用户名: 密码: 验证码:
溶胶凝胶法结合电喷技术制备锂离子电池正极材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是设计具有不同电场分布的实验装置,来进行对比软件仿真。通过电场模拟结果,结合实验结论总结得出电场分布对静电纺丝的影响。同时利用溶胶-凝胶结合电喷技术合成不同形貌的纳米结构纤维并对其进行了详细的表征,特别是作为锂离子电池的正极材料,通过对纤维电性质的研究,以提高纤维作为锂离子电池正极材料的电化学性能。
     1.绪论部分
     介绍了制备纤维的电喷技术,包括其发展历史、基本原理和基本过程,重点介绍有关电喷技术的理论研究,为电喷技术的应用提供理论指导。接下来介绍了电喷纳米纤维的应用,电喷技术的发展为纳米纤维的应用开拓了广阔的空间。第二部分内容介绍了溶胶-凝胶化学的发展以及这种方法的特点和基本原理以及溶胶-凝胶过程中每一步的影响因素。最后介绍了溶胶-凝胶结合电喷技术在制备纳米纤维方面的应用和发展。
     2.静电纺丝系统的静电场仿真
     通过电场模拟的方法探究电场分布对静电纺丝的影响,设计两种具有不同电场分布的静电纺丝实验装置,一种是常规针头形式,一种是加入辅助板的针头形式。用有限元(FEM)研究了多喷头系统喷丝管不同间距对喷丝口处最大电场强度的影响,并与单喷头系统进行了比较。研究表明,由于其它喷丝管的引入,多喷头系统喷丝口处的局部电场明显减弱;在一定范围内,随着喷丝管间距的增大,电场强度并没有明显的变化趋势。实验结果显示,相同条件下多喷头系统的纺丝效果优于单喷头系统;多喷头系统喷丝管间距与纺出的纤维状态有一定的联系。
     3.Li1+xV3O8多级结构的合成、表征及电化学性质的研究
     运用电喷技术结合烧结合成由纳米棒生长在Li1+xV3O8电喷纤维上构成的多级结构。所得产物通过场发射扫描(FE-SEM),透射电镜(TEM),XRD以及拉曼光谱等进行了表征。通过对多级结构的形成机制进行调查,发现多级结构的形貌主要由电喷纤维的尺寸以及烧结条件所决定。Li1+xV3O8多级结构的电化学性通过循环伏安以及充放电实验进行调查,结果显示Li1+xV3O8多级结构具有较高的放电容量,材料也同时表现出极好的循环稳定性。
     4.金属离子掺杂LiFePO4纳米纤维的合成及电化学性质的表征
     用电喷技术结合溶胶-凝胶化学制备镁、硼掺杂的LiFePO4(?)内米结构纤维,并对其进行了详细的表征,Mg的掺杂有效提高了材料的导电性,从而提高了其充放电容量,而B掺杂有效改善了纤维的微结构,提高了纤维在电化学循环过程中微结构的稳定性,从而有利于电化学循环稳定性的提高。镁、硼掺杂的LiFePO4(?)内米结构纤维将会有效改善锂离子电池电极材料的性能,是一种极有发展前景的正极材料。
     5.溶胶-凝胶法结合共轴电喷制备BaFe12O19/Fe203中空复合纤维
     通过溶胶-凝胶结合共轴电喷制备BaFe12O19/Fe203(?)中空复合纤维。在实验中有机添加剂被用来调控溶胶的性质。在接下来的烧结过程中,溶胶的性质对电喷后干凝胶纤维的烧结行为有重要的影响,这导致了具有不同形貌的BaFe12o19/Fe203复合纤维的形成,特别是中空复合纤维的形成。同时烧结过程中烧结速率对于BaFe12O19/Fe203纤维的形貌也有一定的影响。
     6.三碘苯三酸金属有机配合物单晶的合成研究
     在第六章中,利用新颖的配体三碘苯三酸与镧系金属离子Sm自组装反应制备了一个金属-有机化合物,对其进行了结构解析,并研究了热稳定性和荧光性能,发现该化合物具有较强的热稳定性,并具有一定的荧光性能。
Experimental devices with different electric field distribution were designed for software simulation. The effect of electric field distribution on the electrospinning was investigated by the electric field simulation combined with the experimental results. The nanostructured fibers with different morphologies were prepared by the electrospingning combined with the sol-gel method and characterized by a variety of means. The fibers were used as a kind of new cathode materials for micro-batteries and their electrochemical properties were detailedly investigated in order to increase electrochemical performance. The contents include the preparation of the fibers and the control of fiber morphology, the investigation of electrochemical performance as the cathode materials for lithium ion batteries.
     In the chapter one of this thesis, the electrospinning was introduced briefly. The contents include historical development, basic principles and processes. It focuses on the theory of the electrospinning, which provides theoretical guidance for the application of the electrospinning technology. In the below content, the application of the fibers was presented and the development of the electrospinning technology opens up a broad space for the applications of the nanofibers. In the sencond, the sol-gel process was introduced briefly. The contents include the phylogeny, character and principle of the sol-gel process. A great deal of attention had been paid for the influence of the processing parameters on every step. At last, the application and development of sol-gel combined with the electrospinning in the preparation of nanofibers were introduced.
     We design multi-nozzle electrospinning equipments which have different electric field distribution, one is conventional needle equipment and another is auxiliary-plate needle equipment. The impact of the spacing of multi-nozzle on the maximum electric field strength at the tip of the nozzles in multi-nozzle arrangement was investigated via finite element method (FEM), and the results were compared with single-nozzle system. It can be seen that the maximum electric field of multi-nozzle arrangement has been significantly weakened due to the influence of another needle in the arrangement, and the field varied very little as a function of needle spacing for the range used in this study. Experimental results showed that the multi-nozzle electrospinning head performed much better than single-nozzle system, and the spacing of multi-nozzle had some relationship with the diameter and discrete distribution of the spun fiber.
     In the third chapter, Hierarchical structures of Li1+xV3O8nanorods growing on electrospun fibers were successfully synthesized by electrospinning and calcinations. The products were characterized by field-emission scanning election microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectra. The formation mechanism of the hierarchical structures was investigated, showing that the morphology of the hierarchical structures was mainly determined by the calcined conditions. Electrochemical properties of the Li1+xV3O8hierarchical structures were investigated by cyclic voltammetry and charge-discharge experiments, and the results demonstrated that the Li1+xV3O8hierarchical structures exhibited a high discharge capacity and excellent cycling stability.
     The Mg, B-doped LiFePO4nanostructured fibers were prepared by the electrospinning with the sol-gel method. The doping of Mg effectively increased the conductivity of the material, thereby improving its charge-discharge capacities. On the other hand, the doping of B effectively improved the micro-structure of the fibers, thus contributing to the improved stability of the electrochemical cycle. Mg, B-dopedLiFePO4nanostructure fiber will effectively improve the performance of the lithium-ion battery electrode materials, is a very promising cathode material.
     Hollow BaFe12O19/Fe2O3composite fibers were prepared by co-electrospinning related sol-gel method. The organic additives were added into the BaFe12O19sols to adjust the properties of the sols. During the calcined process, the properties of sols obviously affected the desiccation and sinter of xerogel fibers, which resulted in hollow BaFe12O19/Fe2O3composite fibers. The heating rate had also an important influence on the morphologies of BaFe12O19/Fe2O3fibers, the decrease of surface tension of the sol and appropriate heating rate were favorable for the hollow structure.
     In the chapter6, a metal-organic compounds were prepared through a self assembled reaction between a novel ligand (three iodine benzene acid) and the lanthanide metal ion Sm. We analysized their structures, and found the compounds have stronger thermal stability, and better fluorescence properties.
引文
[1](a) Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C. M. Lieber, "Logic Gates and Computation from Assembled Nanowire Building Blocks[J]", Science, 2001, 294,1313-1317. (b) A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, "Logic Circuits with Carbon Nanotube Transistors[J]", Science,2001,294,1317-1320. (c) J. Holms, K. P. Johnston, R. C.Doty, B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires[J]", Science,2000,287, 1471-1473. (d) V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, "Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt[J]", Science,2001,291, 2115-2117.
    [2]S. Lijima, "Helical microtubules ofgraphitic carbon[J]", Nature,1991,354,6348, 56-58.
    [3]Y. Cui, C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]", Science, 2001,291(5505):851-853.
    [4]漆奇.“低维纳米金属氧化物半导体敏感特性的研究[D]”,长春:电子科学与工程学院,2009.
    [5](a) Q. P. Pham, U. Sharma, A. G. Mikos, "Electrospinning of polymer nanofibers for tissue engineering applications[J]", Tissue. Eng., 2006,12,1197-1212. (b) M. Graeser, E. Pippel, A. Greiner, J. H. Wendorff, "Polymer core-shell fibers with metal nanoparticles as nanoreactor for catalysis[J]", Macromolecule, 2007,40, 6032-6039. (c) B. Ding, J. Kim, Y. Miyazaki, S. Shiratori, "Electrospun nanofiberous membrances coated quzrtz crytal microbalance as gas sensor for NH3 detection[J]", Sensor. Actuat. B-Chem.,2004,101,373-380.
    [6]Y Xia, P. Yang, "Chemistry and physics of nanowires[J]", Adv. Mater.,2003,15, 351-456.
    [7](a) A. Frenot, I. S. Chronakis, "Polymer nanofibers assembled by electrospinning[J]", Curr. Opin. Colloid Interface Sci.,2003,8,64-75. (b) Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]", Compos. Sci. Technol.,2003,63,2223-2225.
    [8]A. Formhals, "Process and Apparatus for Preparing Artificial Threads[J]", U. S. Patent,1934, No.1975504.
    [9](a) Audrey Frenot, S. L. Chronakis, "Polymer Nanofibers Assembled by Electrospinning[J]", Current Opinion in Colloid and Interface Science,2003,8,64-75.(b)龙云泽,李蒙蒙,尹志华.“静电纺丝法制备有序排列的纳米纤维最新进展[J]”,青岛大学学报,2008,6,92-99. (c) R. Gopal, S. Kaur, C. Y. Feng, et al. "Electrospun Nanofibrous Polysulfone Membranes as Pre-Filters:Particulate Removal[J]". Journal of Membrance Science, 2007,289,210-219.
    [10]X. H. Zong, K. Kim, D. F. Fang, et al. "Structure and Process Relationship of Electospun Bioabsorbable Nanofiber Membranes[J]" Polymer,2002,43, 4403-4012.
    [11](a) D. H. Renker, A. L. Yarin, H. Fong, S. Koombhongse, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]", J. Appl. Phys. 2000,87,4531-4547. (b) Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, "Electrospinning:A whipping fluid jet generates submicron polymer fibers[J]", Appl. Phys. Lett.,2001,78,1149-1151.
    [12]Gregory C. Rutledge, Steven B. Warner, et al. "Electrostatic Spinning and Properties of Ultrafine fibers[R]", National Textile Center Annual Report, 2004,9, 56-60. (b) Moses M. Hohman, Michael Shin, et al. "Electrospinning and electrically forced jets. Ⅱ. Applications [J]". Physics of Fluids,2001,13(8): 2221-2236. (c) Colman P. Carroll, Yong Lak Joo, "Electro spinning of Viscoelastic Boger Fluids:Modeling and Experiments [J]", Physics of Fluids, 2006,18(5):1-14. (d) J. H. He, et al. "Electrospinning:The Big Word of Small Fibers[J]". Ploymer International,2007,56:1321-322.'
    [13](a) M. Bonnitzki, T, Frese, et al. "Nanostructured Fibers via Electrospinning[J]" Adv. Mater.,2001,13(1):70-72. (b) V. N. Kirichenko, P. Sokolov, N. N. Suprun, et al. "Asymptotic Radius of a Slightly Conducting Liquid Jet in an Electric Field[J]", Soviet Physics Doklady, 1986,31,611-623.(c) A. L. Yarin, D. H. Reneker, et al. "Electrospinning Jets and Polymer Nanofiber[J]". Journal of Applied Physics, 2005,98(064501):1-12.
    [14](a) G. C. Rutledge, M. Y. Shin, et al. "A Fundamental Investigation and Properties of Electro spun Fibers[C]", National Textile Center Annual Report, 2000,1-9. (b) Gregory C. Rutldege, Sergey V. Fridrikh, "Formation of Fibers by Electrospinning [J]", Advanced Drug Delivery Reviews, 2007,59,1384-1391. (c) A. Jaworek, A. Krupa, "Classification of the Modes of END praying [J]" Aerosol Science,1999,30 (7):873-893.
    [15]L. Rayleigh, "On the equilibrium of liquid conducting masses charged with electricity[J]", Philosophical/Magazine Series 5,1882,14,184.
    [16]G. Taylor, "Electrically diven Jets[J]", Proceedings of the Royal Society of London, Mathematical and Physical Sciences, 1969,313,453-475.
    [17]M. M. Honman, Y. M. Shin, G. Rutledge, M. P. Brenner, "Electrospinning and Electrically Forced Jets:1. Stability Theory[ J]:. Physics of Fluids, 2001,13(8): 2201-2220.
    [18]L. Yarin, S. Koombhongse, D. H. Reneker, "Bending instability in electrospinning of nanofibers[J]", Journal of applied physics,2001, 89(51):45-48.
    [19]Y. M. Shin, M. M. Hohman, M. P. brenner, G. C. Rutledge. "Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]", Polymer,2001,42,9955-9967.
    [20 J. J.Feng, "The stretching of an electrified non-newtonian jet:a medel for electrospinning[J]",Physics of fluids, 2002,14,3912-3926.
    [21]J. H. He, Y. Q. Wan, J. Y. Yu, "Allometric Scaling and Instability in Electrospinning[J]", International Journal of Nonlinear Sciences and Numerical Simulation,2004,5(3),243-252.
    [22]J. H. He, Y. Wu, W. W. Zuo, "Critical length of straight jet in electrospinning[J]" Polymer,2005,46,1263-1264.
    [23]Y. Wu, J. Yong, J. H. He, Y. Q. Wan. "Controlling stability of the electrospun fiber by magnetic field[J]", Chaos Solition and Fractals, 2006.
    [24]万玉芹,何吉欢,俞建勇,吴玥.“超声波振动在静电纺丝技术中的应用[J]”纳米科技,2006,5:55-57.
    [25]D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, "Bendinginstability of electrically charged liquid jets of polymer solutions in electrospinning[J]" Journal of Applied Physics, 2000,87(9),4531-4547.
    [26]S. A. Theron, A. L. Yarin, E. Zussman, E. Kroll, "Multiple jets in electrospinning:experiment and modeling[J]", Polymer, 2005,46:2889-2899.
    [27]Theron S. A., Yarn A. L.; Zussman E. et al, Multiple jets in electrospinning experiment and modeling, Ploymer, 2005,46(9),2889-2899.
    [28]G. Km, Y. S. Cho, D. Kmw, "Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J]", European Polymer Journal, 2006,42,2031-2038.
    [29]B. Ding, E. Kmuraa, T. Satoa, et al. Fabrication of blend biodegradalbe nanofibrous nonwoven mats via mutijet electrospinning, Polymer,2004,45, 1895.
    [30]Kenawy E.-R.; Bowlin G.; Mansfield K.; Layman J.; Simpson D. G.; Sanders E. H.; Winek G. E. "Release of tetracycline hydrochloride from electrospun ploy(ethylene-co-vinylacetate), poly(lactic acid), and a blend[J]", J. Control Release,2002,81(1-2):57-64.
    [31](a) P. Gibson, H. S. Gibson, D. Rivin, "Transport Properties of Porous Membrances based on Electro spun Nanofibers [J]", Colliods and Surfaces, 2001, 187,469-480. (b) J. K. Seon, M. S. Kwang, K. S. I, "The Effect of Electric Current on the Processing of Nanofibers Formed from Poly (2-acrylamid-2-methyl-1-propane sulfonic acid)[J]", Scripta Materialia,2004,51, 31-35. (c) S. Madhugiri, W. Zhou, Ferraris John P, Balkus Jr Kenneth J. "Electro spun Mesoporous Molecular Sieve Fibers[J]", Microporous and Mesoporous Material, 2003,63,75-84. (d) B. Ding, Kim, Y Miyazak, S. Shiratori, "Fluorescence-Based Optical Sensor Design for Molecularly Imprinted Polymers [J]", Sensor and Actuators B,2004,101,378-380.
    [32]Y Huang, et al. "Directed Assembly of One-Dimensional Nanostructures into Functional Networds[J]", Science,2001,29,630-633.
    [33]C. Chang, L. Lin, et al. "Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns[J]". Applied Physics Letters,2008,123, 1-3.
    [34]A.C. Patel, S. Li, J. M. Yuan, et al. "In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications[J]", Nano.Lett,2006,6(5),1042-1046.
    [35]S. Virji, J. Huang, R. B. Kaner, "Polyaniline Nanofiber Gas Sensors:examination of response mechanisms[J]", Nano. Lett.,2004,4(3):491-496.
    [36]B. Ding, M. Yamazaki, S. Shiratori, "Preparation and evaluation of the rare earth doped nanoparticle SiO2-PVP hybrid thin film by sol-gel method[J]", Sensor and Actuator, 2005,106,477-483.
    [37]L. Liu, X. Yang, J. J. Sheng, Membrane Sci.,2005,250,167-173.
    [38]Devices, S. Cavaliere, S. Subianto, I. Savych, D. J. Jones, J. Roziere, "Electrospinning:designed architectures for energy conversion and storage[J]'\ Energy Environ. Sci., 2011,4,4761-4785.
    [39]O. Toprakci, H. A. K. Toprakci, L. Ji, G. Xu, Z. Lin, X. Zhang, "Carbon nanotube-loaded electrospun LiFePO4/carbon compositenanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries[J]", Appl. Mater. Interfaces,2012,4,1273-1280.
    [40]W. Luo; X. Hu; Y. Sun; Y. Huang, "Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries[J]", J. Mater. Chem., 2012,22,8916-8921.
    [41]C. J. Briuker, G. W. Scherer, "Sol-gel science-the physics and chemistry of s-g processing[J]", Academic Press, INC,1990.
    [42]W. Geffcken, Berger, German Patent,1939,736411.
    [43]Dislich, H. Angw, Chem. 1971,10(6),363-370.
    [44]B. E. Yoldas, J. Mater. Sci.,1975,10,1856-1860.
    [45]M. Yamare, A. Shinji, T. Sakaino, J. Mater. Sci.,1978,13,865-870.
    [46]M. Nogami, Y. Moriya, "Glass formation through hydrolysis of Si(OC2H5)4 with NH40H and HC1 solution[J]", J. Non-Cryst. Solids,1980,37,191-201.
    [47]M. Toshio, S. Sakka, "Preparation of alumina fibers by sol-gel method[J]", J. Non-Crystal.Solids,1988,100(1-3),303-308.
    [48]D. B. Marshall, F. F. Lange, and P. D. Morgan, High-Strength Zirconia Fibers, J. Am. Ceram. Soc.,1987,70,187-190.
    [49]Y. Abe, H. Tomioka, "A one-pot syntesis of polyziroconoxane as a precursor for continuous zirconia fibres[J]",J Mater. Sci. Lett., 1994,13(13),960-962.
    [50]R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, "The manufacture of partially-stabilised and fully-stabilised zirconia fibres blow spun from an alkoxide derived aqueous sol-gel precursor[J]", J. Eur. Ceram. Soc.,2001,21(1),19-27.
    [51](a) R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, "Novel aqueous sol-gel preparation and characterization of barium M ferrite, BaFe12O19 fibers[J]", J. Mater. Sci.,1997,32,349-352. (b) R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, "Magnetic CO2Y ferrite, Ba2Co2Fe12 O22 fibres produced by a blow spun process[J]", J. Mater. Sci.,1997,32,365-368. (c) R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, "Aligned hexagonal ferrite fibres of Co2W, BaCo2Fe16O27 produced from an aqueoud sol-gel process[J]", J. Mater. Sci.,1997,32,873-877. (d) R. C. Pullar, S. G. Appleton, A. K. Bhattacharya, "The manufacture, characterization and microwave properties of aligned M ferrite fibres[J]", J. Magn. Magn. Mater,1998,186,326-332.
    [52]Y. Xia; P. Yang, "Chemistry and physics of nanowires[J]", Adv. Mater,2003,15, 351-352.
    [53](a) C. Gong; C. Song; Y. Pei; G. Lv; G. Fan, "Synthesis of La0.9K0.1CoC3 Fibers and the Catalytic Properties for Diesel Soot Removal[J]", Ind. Eng. Chem. Res., 2008,47,4374-4378. (b) J. Li; H. Dai; X. Zhong; Y. Zhang; X. Cao, "Hollow fibers of lanthanum cerium oxide prepared by electrospinning[J]", Adv. Funct. Mater.,2007,9(3),205-207. (c) J. T. McCann; D. Li; Y. Xia, "Electrospinning of nanofibers with core-sheath, hollow, or porous structures[J]", J. Mater. Chem.. 2005,15,735-738.
    [54]M. K. Shin; S. I. Kim; S. J. Kim, "Controlled assembly of polymer nanofibers: From helical springs to fully extended[J]", Appl. Phys. Lett.,2006,88,223109.
    [55]Y. Gu; D. Chen; X. Jiao, "Synthesis and characterization of hollow LiNiO2 fibers via sol-electrospinning method[J]", J. Sol-gel Sci Techn., 2007,43(2),245-249.
    [56]C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, J. Kumar, "Metal oxide-coated polymer nanofibers[J]", Nano Lett.,2003,3, 143-147.
    [57]Z. Liu, D. Sun, P. Guo, J. O. Leckie, "An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]". Nano Lett.,2007,7,1081-1085.
    [58]S. H. Nam, H. S. Shim, Y. S. Kim, M. A. Dar, J. G. Kim, W. B. Kim, "Ag or Au nanoparticle-embedded one-dimensional composite T1O2 nanofibers prepared via electrospinning for use in lithium-ion batteries[J]", Applied Materials Interfaces, 2010,7(2),2046-2052.
    [59]Z. Sun, E. Zussman, A. L.Yarin, J. H. Wendorff, A. Greiner, "Compound core-shell polymer nanofibers by co-electrospinning[J]", Adv. Mater,2003,15, 1923-1932.
    [60]R. Ostermann, D. Li, Y. Yin, J. T. McCan, Y. Xia, "V2O5 nanorods on TiO2 nanofibers:a new class of hierarchical nanostructures enabled by electrospinning and calcinations[J]", Nano Lett.,2006,6,1297-1302.
    [61]P. Kattta, M. Alessandro, R. D. Ramsier, G. G. Chase, "Continous electrospinning aligned polymer nanofibers onto a wire drum collector[J]", Nano Lett.,2004,4, 2215-2218.
    [62]D. Zhang; J. Chang, "Patterning of electrospun fibers using electroconductive templates[J]", Adv. Mater.,2007,19,3664-3667.
    [63]D. Sun, C. Chang, S. Li, L. Lin, "Near-field electrospinning[J]", Nano Lett., 2006,6,839-842.
    [64]赖琼钰,卢集政.“摇椅锂离子二次电池及其嵌入式电极材料[J]”,化学研究与应用,1998,10(1),22-26
    [65]吕罡,刘心宇,敖敏,张汉城,郭亮.“锂离子电池正极材料的研究进展[J]”,电工材料,2006,1,30-34.
    [1]A. Formhals, Process and Apparatus for Preparing Artificial Threads, U. S. Patent, 1934, 1975504.
    [2]A. Frenot, S. Chronakis, "Polymer Nanofibers Assembled by Electrospinning[J]" Current Opinion in Colloid and Interface Science 2003,8,64-75.
    [3]龙云泽,李蒙蒙,尹志华.“静电纺丝法制备有序排列的纳米纤维最新进展[J]”青岛大学学报,2008,6,92-99.
    [4]R. Gopal, S. Kaur, C. Y. Feng, et al. "Electrospun Nanofibrous Polysulfone Membranes as Pre-Filters: Particulate Removal[J]", Journal of Membrance Science,2007,289,210-219.
    [5]X. H. Zong, K. Kim, D. F. Fang, et al. "Structure and Process Relationship of Electospun Bioabsorbable Nanofiber Membranes[J]", Polymer,2002,43, 4403-4012.
    [6]G. C. Rutledge, S. B. Warner, et al. "Electrostatic Spinning and Properties of Ultrafine fiber, National Textile Center Annual Report[J]", November 2004,9, 56-60.
    [7]M. M. Hohman, M. Shin, et al. "Electrospinning and electrically forced jets. Ⅱ. Applications[J]", Physics of Fluids, 2001,13,8,2221-2236.
    [8]C. P. Carroll, Y. L. Joo, "Electro spinning of Viscoelastic Boger Fluids: Modeling and Experiments[J]", Physics of Fluids, 2006, 18,5,1-14.
    [9]J. h. He, et al. "Electrospinning: The Big Word of Small Fibers[J]", Ploymer International,2007,56,1321-322.
    [10]A. M. Ganan-Calvo, C. Jet, "Analytical Extension of Taylor's Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrosspraying[J]" Pyisical Review Letters, 1997,79,2,217-220.
    [11]M. Bonnitzki, T. Frese, et al. "Nanostructured Fibers via Electrospinning[J]" Advanced Material,2001,13,1,70-72.
    [12]V. N. Kirichenko, P. Sokolov, N. N. Suprun, et al. "Asymptotic Radius of a Slightly Conducting Liquid Jet in an Electric Field[J]", Soviet Physics Doklady, 1986,31,611-623.
    [13]A. L.Yarin, D. H. Reneker, et al, "Electrospinning Jets and Polymer Nanofiber[J]", Journal of Applied Physics, 2005,98,064501,1-12.
    [14]A. L. Yarin, D. H. Reneker, "Electrospinning Jets and Polymer Nanofibers[J]" Polymer, 2008,49,2387-2425.
    [15]E. Zussman, A. L. Yarin, et al. "Formation of Nanofiber Crossbars in Electrospinning[J]", Applied Physics Letters, 2003,82, 6, 973-975.
    [16]G. C. Rutledge, M. Y Shin, et al. A Fundamental Investigation and Properties of Electro spun Fibers[C]", National Textile Center Annual Report, November 2000, 1-9.
    [17]G. C. Rutldege, S. V. Fridrikh, "Formation of Fibers by Electrospinning[J]" Advanced Drug Delivery Reviews, 2007,59,1384-1391.
    [18]A. Jaworek, A. Krupa, "Classification of the Modes of END praying[J]", Aerosol Science,1999,30,7,873-893.
    [19]王新威,胡祖名等,“电纺丝形成纤维的过程分析[J]”,合成纤维工业,2004,27,2,1-3.
    [20]R. Rangkupan, "Electro spinning Process of Polymer Melts[J]", Ann Arbor: University of Akron, 2002,15,121-129.
    [21]S. Ramakrishna, K. Fujihara, et al. "Electro spun Nanofibers:Solving Global Issues[J]", Materials today, 2006, 9,40-50.
    [22]邹科,龙云译,吴佑实,“静电纺丝制备纳米纤维的进展及应用[J]”,合成纤维工业,2007,3,54-57
    [23]王璐璐,佘希林,袁芳,“静电纺丝制备复合纳米纤维研究进展[J]”,纳米材料与结构,2008,45,392-396.
    [24]刘娜,杨建忠,“静电纺丝纳米纤维的研究及应用[J]”,合成纤工业,2006,293,46-49.
    [25]邢声远,张建春,岳素娟.非织造布,北学化工出版社,2003,(54),256-261.
    [26]P. Gibson, H. S. Gibson, D. Rivin, "Transport Properties of Porous Membrances based on Electro spun Nanofibers[J]",Colliods and Surfaces, 2001,187,469-48.
    [27]J. K. Seon, M. S. Kwang, K. Sun, "The Effect of Electric Current on the Processing of Nanofibers Formed from Poly (2-acrylamid-2-methyl-1-propane sulfonic acid)[J]", ScriptaMaterialia, 2004,51,31-35.
    [28]S. Madhugiri, W. Zhou, J. P. Ferraris, "Electro spun Mesoporous Molecular Sieve Fiber[J]", Microporous and Mesoporous Material,2003,63,75-84.
    [29]B. Ding, J. Kim, Y. Miyazak, S. Shiratori, "Fluorescence-Based Optical Sensor Design for Molecularly Imprinted Polymers[J]", Sensor and Actuators B,2004, 101, 378-380.
    [30]Y. Huang, et al. "Directed Assembly of One-Dimensional Nanostructures into Functional Networds[J]", Science,2001,29,630-633.
    [31]C. Chang, L. W. Lin, et al. "Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber PatternsfJ]", Applied Physics Letters, 2008,93,123,1-3.
    [32]S. H. Lee, L. W. Lin, et al. "Chip-to-Chip Fluidic Connectors vis Near-Field Electrospinning[J]", MEMS 2007, Kobe, Japan,21-25 January 2007,61-64.
    [33]L. Rayleigh, "On the equilibrium of liquid conducting masses charged with Electricity[J]", Philosophical/Magazine Series 5,1882,14,184.
    [34]T. Geoffrey, "Electrically diven Jets, Proceedings of the Royal Society of London(A)[J]",Mathematical and Physical Sciences,1969,313,453-475.
    [35]M. M. Honman, Y. M. Shin, G. Rutledge, M. P. Brenner, "Electrospinning and Electrically Forced Jets: I. Stability Theory[J]", Physics of Fluids,2001,13,8, 2201-2220.
    [36]L. Yarin, S. Koombhongse, D. H. Reneker, "Bending instability in electrospinning of nanofibers, journal of applied physics[J]",2001,89,51, 45-48.
    [37]Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, "Experimental characterization of electrospinning:the electrically forced jet and instabilities^]" Polymer 2001,42,9955-9967.
    [38]J. J. Feng, "the stretching of an electrified non-newtonian jet:a medel for electrospinning[J]", Physics of fluids, 2002,14,3912-3926.
    [39]J. H. He, Y Q. Wan, J. Y. Yu, "Allometric Scaling and Instability in Electrospinning[J]", international Journal of Nonlinear Sciences and Numerical Simulation,2004,5,3,243-252.
    [40]J. H. He, Y. Wu, W. W. Zuo, "Critical length of straight jet in electrospinning[J]", Polymer, 2005,46,1263-1264.
    [41]Y. Wu, J. Yong, J. H. He, Y. Q. Wan, "Controlling stability of the electrospun fiber by magnetic field[J]", Chaos Solition and Fractals,2006.
    [42]万玉芹,何吉欢,俞建勇,吴明,“超声波振动在静电纺丝技术中的应用[J]”纳米科技,2006,5,55-57.
    [43]D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, "Bendinginstability of electrically charged liquid jets of polymer solutions in electrospinning[J]", Journal of Applied Physics, 2000,87, 9, 4531-4547.
    [44]S. A. Theron, A. L. Yarin, E. Zussman, E, Kroll, "Multiple jets in electrospinning:experiment and modeling[J]", Polymer, 2005,46,2889-2899.
    [1]L. J. Lauhon, M. S. Gudiksen, C. L. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature,2002,420,57-61.
    [2]Z. Yao, X. Zhu, C. Wu, X. Zhang, Y. Xie, Fabrication of Micrometer-Scaled Hierarchical Tubular Structures of CuS Assembled by Nanoflake-built Microspheres Using an In Situ Formed Cu(I) Complex as a Self-Sacrificed Template, Crystal Growth & Design,2007,7,1256-1261.
    [3]Y. Li, J. Liu, X. Huang, G. Li, Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres, Crystal Growth & Design,2007,7,1350-1355.
    [4]A. C. Chen, X. S. Peng, K. Koczkur, B. Miller, Super-hydrophobic tin oxide nanoflowers, Chem. Commun.,2004,17,1964-1965.
    [5]A. M. Morales, C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science,1998,279,208-211.
    [6]X. F. Duan, C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Adv. Mater,2000,12,298-302.
    [7]Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo, Z. Gu, Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates, Chem. Mater.,1999,11,3433-3435.
    [8]G. Cheng, J. Wang, X. Liu, K. Huang, Self-assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly(acrylic acid)-Assisted Solvothermal Process, J. Phys. Chem. B.,2006,110,16208-16211.
    [9]Z. Liu, D. D. Sun, P. Guo, J. O. Leckie, An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method, Nano. Lett.,2007,7,1081-1085.
    [10]D. Li, J. T. McCann, Y. Xia, YUse of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces, Small,2005,1, 83-86.
    [11]D. Li, Y. Wang, Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Adv. Mater,2004,16,361-366.
    [12]D. Li, G O. Yang, J. T. McCann, Y. Xia, Collecting Electrospun Nanofibers with Patterned Electrodes, Nano. Lett.,2005,5,913-916.
    [13]R. Ostermann, D. Li, Y. Yin, J. T. McCann, Y. Xia, V2O5 Nanorods on TiO2 Nanofibers:A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination, Nano. Lett.,2006,6,1297-1302.
    [14]D. Li, Y. Xia, Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning, Nano. Lett.,2004,4,933-938.
    [15]J. T. McCann, D. Li, Y. Xia, Electrospinning of nanofibers with core-sheath, hollow, or porous structures, J. Mater. Chem.,2005,15,735-738.
    [16]F. Bonino, S. Panero, M. Pasquali, G. Pistoia Rechargeable lithium batteries based on Li1+xV3O8 thin films, J. Power Source,1995,56,193-196.
    [17]H. Xu, H. Wang, Z. Song, Y. Wang, H. Yan, M. Yoshimura, Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries, Electrochim Acta,2004,49,349-353.
    [18]G. Yang, G. Wang, W. Hou, Microwave Solid-State Synthesis of LiV3O8 as Cathode Material for Lithium Batteries, J. Phys. Chem. B,2005,109, 11186-11196
    [19]S. Jounaneau, A. L. La Salle, A. Verbaere, M. Deschamps, S. Lascaud, D. Guyomard, J. T. McCann, D. Li, Y Xia, Influence of the morphology on the Li insertion properties of Li1.1V3O8, J. Mater. Chem.,2003,13,921-927.
    [20]Y. Gu, F. Jian, Facile preparation and electrochemical properties of large-scale Li1+x V3O8 nanobelts, J. Sol-gel. Sci. Technol.,2008,46,161-165.
    [21]G. Yang, G. Wang, W. Hou, Microwave Solid-State Synthesis of LiV3O8 as Cathode Material for Lithium Batteries, J. Phys. Chem. B 2005,109, 11186-11196.
    [22]S. Zhang, W. Li, C. Li, J. Chen, Synthesis, Characterization, and Electrochemical Properties of Ag2V4O11 and AgVO3 1-D Nano/Microstructures, J. Phys. Chem. B, 2006,110,24855-24863.
    [23]B. Li, G. Rong, Y. Xie, L. Huang, C. Feng, Low-Temperature Synthesis of a-MnO2 Hollow Urchins and Their Application in Rechargeable Li+Batteries, Inorg. Chem.2006,45,6404-6410.
    [1](a) Y. Hu, Y.Guo, R.Dominko, M. Gaberscek, J. Jamnik, "Maier Imporved electrode perofrmance of porous LiFePO4 using RuO2 as an oxide nanoscale interconnect[J]", Adv. Mater,2007,19,1963-1966. (b) L.Wang, Z.Li, H.Xu, K.Zhang, "Studies of Li3V2(PO3) additives for the LiFePO4-based Li Ion batteries [J]", J. Phys. Chem C,2008,112,308-312.
    [2]A. K.Padhi, K. S. Nanjundaswamy, J. B. Goodenough, "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]" J. Eleetrochem Soc.,1997,144,1188-1194.
    [3](a) J. Qian, Z M.hou, Y.Cao, X.Ai, H.Yang, "Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries[J]" J. Phys. Chem. C,2010,114, 3477-3482. (b) I.Bilecka, A. Hintennach, I. Djerdj, P. Novak, M. Niederberger, "Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability [J]"J. Mater. Chem.,2009,19,5125-5128.
    [4](a) C. H. Shin, W. I. Cho, H. Jang, Electrochim. Acta., 2006,52,1472. (b) M. R. Yang, T. H. Teng, S. H. Wu, J. Power Sources,2006,159,307(c)杨平,戴曦,唐红辉等,电源技术[J],2005,29,755. (d) N. Ravet, A. Abouimrane, M. Armand, "On the electronic conductivity of phospho-olivines as lithium storage electrodes[J]", Nature Mater,2003,2,702.
    [5](a) P. S. Herle, B. Ellid, N. Coombs, et al. Nature Mater,2004,3,147. (b) J. Xu, G. Chen,2010, Physica B 405,803. (c) C. Sun, Z. Zhou, Z. Xu, D. Wang, J. Wei, X. Bian, J. Yan, J. Power Sources, 2009, 193,841 (d) S. Wu, M. Chen, C. Chien, Y. J. Fu, Power Sources, 2009, 189, 440.
    [6](a) J. Liu, F. Liu, G Yang, X. Zhang, J. Wang, R. Wang, "The preparation of conductive nano LiFePO4/PAS and its electrochemical performance Electrochim", Acta 2010,55(3),10-13.
    (b)L. Wu, X. Li, Z. Wang, X. Wang, L. Li, J. Fang, F. Wu, H. Guo, "Preparation of synthetic rutile and metal-doped LiFePO4 from ilmenite[J]", Powder Technology, 2010,199(3),293-297.
    [7](a) C. Delacourt, C Wurm, L. Laffont, J. B. Leriche, C. Masquelier, "Electrochemical and electrotrical properties of Nb- and/or C-containing LiFePO4 composite[J]", Solid State Inoics, 2006,177(3-4),333-341. (b) Q. Zhang, S. Wang, Z. Zhou, G. Ma, W. Jiang, X. Guo, S. Zhao, "Structural and electrochemical properties of Nd-doped LiFePO4/C prepared without using inert gas[J]", Solid State Ionics, 2011,191(1-2),40-44.
    [8](a) Z. Wang, S. Sun, D. Xia, W. Chu, S. Zhang, Z. Wu, "Investigation of electronic conductivity and occupancy sites of Mo doped into LiFePO4 by ab inito calculation and X-ray absorption spectroscopy[J]", J. Phys. Chem. C 2008, 112, 17450-17455. (b) B. Pei, Q. Wang, W. Zhang, Z. Yang, "Chen M. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping[J]", Electrochim. Acta.,2001,56,5667-5672.
    [9](a) H. Gong, Y. Yu, T. Li, T. Mei, Z. Xing, Y. Zhu, Y. Qian, X. Shen, "Solvothermal synthesis of LiFePO/4C nanopolyhedrons and microellipsoids and their performance in lithium-ion batteries[J]", Mater. Lett.2012,66(1),374-376. (b) K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy Environ. Sci.,2010,3,457. (c) H. Liu, Y. Wang, K. Wang, E. Hosono, H. J. Zhou, Mater. Chem.,2009,19,2835. (d) L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Nano. Lett.,2010,10,4750.
    [10](a) E. Ellis, W. H. Kan, W. R. M. Makahnouk, L. F. Nazar, "Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4[J]", J. Mater. Chem.,2007,17,3248-3254. (b) W. Kang; C. Zhao, R. Liu, F. Xu; Q. Shen, "Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode[J]", CrysEngComm,2012,14, 2245-2250.
    [11](a) C. Djordjevic, M. Lee, E. Sinn, "Oxoperoxo(citrato)-and dioxo-(citrato)vanadates(Ⅴ):synthesis, spectra, and structure of a hydroxyl oxygen bridged dimer K2[VO(O2)(C6H6O7)]2-2H2O[J]", Inorg. Chem.1989,28,719-723. (b) G. B. Deacon, R. J. Phillips, Coord. Chem. Rev.1980,33,227-251. (c) E. Zhecheva, R. Toyanova, M. Gorova, R. Alcantara, J. Motales, J. L. Tirado, "Lithium-cobalt citrate precursors in the preparation of intercalation electrode materials[J]", Chem. Mater. 1996,8,1429-1440.
    [12](a) J. L. Allen, T. R. Jow, J. Wolfenstine, J. Solid State Electrochem.,2008,12, 1031. (b)V. Srinivasan, J.Newman, J. Electrochem. Soc. 2004,151, A1517.
    [1]K. Nayani, H. Katepalli, C. S. Sharma, et al. "Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers[J]". Ind Eng Chem Res., 2012,51,1761-1766.
    [2]X. Chen, K. M. Unruh, C. Ni, et al. "Fabrication, formation mechanism, and magnetic properties of metal oxide nanotubes via electrospinning and thermal treatment[J]". J. Phys. Chem. C,2011,115,373-378.
    [3]M. Pakravan, M. C. Heuzey, A. Ajji, "Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning[J]", Biomacromolecules, 2012,13, 412-421.
    [4]H. Cao, Y. Zhu, X. Yang, C. Li, "Fabrication of CuInS2-TiO2 composite fibers by using electrospinning coupled with solvothermal method[J]". RSC Adv.,2012,2, 4055-4058.
    [5]C. Wang, K. W. Yan, Y. D. Lin, P. C. H. Hsieh, "Biodegradable core/shell fibers by coaxial electrospinning:processing, fiber characterization, and its application in sustained drug release[J]", Macromolecules, 2010,43,6389-6397.
    [6]J. T. McCann, D. Li, Y. Xia, "Electrospinning of nanofibers with core-sheath, hollow, or hollow, or porous structures[J]", J. Mater. Chem.,2005,15,735-738.
    [7]R. Sahay, P. S. Kumar, R. Sridhar, et al. "Electrospun composite nanofibers and their multifaceted applications[J]". J. Mater. Chem.,2012,22.12953-12971.
    [8]Y. Wang, H. C. Zeng, J. Y Lee, "Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers[J]", Adv. Mater, 2006,18,645-649.
    [9]H. Chen, N. Wang, J. Di, et al. "Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning[J]", Langmuir,2010,26, 11291-11296.
    [10]R. Ostermann, D. Li, Y. Yin, et al. "V2O5 nanorods on TiO2 nanofibers:a new class of hierarchical nanostructures enabled by electrospinning and calcinations[J]", Nano. Lett.,2006,6,1297-1302.
    [11]J. Zhang, J. Fu, F. Li, et al. "BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism [J]", ACS Nano,2012,6,2273-2280.
    [12]X. Peng, A. C. Santulli, E. Sutter, et al. "Fabrication and enhanced photocatalytic activity of inorganic core-shell nanofibers produced by coaxial electrospinning", ChemSci,2012,3,1262-1272.
    [13]J. T. McCann, D. Li, Y. Xia, "Electrospinning of nanofibers with core-sheath, hollow, or porous structures[J]", J Mater Chem,2005,15:735-738.
    [14]T. Yan, B. Zhao, R. Cai, et al. "Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers[J]", J Mater Chem,2011,21:15041-15048.
    [15]Y. Gu, F. Jian, "Hollow LiNi0.8Co0.1Mn0.1O2-MgO coaxial fibers:sol-gel method combined with co-electrospun preparation and electrochemical properties[J]", J Phys Chem C,2008,112:20176-20180.
    [16]C. Gong, G. Fan, C. Song, G. Lu, "Preparation and characterization of M-type barium ferrite fibers via aqueous sol-gel process[J]", Transactions of Tianjin University, 2007,13,117-120.
    [17]Y. Gu, D. Chen, X. Jiao. "Synthesis and characterization of hollow LiNiO2 fibers via sol-electrospinning method, J Sol-Gel Sci Technol[J]",2007, 43: 245-249.
    [18]L. L. Hench, J. K. West,The sol-gel process, Chem Rev 1990,90:33-72.
    [19]Y. Cheng, B. Zou, C. Wang, et al. "Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic[J]" electrochemical properties CrystEngComm,2011,13:2863-2870.
    [1]A. J. Blake, N. R. Champness, T. L. Easun, Et Al. "Photoreactivity Examined Through Incorporation In Metal-Organic Frameworks[J]", Nature Chemistry, 2010,2,8,688-694.
    [2]B. L. Chen, M. Eddaoudi, S. T. Hyde, Et Al. "Interwoven Metal-Organic Framework On A Periodic Minimal Surface With Extra-Large Pores[J]", Science, 2001,291,5506,1021-1023.
    [3]X. B. Zhao, B. Xiao, A. J. Fletcher, Et Al. "Hysteretic Adsorption And Desorption Of Hydrogen By Nanoporous Metal-Organic Frameworks[J]" Science,2004,306,5698,1012-1015.
    [4]J. C. Rowsell, E. C. Spencer, J. Eckert, Et Al. "Gas Adsorption Sites In A Large-Pore Metal-Organic Framework[J]", Science,2005,309,5739, 1350-1354.
    [5]P. M. Lee, C. C. Ko, N. Y. Zhu, Et Al. "Metal Coordination-Assisted Near-Infrared Photochromic Behavior: A Large Perturbation On Absorption Wavelength Properties Of N,N-Donor Ligands Containing Diarylethene Derivatives By Coordination To The Rhenium(I) Metal Center[J]," Journal Of The American Chemical Society, 2007,129,19,6058.
    [6]O. M. Yaghi, H. L. Li, T. L. Groy. "Construction Of Porous Solids From Hydrogen-Bonded Metal Complexes Of 1,3,5-Benzenetricarboxylic Acid[J]", J. Am. Chem. Soc.,1996,118,9096-9101.
    [7]N. L. Rosi, J. Eckert, M. Eddaoudi, Et Al. "Hydrogen Storage In Microporous Metal-Organic Frameworks[J]", Science, 2003,300,5622,1127-1129.
    [8]S. Kitagawa, R. Kitaura, S. Noro, "Functional Porous Coordination Polymers[J]". Angewandte Chemie-International Edition, 2004,43,18,2334-2375.
    [9]X. B. Zhao, B. Xiao, A. J. Fletcher, Et Al, ,,Hysteretic Adsorption And Desorption Of Hydrogen By Nanoporous Metal-Organic Frameworks [J]" Science,2004,306,5698,1012-1015.
    [10]K. Koh, A. G. Wong-Foy, A. J. Matzger, "A Crystalline Mesoporous Coordination Copolymer With High Microporosity[J]", Angewandte Chemie-International Edition,2008,47,4,677-680.
    [11]H. K. Chae, D. Y. Siberio-Perez, J. Kim, Et Al. "A Route To High Surface Area, Porosity And Inclusion Of Large Molecules In Crystals[J]", Nature, 2004,427, 6974, 523-527.
    [12]N. W. Ockwig, H. K. Chae, O. M. Yaghi, "Metal Organic Frameworks (Mofs) With Trigonal Carboxylic Acid Ligands And Extraordinary Porosity[J]", Abstracts Of Papers Of The American Chemical Socie, 2004,227: Uu128-U1289.
    [13]D. Liu, Z. G. Wang, H. Yu, Et Al. "Fluorescence Properties Of Novel Rare Earth Complexes Using Carboxyl-Containing Polyaryletherketones As Macromolecular Ligands[J]", European Polymer Journal, 2009,45,8, 2260-2268.
    [14]Q. Suo, F. Lu, J. W. Shi, Et Al. "Studies On Synthesis And Fluorescent Property Of Rare Earth Complexes Re(Abmf)(2)Aa And Copolymers Re(Abmf)(2)Aa-Co-Mma[J]", Journal Of Rare Earths,2009,27, I,28-32.
    [15]G. M. Sheldrick, Shelxs-97, Program For Crystal Structure Solution:Germany, 1997.
    [16]G. M. Sheldrick. Shelxl-97, Program For Crystal Structure Refinement: Germany, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700