organic matter [J].Biology and Fertility of Soils,2000,30:388-398.
    Fauci M F, Dick R P.Soil microbial dynamics: short and long term effects of inorganic andorganic nitrogen [J]. Soil Science Society of American Journal.1994,58:801-806.
    Feller C, BeareM H.Physical control of soil organicmatter dynamics in the tropics [J].Geoderma,1997,79:69-116.
    Feller C,Balesdent J,Nicolardot B, et al.Approching “functional” soil organic matter pools throughparticle-size fractionation:examples for tropical soils.In:Lal R.Kimble J M,Follett R F,Stewart eds.Assessment methods for soil carbon.Boca Raton,Florida:LewisPublishers.2001:53-67.
    Fenner N,Freemana C,Reynolds B.Hydrological effects on the diversity of phenolic degradingbacteria in a peatland:implications for carbon cycling[J].Soil Biology and Biochemistry,2005,37:1277-1287.
    Fog K.The effect of added nitrogen on the rate of decomposition of organic matter [J].BiologicalReviews,1988,63:433-462.
    Fontaine S,Barot S, Barre P,et al.Stability of organic carbon in deep soil layers controlled by freshcarbon supply[J].Nature,2007,450(8):doi:10.1038/nature06275.
    Fornara D A, Tilman D.Plant functional composition influences rates of soil carbon and nitrogenaccumulation [J].Journal of Ecology,2008,96:314-322.
    Forsskahl I, Poppoff Y, Theander O.Formation of aromatic compounds.11. Reactions of D-xyloseand D-glucose in alkaline, aqueous solutions [J].Carbohydrate Research,1976,48:13-21.
    Fortin D,Ferris F G,Scott S D.Formation of Fe-silic ates and Fe-oxides on bacterial surfaces insamples collected near hydrothermal vents on the Southern Explorer Ridge in the NortheastPacific Ocean [J].American Mineralogist,1998,83:399-1408.
    Genxing P, Lianqing L,Laosheng W,et al.Storage and sequestration potential of topsoil organiccarbon in China’s paddy soils[J].Global Change Biology,2003,10:79-92.
    Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon insoils: a sensitive measurementfor determining impacts of fertilization,grazing and cultivation[J]. Soil Biol and Biochem,2003,35:1231-1243.
    Golchin A,Oades JM,Skjemstad J.O et al.Study of free and occluded particulate organic matter insoils by solid state13C CP/MAS NMR spectroscopy and scanning electronmicroscopy[J].Austrilian Journal of Soil Research,1994,32:285-309.
    Goulden ML, Wofsy SC, Harden JW, et al.Sensitivity of Boreal forest carbon balance to soil thaw[J].Science,1998,279:214-217.
    Grace J.Understanding and managing the global carbon cycle [J]. Journal of Ecology,2004,92(2):189-202.
    Grayston SJ,Campbell CD. Functional biodiversity of microbial communities in the rhizosphereof hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis)[J].Tree Physiology.1996,16:1031-1038.
    Hao Y,Lal R,Izaurralde R C, et al. Historic assessment of agricultural impacts on soil and soilorganic carbon erosion in an Ohio watershed [J].Soil Science,2001,166:116-126.
    Harris M M, Safford L O.Effects of season and four tree species on soluble carbon content in freshand decomposing litter of temperate forests[J].Soil Science,1996,161:130-135.
    Hassink J. Effect of soil texture on the size of the microbial biomass and on the amount of C andN mineralize per unit of microbial biomass in Dutch grassland soil [J]. Soil Biology andBiochemistry.1994,26:1573-1581.
    Haynes, R.J. Labile organic matter fractions as central components of the quality of agriculturalsoils: an overview. In: Sparks, D.L.(Ed.), Advances in Agronomy, Academic Press, SanDiego CA,2005,85:221-268.
    Helfrich M, Flessa H, Mikutta R, et al.Comparison of chemical fractionations methods forisolating stable soil organic carbon pools [J].European Journal of Soil Science,2007,58:1316-1329.
    Hilinski T E. Implementation of exponential depth distribution of organic carbon in theCENTURY model[EB/OL].http://www.nrel.colostate.edu/projects/century5/reference/html/Century/exp-c-distrib.htm,2001.
    Hofman J, Bezchlebov J, Duek L, et al. Novel approach to monitoring of the soil biologicalquality [J]. Environment International.2003,28(8):771-778.
    Hook P B, Burke I C.Biogeochemistry in a shortgrass Landscape: Control by topography, soiltexture, and microclimate [J].Ecology,2000,81(10):2686-2703.
    Houghton R A, Hackler J L, Lawrence K T.The US carbon budget: contributions form land-usechange [J].Science,1999,285:574-578.
    Houghton R A,Goodale C L.Effects of land-use change on the carbon balance of terrestrialecosystems.In:DeFries R S,Asner G P,Houghton R A eds.Ecosystems and Land UseChange.American Geophysical Union, Washington,2004:85-98.
    Hurd E A, Phenotype and drought tolerance in wheat [J].Agricultural Meteorology,1974,14:39-55.
    Hussain Q, Pan G X, Liu Y Z et al. Microbial community dynamics and function associatedwithrhizosphere over periods of rice growth[J].Plant and soil.2012,58(2):55-61.
    Ingram J S I, Fernandes E C M. Managing carbon sequestration in soils: concept and terminology[J].Agric Ecosystem Environment,2001,87:111-117.
    Insam H. Are the soil microbial biomass and basal respiration governed by climate regime [J]?Soil Biology and Biochemistry,199022:525-532.
    Iyyemperumala K, Israela DW, Shi W. Soil microbial biomass, activity and potential nitrogenmineralization in a pasture: impact of stock camping activity [J]. Soil Biology andBiochemistry.2007,39:149-157.
    Jacinthe P A, Bills J S, Tedesco L P.Size, activity, and catabolic diversity in a wetland complexinvaded by reed canary grass [J].Plant Soil,2010,329:227-238.
    Jagadamma S, Lal R, Ussiri D A N, et al.Evaluation of structural chemistry and isotopic signaturesof refractory soil organic carbon fraction isolated by wet oxidationmethods[J].Biogeochemistry,2010,98:29-44.
    Jagadamma S, Lal R.Integrating physical and chemical methods for isolating stable soil organiccarbon [J].Geoderma,2010,158:322-330.
    Jandl R, Lindner M, Vesterdal L et al.How strongly can forest management influence soil carbonsequestration?[J].Geoderma,2007,137:253-268.
    Jastrow J D&James E A&Vanessa L B.Mechanisms controlling soil carbon turnover andtheirpotential application for enhancing carbon sequestration [J].Climatic Change,2007,80:5-23.
    Jenkinson DS, Coleman K. The turnover of organic carbon in subsoils. Part2. Modelling carbonturnover [J]. European Journal of Soil Science,2008,59(2):400-413.
    Jenkinson DS,Adams DE,Wild A.Model estimates of CO2emissions from soil in response toglobal warming [J].Nature,1991,351(23):304-306.
    Jenkinson DS, Brookes PC, Powlson DS.Measuring soil microbial biomass [J]. Soil Biology andBiochemistry.2004,36:5-7.
    Jiang PA,Luo M,JiangYH, et al. Soil microbial floras and their qMB and qCO2Values in thefields of different-Year-aged Medicago sativa [J]. Arid land Geography.2006,29(1):115-119.
    Jobba′gy E G, Jackson R B.The vertical distribution of soil organic carbon and its relation toclimate and vegetation[J].Ecological Society of America,2000,10:423-436.
    Joergensen RG,Muelhr T. The fumigation-extraction method to estimate soil microbial biomass:calibration of the kEc value [J]. Soil Biology and Biochemistry.1996,28:3-37.
    Johansson MB.The chemical composition of needle and leaf litter from Scots pine,Norway spruceand white birch in Scandinavian forests[J]. Forestry.1995,68:49-62.
    Kaiser K, Guggenberger G.Mineral surfaces and soil organic matter [J].European Journal of.SoilScience,2003,54:219-236.
    Kalbitz K, Kaiser K. Contributions of dissolved organic matter to carbon storage in forest mineralsoils [J]. Journal of Plant Nutrition and Soil Science,2008,171(1):52-60.
    Kasimir-Klemedtsson L, Berglund K, Martikainen P, et al.Greenhouse gas emissions fromfarmedorganic soils: a review [J].Soil Use Management,1997,13:245-250.
    Kiem R, K gel-Knabner I.Contribution of lignin and polysaccharides to the refractory carbon poolin C-depleted arable soils [J].Soil Biology and Biochemistry,2003,35:101-118.
    Kirschbaum M U F.Will changes in soil organic carbon act as a positive or negative feedback onglobal warming?[J].Biogeochemistry,2000,48:21-51.
    Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition and theeffect of global warming on soil organic C storage. Soil Biol. Biochem.1995,27:753-760.
    Kleber M, Mikutta R, Torn M S etal.Poorly crystalline mineral phases protect organic matter inacid subsoil horizons [J].European Journal of Soil Science,2005,56:717-725.
    Klose S, Wernecke K D, Makeschin F. Microbial activities in forest Soils exposed to chronicdepositions from a lignite power plant[J].Soil Biology and Biochemistry.2004,36:1913-1923.
    K gel-Knabner I, Amelung W, Cao Z H, et al. Biogeochemistry of paddy soils [J]. Geoderma,2010,157(1/2):1-14.
    K gel-Knabner I, Hempfling R, Zech W, et a1. Chemical tomposition of the organic matter inforest soils [J].Forest litter of Soil Science,1988,146:124-136.
    K gel-Knabner I.13C and15N NMR spectroscopy as a tool in soil organic matter studies[J].Geoderma,1997,80:243-270.
    Kong A Y Y, Six J, BryantD C,et al. The relationship between carbon input, aggregation, and soilorganic carbon stabilization in sustainable cropping systems. Soil Science Society of AmericaJournal,2005,69:1078-1085.
    Kraigher B,Stres B,Hacin J,et al.Microbial activity and community structure in two drained fensoils in the Ljubljana Marsh[J].Soil Biology and Biochemistry,2006,38:2762-2771.
    Krull E S,Baldock J A,Skjemstad J O.Importance of mechanisms and processes of the stabilizationof soil organic matter for modeling carbon turnover[J].Functional PlantBiology,2003,30:207-222.
    Ladd JN, Oades JM, Amato M. Microbial biomass formed from14C,15N-labled plant materialdecomposing in soil in the field[J]. Soil Biology and Biochemistry.1983,15:375-376.
    Laird D.A, Martens D.A, Kingery W.L.Nature of clay-humic complexes in an agricultural soil. I.Chemical, biochemical, and spectroscopic analyses [J].Soil Science Society of AmericanJournal,2001,65:1413-1418.
    Lal R.Carbon management in agricultural soils [J].Mitigation and Adaptation Strategies for GlobalChange,2007,12:303-322.
    Lal R.Offsetting global CO2emissions by restoration of degraded soils and intensification ofworld agriculture and forestry [J].Land Degradation&Development,2003,14:309-322.
    Lal R.Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    Lee KH, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood andloblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology andManagement.2003,185:263-273.
    Liao C, Luo Y, Jiang L et al.Invasion of Spartina alterniflora enhanced ecosystem carbonandnitrogen stocks in the Yangtze estuary, China [J].Ecosystems,2007,10:1351-1361.
    Liao JD, Boutton TW. Soil microbial biomass response to woody plant invasion of grassland[J].Soil Biology and Biochemistry.2008,40(5):1207-1216.
    Lin QM, Brookes P. An evaluation of the substrate-induced respiration method [J]. Soil Biologyand Biochemistry.1999,31:1969-1983.
    Lipson D A,Schmidt S K,Monson R K.Carbon availability and temperature control thepost-snowmelt decline in alpine soil microbial biomass[J].Soil Biology and Biochemistry,2000,32:441-448.
    Liu J X, Price D T, Chen J M.Nitrogen controls on ecosystem carbon sequestration: a modelimplementation and application to Saskatchewan [J].Canada.Ecological modeling,2005,186:178-195.
    Liu MQ, Hu F, Chen XY. A review on mechanisms of soil organic carbon stabilization [J]. ActaEcologica Sinica.2007,27(6):2642-2650.
    Loginow W, Wisniewski W, Gonet S S et al.Fraction of organic carbon based on susceptibility tooxidation [J].Polish Journal of Soil Science.1987,20:47-52.
    Lorenz K, Lal R.The depth distribution of soil organic carbon in relation to land use andmanagement and the potential of carbon sequestration in subsoil horizons [J].Advances inAgronomy.2005,88:35-66.
    Lorenz K,Lal R,Shipitalo M.J.Stabilization of organic carbon in chemically separated pools inno-till and meadow soils in northern Appalachia[J].Geoderma,2006,137:205-211.
    Lovell RD, Jarvis SC. Soil microbial biomass and activity in soil from different grasslandmanagement treatments stored under controlled conditions [J]. Soil Biology andBiochemistry.1998,30:2077-2085.
    Lovell RD, Jarvis SC, Bardgett RD.Soil microbial biomassand activity in long-term grassland:efects of managementChanges [J]. Soi l Biology amd Biochemistry.1995,27:969-975.
    Lützow M, Kogel-Knabner I, Ekschmitt K, ET al.Stabilization of organicmatter in temperate soils:Mechanisms and their relevance under different soil conditions-a review [J].EuropeanJournal of Soil Science,2006,57(4):426-445.
    Ma1tby E, Immirzi P. Carbon dynamic in peatlands and other wetland soils: regional and globalperspectives [J].Chemosphere,1993,27:999-1023.
    Malmer N,Johansson T,Olsrud M et al. Vegetation, climatic changes and net carbon sequestrationin a North Scandinavian subarctic mire over30years[J].Global ChangeBiology,2005,11:1895-1909.
    Marschner B, Bredow A. Temperature effects on release and ecologically relevant propertiesofdissolvesorganic carbon in sterilized and biologically active soil samples[J].Soil BiolBiochem,2002,34:459-466.
    Marschner B, Kalbitz K. Controls of bioavailability andbiodegradability of dissolved organicmatter in soils[J].Geoderma,2003,113:221-235.
    Mary B, Recous S, Robin D. A methods for calculat ing nitrogen fluxes in soil using15N t racing[J]. Soil Biology Biochemistry.1998,30:1963-1979.
    Mclauchlan K K, Hobbie S E.Comparison of labile soil organic matter fractionation techniques[J].Soil Science Society of America Journal,2004,68:1616-1625.
    Meersmans J, Van Wesemael B, Deridderw F,et al.Changes in organic carbon distribution withdepth in agricultural soils in northern Belgium,1960-2006[J].Global ChangeBiology,2009,15:2739-2750.
    Mikutta R, Kleber M, Torn M S, et al.Stabilization of soil organic matter: association withminerals or chemical recalcitrance?[J].Biogeochemistry,2006,77:25-56.
    Mitra S, Wassmann R, Vlek P L G.An appraisal of global wetland area and its organic carbonstock [J].Current Science,2005,88:25-35.
    Montserrat G, Martí E, Sierra J, et al. Discriminating inhibitory from enhancing effects inrespirometry assays from metal polluted-sewage sludge amended soils [J]. Applied SoilEcology.2006,34(1):52-61.
    Moscatelli M C,DiTizio A, Marinari S,et al.Microbial indicators related to soil carbon inMediterranean land use systems[J].Soil Tillage and Research,2007,97:51-59.
    Muggler C C, Van Griethuysen C, Buurman P, et al. Aggregation, organic matter, and iron oxidemorphology in Oxisols from Minas Gerais, Brazil [J]. Soil Science,1999,164(10):759-770.
    Muller M, Alewell C, Hagedorn F. Effective retention of litter-derived dissolved organic carbon inorganic layers [J]. Soil Biology&Biochemistry,2009,41:1066-1074.
    Newman, A C D, Hayes M H B.Some properties of clays and of other soil colloids and theirinfluences on soils. In: De Boodt M.F,Hayes M H B,Herbillon A (eds.).Soil colloids and theirassociations in aggregates. Plenum Press,1990:39-55.
    Nierop K G J. Origin of aliphatic compounds in a forest soil [J] Organic Geochemistry,1998,29(4):1009-1016.
    Niinist S M,Silvola J,Kellomaki S.Soil CO2efflux in a boreal pine forest under atmosphericCO2enrichment and air warming[J].Global Change Biology,2004,10:1363-1376.
    Nsabimana D, Haynes RJ, Wallis FM. Size, activity and catabolic diversity of the soil microbialbiomass as affected by land use [J]. Applied Soil Ecology.2004,26:81-92.
    Nyamadzawo G, Nyamangara J, Nyamugafata P, et al.Soil microbial biomass and mineralizationof aggregate protected carbon in fallow-maize systems under conventional and no-tillage inCentral Zimbabwe[J]. Soil and Tillage Research,2009,102:151-157.
    Odum E. Trends expected in stressed ecosystems [J]. Bioscience.1985,35:419-42.
    Olk DC, Gregorich E.G.Overview of the symposium proceedings meaningful pools in determiningsoil carbon and nitrogen dynamics [J].Soil Science Society of American Journal,2006,70:967-974.
    Pardini G, Gispert M, Dunjo G.Runoff erosion and nutrient depletion in five Mediterranean soilsof NE Spain under different land use [J].Science of the Total Environment,2003,309:213-224.
    Parfitt PR, Theng BKG, Whitton J S et al. Effects of clay minerals and land use on organic matterpools [J].Geoderma,1997,75:1-12.
    Parton WJ, Schimel DS, Cole CV et al.Analysis of factors controlling soil organic matter levels inGreat Plains Grasslands [J].Soil Science Society of America Journal,1987,51:1173-1179.
    Paul EA, Collins HP, Leavitt SWDynamics of resistant soil carbon of Midwestern agriculturalsoils measured by naturally occurring14C abundance [J].Geoderma,2001,104:239-256.
    Paul EA, Clark FE. Soil Microbiology and BiochemistryAcademic Press, San Diego.1989:139-145.
    Peterjohn WT, Melillo JM, Steudler P A,et al.Response of trace gas fluxes and N availability toexperimentally elevated soil temperatures [J].Ecological Applications,1994,4:617-625.
    Plant AF, Fernández GM, Haddix M L, et al.Biological, chemical and thermal indices of soilorganic matter stability in four grassland soils [J].Soil Biology and Biochemistry,2011,doi:10.1016/j.soilbio.2011.01.024.
    Plante AF, Chenu C, Balabane M, et al.Peroxide oxidation of clay-associated organic matter in acultivation chronosequence [J].European Journal of Soil Sci.ence,2004,55:471-478.
    Poelson DS, Brookes PC, Christensen BT. Measurement of soil microbial biomass provides anearly indication of changes in total organic matter due to straw incorporation [J]. SoilBiology and Biochemistry.1987,19:159-164.
    Post WM, Emanuel WR, Zinke P J, et al.Soil carbon pools and world life zones [J].Nature,1982,298:156-159.
    Post WM, Mann LK. Changes in soil organic carbon and nitrogen as a result of cultivation.In:Soils and the Greenhouse Effect (editor: Bouwman A F)[M]. New York: John Wiley andSons Inc.,1990.401-406.
    Powlson DS. The soil microbial biomass: before, beyond and back. In: RitzK, Dighton J, GillerGE Eds. Beyond the Biomass [M]. Wiley, Chiehester, UK.1994:3-20.
    Preston CM, Hempfling R, Schulter H R et a1.Charaeterization of organic matter in a forest soil ofcoastal British Columbia by13C NMR and pyrolysis field ionization mass spectrometry[J].Plant Soil,1994,158:69-82.
    Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with primary particlesize fractions of water-stable aggregates[J].European Journal of SoilScience,2000,51:595–605.
    Ralte V, Pandey HN, Barik SK, et al. Changes in microbial biomass and activity in relation toshifting cultivation and horticultural practices in subtropical evergreen forest ecosystemofnortheast India [J]. Acta Oecologica.2005,28(2):163-172.
    Reesa R M, Binghamb I J, Baddeleyb J A, et al.The role of plants and land management insequestering soil carbon in temperate arable and grassland ecosystems [J].Geoderma,2005,128:130–154.
    Robertson G P,Wedin D, Groffman P M,et al. Soil carbon and nitrogenavailability.Nitrogenmineralization,nitrification and soil respiration potentials.In:Robertson GP, Coleman D C,Bledsoe c s,Sollins p eds.Standard soil methods for long-term ecologicalresearch[M].New York:Oxford University Press,Inc.1999:258-271.
    Rosenqvist L, Kleja D B, Johansson M B. Concentrations and fluxes of dissolved organic carbonand nitrogen in a Picea abies chronosequence on former arable land in Sweden [J]. ForestEcology and Management,2010,259:275-285.
    Rühlmann J.A new approach to estimating the pool of stable organic matter in soil using data fromlong-term field experiments [J].Plant Soil,1999,213:149-160.
    Rumpel C, K gel-Knabner I. Deep soil organic matter-a key but poorly understood component ofterrestrial C cycle [J].Plant and Soil,2011,338(1-2):143-158.
    Rustad LE,Campbell JL,Marion G M et al.A meta-analysis of the response of soil respiration, netnitrogen mineralization, and aboveground plant growth to experimental ecosystem[J].Warming.Oecologia,2001,126:543-562.
    Saggar S,Parshotam A,Sparling G P et al.14C-labelled ryegrass turnover and residence times insoils varying in clay content and mineralogy[J].Soil Biology andBiochemistry,1996,28:1677-1686.
    Sakamoto K,Oba Y.Effect of fungal to bacterial biomass ratio on the relationship between CO2evolution and total soil microbial biomass[J].Biology and Fertility of soils,1994,17:39-44.
    Sanderman J, Amundson R. A comparative study of dissolved organic carbon transport andstabilization in California forest and grassland soils [J].Biogeochemistry,2008,89(3):309–327.
    Scheller RM,Mladenoff DJ.A spatially interactive simulation of climate change, harvesting, wind,and tree species migra-tion and projected changes to forest composition and biomass inNorthern Wisconsin, USA[J].Global Change Biology,2005,11:307-321.
    Schimel D S.Terrestrial ecosystems and the carbon cycle [J].Global Change Biology,1995,1(1):77-91.
    Schlesinger W H.Carbon balance in terrestrial detritus [J].Annual review of ecology andsystematics,1977,8:51-81.
    Schwesig D,Kalbitz K,Matzner E.Effects of aluminium on the mineralization of dissolved organiccarbon derived from forest floors[J].European Journal of Soil Science,2003,54:311-322.
    SetoA,SetoM.Relationship between rate of carbon dioxide evolution,microbial biomasscarbon,and amount of dissolved organic carbon as affected by temperature and water contentof a forest and an arable soil[J].Commum Soil Sci Plan,1999,30(19):2593-2605.
    Singh JS, Raghubanshi AS, Singh RS, et al. Microbial biomass acts as a source of plant nutrient sin dry tropical forest and savanna [J]. Nature.1989,338:499-500.
    Siregar A,Kleber M,Mikutta R et al. Sodium hypochlorite oxidation reduces soil organic matterconcentrations without affecting inorganic soil constituents[J].European Journal of SoilScience,2005,56:481-490.
    Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates,soil biota, and soil organic matter dynamics [J]. Soil and Tillage Research,2004,79(1):7-31.
    Six J, Conant R T, Paul EA, et al.Stabilization mechanisms of soil organic matter: implications forC saturation of soils [J].Plant and Soil,2002,241(2):15-176.
    Skjemstad JO, Spouncer LR, Cowie B,et al.Calibration of the Rothamsted organic carbon turnovermodel (RothC ver.26.3), using measurable soil organic carbon pools [J].Australian Journalof Soil Research.2004,42:79-88.
    Smith JL, Halvorson JJ, Bolton HJr. Soil properties and microbial activity across a500melevation gradient in a semiarid environment[J]. Soil Biology and Biochemistry.2002,34:1749-1757.
    Smith P, Fang CM, Dawson JJC, et al. Impact of Global Warming on Soil Organic Carbon[J].Advances in Agronomy,2008,97:1-43.
    Smith P. Land use change and soil organic carbon dynamics [J].Nutrition Cycle Agroecosystem,2008,81:169-178.
    Sollins P, Homann P, Caldwell BA. Stabilisation and destabilisation of soil organic matter:Mechanisms and controls [J].Geoderma,1996,74:65–105.
    Sombroek W, Ruivo ML, Fearnside PM, et al.Amazonian dark Earths as carbon stores and sinks.In: Lehmann, J, Kern D.C, Glaser B. and Woods W.I.(eds.) Amazonian Dark earths: Origin,properties,management. Dordrecht, Kluwer Academic Publishers.2003:125-139.
    Srinstava SC, Singh JS(1991) Microbial C,N and P in dry tropical forest soils: Effects of alternateland uses and nutrient flux[J]. Soil Biology and Biochemistry23:117-124.
    Stevenson F J.Humus chemistry. Genesis, composition, reactions.second ed.Wiley, New York,1994.
    Strahm B D, Harrison R B, Terry T A, et al. Changes in dissolved organic matter with depthsuggest the potential for postharvest organic matter retention to increase subsurface soilcarbon pools [J]. Forest Ecology and Management,2009,258(10):2347-2352.
    Sundquist E T. The global carbon dioxide budget [J]. Science,1993,259(5097):934-941.
    Suzuki Y, Matsubara T, Hoshino M.Breakdown of mineralgrains by earthworms and beetle larvae[J].Geoderma,2003,112:131-142.
    Tate K R,Scott N A,Ross D J et al.Plant effects on soil carbon storage and turnover in an adjacentforest and grassland[J].Australian Journal of Soil Science,2000,38,685-698.
    Tate K.R,Parshotain A,Ross D.J.Soil carbon storage and turnover in temperate forests andgrasslands-a New Zealand perspective[J].Journal of biogeography,1995,22:695-700.
    Tate R L.Soil Microbiology [M].2nd edn. John Wiley, New York.2000,
    Theng B.K.G,Ristori G.G,Santi C.A et al.An improved method for determining the specificsurface areas of topsoils with varied organic matter content, texture and clay mineralcomposition[J].Eur.opean Journal of Soil Science,1999,50:309-316.
    Theng B.K.G,Tate K.R,Becker-Heidmann P.Towards establishing the age,location, and identity ofthe inert soil organic matter of a spodosol[J].Journal of Plant Nutrition and SoilScience,1991,155:181-184.
    Tisdall J M, Oades J M.Organicmatter and water-stable aggregates in soils [J].Journal of SoilScience,1982,62:141-163.
    Tisdall J M, Smith S E, Rengasamy P. Aggregates of soil by fungal hyphae [J]. Australian Journalof Soil Research,1997,35(1):55-60.
    Tracy B G, Zoe G C. Decomposition dynamics in mixed-species leaflitter, Oikos [J].2004,(104):230-246.
    Trumbore S E,Harden J W,Accumulation and turnover of carbon in organic and mineral soils ofthe BOREAS northern study area[J].Journal of GeophysicalResearch,1997,102(D24):28817-28830.
    Trumbore S. E,Bonani G,Wolfli W.The Rates of carbon cycling in several soils from AMS14Cmeasurements of fractionated soil organic matter[A],Soils and the Greenhouse Effect[C],NewYork,John Wiley and Sons,1990:405-414.
    Trumbore, S.E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbonmeasurements. Global Biogeochem Cycles1993,7:275-290.
    Van Beelen P, Doelman P. Significance and application of microbial toxicity tests in assessingecotoxicological risks of contaminants in soil and sediment [J]. Chemosphere.1997,34(3):445-499.
    Vanlauwe B, Nwoke OC,Sanginga N, Merckx R. Evaluation of methods for measuring microbialbiomass C and N and relationships between microbial biomass and soil organic matterparticle size classes in WestAfrican soils[J]. Soil Biology and Biochemistry.1999,31:1071-1082.
    Vitousek PM, Aber JD, Howarth RW et al.Human alteration of the global nitrogen cycle: Sourcesand consequences [J].Ecological applications,1997,7:737-750.
    Vukicevic T,Braswell BH,Schimel DS.Adiagnostic study of temperature controls on globalterrestrial carbon exchange[J].Tellus,2001,53B:150-170.
    Waid JS. Does soil biodiversity depend upon metabiotie activity and influences [J]? Applied SoilEcology.1999,13:151-158.
    Wang S, Huang M, Mickler RA, et al. Vertical distribution of soil organic carbon in China [J].Environmental Management,2004,33:200-209.
    Wang Y, Hsieh YP.Uncertainties and novel prospects in the study of the soil carbon dynamics[J].Chemosphere,2002,49:791-804.
    Wang ZH, Ye QF, Shu QY, et al. Impact of root exudates from transgenic plants on soilmicro-ecosystems [J].Chinese Journal of Applied Ecology.2002,13(3):373-375.
    Warder DAA. Comparative assessment of factors which influence microbial biomass carbon andnitrogen levels in soil [J]. Biological Reviews.1992,67:321-356.
    Wright AL, Hons FM, Matoch Jr J E.Tillage impacts on microbial biomass and soil carbon andnitrogen dynamics of corn and cotton rotations[J]. Applied Soil Ecology.2005,29(1):85-92.
    Wu J, Brookes PC. The proportional mineralization of microbial biomass and organic mattercaused by air-drying and rewetting of a grassland soil[J]. Soil Biology andBiochemistry.2005,37:507-515.
    Wu JG, AI L (2008) Soil microbial activity and biomass C and N content in three typicalecosystems in Qilian Mountains, China [J].Journal of Plant Ecology.1998,32(2):465-476.
    Xu YC, Shen QR, Ran W. Effect of zero-tillage and applicantion of manure on soil microbialbiomass C, N and P after sinteen years of cropping.Acta Pedologica Sinica[J].2002,39(1):89-96.
    Xue S, Liu GB, Dai QH, Wei W, Hou XL.Evolution of soil microbial biomass in the restorationprocess of artificial Robinia pseudoacacia under erosion environment [J]. Acta EcologicaSinica.2007,27(3):909-917.
    Yang Y S, Guo J F, Chen G S, et al. Effects of forest conversion on soil labile organic carbonfractions and aggregate stability in subtropical China [J].Plant and Soil,2009,323:153-162.
    Yong G Z,Michael R,Miller.Carbon cycling by arbuscular mycorrhizal fungi in soil–plantsystems[J].Trends in Plant Science,2003,8(9):407-409.
    Zhang CB, Wang J, Li LW, et al. Effects of plant diversity on microbial biomass and communitymetabolic profiles in a full-scale constructed wetland [J]. Ecoligical Engineering.2010,36:62-68.
    Zhong WH, Cai ZC. Effect of soil management practices and environmental factors on soilmicrobial diversity: a review [J]. Biodiversity Science.2004,12(4):456-465.
    Zimmermann M, Leifeld J, Abiven S et al. Sodium hypochlorite separates an older soil organicmatter fraction than acid hydrolysis [J].Geoderma,2007,139:171-179.
    邓琦,周国逸,刘菊秀,等.CO2浓度倍增,高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响[J].植物生态学报,2009,33(6):1023-1033.
    段水强.德令哈盆地湖泊湿地变化与生态需水初步研究.中国农村水利水电,2005(9):25-26.
    范如芹,梁爱珍,杨学明,等.耕作方式对黑土团聚体含量及特征的影响[J].中国农业科学,2010,43(18):3767-3775.
    韩琳,张玉龙,金烁,等.灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J].中国农业科学,2010,43(8):1625-1633.
    黄昌勇.土壤学[M].北京:中国农业出版社,2001.
    黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    鸡西市旅游局.黑龙江省鸡西市兴凯湖精品旅游区规划.鸡西:鸡西市旅游局,2009.10.
    鸡西市兴凯湖自然保护区管理委员会.兴凯湖自然保护区总体发展规划.鸡西:鸡西市兴凯湖自然保护区管理委员会,2008.9
    贾夏,赵永华,韩士杰.全球CO2浓度升高对土壤微生物的影响[J].生态学杂志,2007,26(3):443-448.
    解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,4l(5):667—699.
    李淑芬,俞元春,何展.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123.
    李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357.
    李忠佩,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    李忠佩,唐永良,石华,等.不同轮作措施下瘠薄红壤中碳氮积累特征[J].中国农业科学,2002,35(10):1236-1242.
    李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.
    林而达,李玉娥,郭李萍,等.中国农业土壤固碳潜力与气候变化[M].北京:科学出版社,2005:102-113.
    林心雄.中国土壤有机质状况及其管理[A].见:沈善敏主编1中国土壤肥力[C].北京:中国农业出版社,1998:111-153.
    刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2650.
    刘守赞,郭胜利,王小利,等.植被对黄土高原沟壑区坡地土壤有机碳的影响[J].自然资源学报,2005,20(4):529-536.
    刘淑霞,王宇,赵兰坡,等.冻融作用下黑土有机碳数量变化的研究[J].农业环境科学学报,2008,27(3):984-990.
    刘兴土.松嫩三江平原湿地资源与可持续利用[J].地理科学,1997,17(增刊):451-460.
    刘子刚.湿地生态系统碳储存和温室气体排放研究[J].地理科学,2004,24(5):634-639.
    吕宪国.中国湿地与湿地研究[M].石家庄:河北科学技术出版社,2008:291-292.
    马学慧,吕宪国,杨青等.三江平原沼泽湿地碳循环初探[J].地理科学,1996,16(4):323-330.
    潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008,45(5):901-914.
    裘善文,万恩璞,李凤华,等.兴凯湖北部平原的发展与湿地的形成[J].湿地科学,2007:5(2):153-158.
    沈宏,曹志红,胡正义.土壤活性碳的表征及其生态意义[J].生态学杂志,1999,18(3):32-38.
    宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):150-154.
    宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):150-154.
    汪杏芬,白克智,匡廷云.大气CO2浓度倍增对植物暗呼吸的影响[J].植物学报,1997,9(9):849-854.
    王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    王丽丽,宋长春,葛瑞娟,等.三江平原湿地不同土地利用方式下土壤有机碳储量研究[J].中国环境科学,2009,29(6):656-660.
    王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
    王燕,王小彬,刘爽,等.保护性耕作及其对土壤有机碳的影响[J].中国生态农业学报,2008,16(3):766-771.
    王宗明,宋开山等.1954-2005年三江平原沼泽湿地农田化过程研究[J].湿地科学,2009,7(3):208-217.
    文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报.2004,28(4):530-538.
    吴征锰等.中国植被.北京,科学出版社,1980.
    伍芬琳,李琳,张海林,等.保护性耕作对农田生态系统净碳释放量的影响[J].生态学杂志,2007,26(12):2035-2039.
    徐小峰,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(l):89-96.
    于贵瑞.略论生态系统管理科学问题与发展方向[J].资源科学,2001,23(6):1-4.
    于文涛.兴凯湖春季鸟类迁徙监测分析报告.黑龙江生态工程职业学院学报,2006(2)
    曾涛.兴凯湖湿地生态旅游资源评价、监测与开发研究[D].哈尔滨,东北林业大学,2010.
    张凤荣.土壤地理学[M].北京:中国农业出版社,2001.
    张金波,宋长春,杨文燕.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报,2005,42(5):857-859.
    张林波,曹洪法,高吉喜,等.大气CO2浓度升高对土壤微生物的影响[J].生态学杂志,1998,17(4):33-38.
    赵丹丹,李涛,赵之伟.丛枝菌根真菌—豆科植物—根瘤菌共生体系的研究进展[J].生态学杂志,2006,25(3):327-333.
    郑炳杰.土地利用方式对土壤有机碳固定影响研究.西南大学,重庆,2007.
    郑立臣,解宏图,张威,等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,2006,15(1):80-83.
    中国科学院长春地理研究所沼泽研究室.三江平原沼泽[M].科学出版社.1983:37,108.
    中国湿地植被编辑委员会.中国湿地植被.北京,科学出版社.1999.
    中国土壤学会土壤农化分析专业委员会.土壤农业化学常规分析方法[M].北京:科学技术出版社,1983.33.
    钟继洪,郭庆荣,谭军等.桉林-砖红壤水分性能特征研究[J].土壤与环境,2002,11(2):136-139.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    周晓宇,张称意,郭广芬.气候变化对森林土壤有机碳贮藏影响的研究进展[J].应用生态学报,2010,21(7):1867-1874.
    周以良等.中国小兴安岭植被.北京,科学出版社,1994.
    邹元春,吕宪国,姜明.不同水文情势下环形湿地土壤铁的时空分布特征[J].环境科学,2009,30(7):2059-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700