用户名: 密码: 验证码:
基于微分同调的微电网降价等效建模理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电网系统属于分布式、近距离、可控制性强的新型电网,含有大量的特殊电源和电力电子变流装置,动态响应较快,且与大电网之间存在一定的相互渗透性。传统的建模方法着眼于同步发电机等传统电源,在微电网应用中有一定的局限性。因此,本文研究了以电力电子装置为核心元件的微电网建模方法。
     传统的建模方法主要是同调等值方法和模式等值方法,这两种方法由于主要针对同步发电机系统,因此直接移植到含有大量新型电源和电力电子变流器的微电网中,并不非常适用。本文以舰船综合电力系统这一典型的微电网系统为主要研究对象,提出适合微电网系统的微分同调等效建模理论以及参数获得和检验方法。
     主要研究内容包括:
     本文提出了较完整的微电网系统的微分同调等效理论和方法,该方法包括微分同调的定义、同调的判别、参数的小扰动聚合、大扰动的解析理论、参数的辨识获得方法以及检验算法等;本文首次将代数拓扑中的微分同调应用于等效建模中。采用了小扰动算法近似化简了并联型变流器的模型并详细给出了计算流程,最后通过舰船综合电力系统计算,说明了该方法的作用。大扰动情况下通过将电力电子电路转化为达芬型非线性电路,从而尝试采用数值计算的方法进行解析等效建模。上述内容在第二章到第五章中分别论述。
     第二章微电网系统可等值性理论和方法研究中,首先通过IEEE34节点的风电算例论述了以同步电机为对象的同调等值算法,并说明了其存在的四点显著缺陷。然后通过多尺度的小波包算法在单相变流器并联电路中验证了在不同时间尺度下,同调等值算法能够从同步电机的机电暂态分析(同调等值主要依据是机电暂态的功角变化),扩展到电力电子装置的电磁暂态过程。接着,论述了数学上的微分同调的概念以及其在三相变流器中的物理意义,说明了同调等值是微分同调的一种特例。通过单相变流器并联电路的参数聚合,初步验证了微分同调算法的效果。电力系统中的大扰动往往体现为系统严重振荡或者三相不对称,这种情况下无法通过小信号的线性化方法直接近似,本文尝试将其转化为达芬型非线性电路,并给出近似的连续非线性方程。
     第三章微电网系统等能计算的等值模型及其表示方法中,首先介绍了EPRI的大电网同调等值聚合方法,该算法分为模型表示、母线聚合、网络聚合、机群聚合等步骤,该算法已经广泛被应用在电力系统建模中。随后,提出了电力电子装置的在微分同调下的时域聚合方法,并参照同调等值方法,将算法过程分为变流器容抗阻抗的等效聚合、变流器所带负荷的等效、功率控制环节的聚合过程、电压环节的聚合过程、电流环节的聚合过程等五个步骤,并在第五章中针对舰船电力综合系统的交流和直流环节进行了等效分析。最后,对达芬非线性电路采用了谐波平衡等数值解析方法求得了近似解,近似解是一个只含有系统参数的表达式,能够通过代入系统参数而进行近似等效,这能够极大化简模型表示。
     第四章微电网系统等值参数的辨识和校验方法中,阐述了微电网的模型辨识和校验方法,该方法包括可最小二乘辨识、梯度参数估计以及主观校验方法等,这些方法能够有效的辨识系统参数,扩展微分同调方法的工程应用。
     第五章的研究对象是舰船综合电力系统,是一种典型的微电网系统。其分为交流部分和直流部分两大部分,交流部分含有同步电机等传统电源,也含有异步电动机等负载。本文在小扰动和大扰动情况下对其进行了等效。直流部分含有大量电力电子变流器,本文采用第三章的频率聚合方法进行了等效,并通过实验室搭建动模仿真系统进行了试验验证,证明了微分同调意义下的频率聚合方法是有效的。通过第三章的达芬非线性电路和第五章的舰船综合电力系统算例,系统的验证了小扰动下和大扰动下,微分同调意义下都能够进行等效建模。
Micro-grid system is a distributed, short-distance, controllable network, and it contains a lot of special electric power generators and power electronic devices which has fast dynamic response. The power between micro-grid system and great-grid system is permeable. As a result, the traditional modeling method can not resolve all the problems in micro-grid system. Therefore, this dissertation involves a novel method attempting to present an equivalence method for micro-grid system.
     Coherency equivalence method and mode equivalence method are well applied in the power systems. These two methods mainly fit for synchronous generator system in stead of the micro-grid system containing a large number of new power supplies and power electronics converters. In this paper, ship power system, one of the typical micro-grid systems is emphasized to proposed differential cohomology equivalent modeling theory for micro-grid system.
     The main contents include:
     This paper proposed a more complete micro-grid system of differential cohomology equivalent theory, including the definition,the discrimination, the parameters of the small perturbation polymerization method as well as testing algorithm for large perturbations of analytic theory, the parameters of the recognition.This article firstly apply cohomology differential algebraic topology for equivalence. The small perturbation algorithm the approximate simplified parallel converter model and the calculation process is given in detail, with the example of ship power system. To resolve the problem of the equivalent modeling under large disturbance, this dissertation attempts to change the equivalent modeling power electronic circuits into Duffing type nonlinear circuit. The above discussed present between chapter2to chapter5.
     In chapter2, IEEE34node of wind power is researched firstly to illustrate the coherency method which is widely-used in the power systems and it tips4disadvantages for micro-grid systems. This dissertation spread equivalents algorithm from motor electromechanical transient analysis of the synchronous generators to electromagnetic transient analysis of inverters by multi-scale wavelet packet algorithm. And then it discusses the the differential cohomology mathematical concepts and the physical meaning of the three-phase inverter to figure out coherency equivalents is a special case of the differential cohomology. the effect of differential cohomology algorithm is validated by single-phase variable flow parallel circuit parameters polymerization. Large disturbances in the power system are often serious oscillations or unbalanced three phase voltages. This case can not be directly through the small-signal linearity approximation, so this article attempts to transformed Duffing type nonlinear circuit and gives approximate continuous nonlinear equations his article attempts to transformed Duffing type nonlinear circuit and gives approximate continuous nonlinear equations.
     In chapter3, EPRI's power grid with tone equivalents polymerization method first introduced, which is divided into the stepsof the model, busbar polymerization, network aggregation fleet polymerization. The algorithm has been widely applied in the power system modeling. Subsequently, the time-domain differential cohomology polymerization method for the power electronic devices is presented. Refered to the coherency equivalents method, the time-domain differential cohomology polymerization method is divided into5steps of a converter capacitance impedance equivalent polymerization, the the equivalent converter load carried by the power control aspects of the polymerization process, part of the polymerization process of the voltage and current link polymerization process. Equivalent AC and DC examples for shipboard power systems are analyzed in chapter5. Finally, the Duffing nonlinear circuits using harmonic balance and numerical analysis method to obtain the approximate solution, approximate solution is a system parameter contains only expressions into the system parameters and the approximate equivalent.
     In chapter4, microgrids model identification and calibration method, the method of least squares identification the gradient parameter estimates, as well as the subjective validation methods, these methods can be effective recognition system parameters, extended differential cohomology methods of engineering applications.
     In chapter5, the large ship power systems, also known as the ship integrated power system is a typical micro-grid system. It is divided into two major AC part and the DC part, AC part contains the traditional power of the synchronous motor also contain asynchronous motor load. Small disturbance and large disturbance case is analyzed. DC part contains a lot of power electronic converters. In this dissertation, the method of polymerization method in chapter3is applied for the equivalence of DC part. And Laboratory test verified the method. By the Duffing nonlinear circuit in chapter3under large disturbance and ship integrated power system example in chapter5under small disturbance, the significance of the differential cohomology are able to carry out the equivalent modeling.
引文
[1]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9):2-6.
    [2]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训[J].电网技术,2003,27(9):
    [3]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [4]陈卫民,陈国呈,吴春华,等.基于分布式并网发电的新型孤岛检测研究[J].电工技术学报,2007,22(8):114-118.
    [5]Katiraei F, Iravani M R. Power Management strategies for a micro-grid with multiple distributed generation units[J]. IEEE Transactions on Power Systems,2006,21 (4):1821-1 831.
    [6]梅生伟,王莹莹.输电网-配电网-微电网三级电网规划的若干基础问题[J].电力科学与技术学报,,2009,24(4):3-11.
    [7]J.A.Pecas Lopes, C.L.Moreira. Defining control strategies for Micro Grids islanded operation[J].IEEE Trans on Power Systems,2006,21(2):916-924.
    [8]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响[J].电网技术,2006,30(19):27-30.
    [9]Hatziargyriou N, asano H, iranvani R, et al. Microgrids[J].IEEE Power and Energy Magazine,2007,5(4):78-94.
    [10]陈永淑,周雒维,杜维.微电网控制研究综述[J].中国电力,2009,42(7):31-35.
    [11]LASSETER R H, Akhil A, Marnay C, et al. Integration of distributed energy resources:the CERTS microgrid concept [EB/OL].[2007-04-01]. http://certs.lbl.gov/pdf/LBNL 50829.pdf.
    [12]张建华,黄伟.微电网运行控制与保护技术[M].北京:中国电力出版社,201 0.
    [13]王晓武.国外常规潜艇AIP技术现状及发展趋势分析[J].舰船科学技术,2009,31(1)172-175
    [14]潘镜芙.国外航空母舰的发展和展望[J].自然杂志,2007,29(6):315-318
    [15]H.Gaztafiaga, I. Etxeberria-Otadui, S.Baeha D.Roye. Real-Time Analysis of the Control Structure and Management Functions of a Hybrid Microgrid System. In:IEEE Industrial Electronics, IECON2006-32nd Annual Conference. Paris,2007,5137-5142
    [16]Kevin P. Logan. Intelligent diagnostic requirements of future all-electric ship integrated power system[J]. IEEE Trans on Industry Applications,2007,43(1):139-149.
    [17]张剑,孙元章,徐箭.基于同调性的电动机动态聚合方法[J].电力系统自动化,2010,34(5):48-52.
    [18]刘海涛,龚乐年.多机系统利用模态最优线性组合法的降阶分析[J].电力系统保护与控制,2010,38(15):1-11.
    [19]李晓辉,罗敏,刘丽霞.动态等值新方法及其在天津电网中的应用[J].电力系统保护与控制,2010,38(3):61-66.
    [20]贺仁睦,沈峰:韩冬,韩志勇.发电机励磁系统建模与参数辨识综述电网技术,2007, 31(14):62-67.
    [21]陈晓刚,江全元,曹一家.基于WAMS/SCADA (?)昆合量测的电网参数辨识与估计[J].电力系统自动化.2008,32(5):1-5.
    [22]陈树恒,李兴源.基于WAMS的交直流并联输电系统模型辨识算法[J].中国电机工程学报,2008,28(4):48-53.
    [23]刘祖全.基于卡尔曼滤波算法的永磁同步电机无速度传感器控制研究[D].山东大学,2009.
    [24]章以刚.舰船供电系统和装置[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [25]鞠平.电力系统非线性辨识[M].南京:河海大学出版社,1999
    [26]文俊,刘天琪,李兴源.在线识别同调机群的优化支持向量机算法[J].中国电机工程学报,2008,28(25):80-86.
    [27]倪向平,梅生伟.基于复杂网络社团结构理论的同调等值算法[J].中国电机工程学报,32(7):10-15.
    [28]庄劲武,沈兵,张晓锋.基于节点方程的舰船电力系统数学建模[J].海军工程大学学报,2004,16(6):17-22
    [29]许剑兵,薛禹胜,张启平,江德星.电力系统同调动态等值的评述闭[J].电力系统自动化,2005,29(14):91-95.
    [30]丁坚勇.同步发电机动态参数辨识研究[D].武汉大学博士论文.-20020301.-125页.
    [31]沈善德.电力系统辨识[M].北京:清华大学出版社,1993.
    [32]鞠平,陈谦,熊传平等.基于日负荷曲线的负荷分类和综合建模[J].电力系统自动化,2006,30(16):6-9.
    [33]沈峰,贺仁睦,王君亮.基于非线性直接优化方法的发电机励磁系统参数辨识[J].电网技术,2007,31(8):73-77.
    [34]S. Santoso and Zheng Zhou. Induction Machine Test Case for the 34-Bus Test Feeder-A Wind Turbine Time-domain Model, IEEE Power Engineering Society General Meet ing, June,2006.
    [35]鲁宗相,王彩霞,闵勇.微电网研究概述[J].电力系统自动化,2007,31(19):100-107.
    [36]胡志坚,陈允平.基于微分方程的互感线路参数带电测量研究与实现.中国电机工程学报,2005,25(2):28-33.
    [37]A. M. Miah. Simple dynamic equivalent for fast online transient stability assessment, IEEE Proceedings Generation. TM-mission and Distribution, 1998.145(1):49-55.
    [38]LASSETER B. Mircogrids. Proceedings of 2001 IEEE Power Engineering Society Winter Meeting:Voll, Jan 28-Feb 1,2001, Columbus. OH, USA,Piscataway, NJ,USA:IEEE 2001:146-149.
    [39]刘永强,严正,倪以信.双时间尺度电力系统动态模型降阶研究(一)一电力系统奇异摄动模型[J].电力系统自动化,2002,26(18):1-5.
    [40]刘永强,严正,倪以信.双时间尺度电力系统动态模型降阶研究(二)一降阶与分析[J].电力系统自动化,2002,26(19):1-6.
    [41]赵剑锋,潘诗锋,王浔.大功率能量回馈型交流电子负荷及其在电力系统动模实验中的应用[J].电工技术学报.2006,21(12):35-39.
    [42]杨松林,高润生,于荣海.电弧放电方法制备Co掺杂A1N纳米棒[J].稀有金属材料与工 程.2009,38(2):990-993.
    [43]E. J. S.Pires and A. M. Leite:An efficient methodology for coherency-based dynamic equivalents. IEEE PROCEEDINGS-C Vol.139, No,5, September 1992,371-382.
    [44]杨勇波,江波,杨华云.风电场动态等值以及在暂态稳定分析中的应用[J].中国电力,2011,44(7):66-70.
    [45]杨靖萍,徐政基于同调机群识别的动态等值方法的工程应用[[J].电网技术,2005,29(17):68-71
    [46]Ju, P., and Zhou, X.Y, Dynamic equivalents of distribution systems for voltage stability studies, IEE Proc. Gener. Transm. Distrib.148,(1) pp.49-53,2001.
    [47]R. C. Dugan and W. H. Kerst ing. Induction Machine Test Case for the 34-Bus Test Feeder-Description,IEEE Power Engineering Society General Meeting, June,2006.
    [48]S. Santoso and Zheng Zhou. Induction Machine Test Case for the 34-Bus Test Feeder-A Wind Turbine Time-domain Model, IEEE Power Engineering Society General Meeting, June,2006.
    [49]I Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans,1990,36 (5):961-1005.
    [50]马皓,雷彪.逆变器无线连并联系统的统一小信号模型及应用[J].浙江大学学报(工学版),41(7):1111-1115.
    [51]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.
    [52]陈予恕.非线性振动[M].天津:天津科技出版社,1983.
    [53]郑兆昌,丁奎元.机械振动[M].北京:机械工业出版社,1986.
    [54]倪以信、陈寿孙、张宝霖.动态电力系统的理论与分析[M].北京:清华大学出版社,331-333,2002
    [55]邓卫华.电力电子变换器状态反馈精确线性化模型及非线性控制[D].优秀博士学位论文,华南理工大学,2005:1-15.
    [56]陈省身、陈维恒.微分几何讲义(第二版)[M].北京:北京大学出版社,94-98,2001.
    [57]侯伯元、侯伯伟.物理学家用微分几何[M].2版.北京:科学出版社,35-37,221-228,2004.
    [58]鞠平,陈谦,熊传平等.基于日负荷曲线的负荷分类和综合建模[J].电力系统自动化,2006,30(16):6-9.
    [59]华东师范大学数学系.数学分析(第三版)下册[M].北京:高等教育出版社,331-335,2001.
    [60]卢强,梅生伟,孙元章.电力系统非线性控制(第二版)[M].北京:清华大学出版社,69-71.2007.
    [61]W. W. Price, A. W. Hargrave, B. J. Hurysz, et al. Large-scale system test ing of a power system dynamic equivalencing program. IEEE Transactions on Power Systems,1998, 13(3):768-774.
    [62]Excitat ion System Models for Power System Stability Studies, IEEE trans, on PAS, Vol.100,1981, pp687-701.
    [63]R. J.GALARZA, J. H. CHOW, WW.PRICE, A. W. HARGRAVE, EM.HIRSCH,'Aggregation of exciter models for constructing Power System Dynamic Equivalents', IEEE trans. on Power Systems, Vol.13, No.3, August 1998, pp782-788.
    [64]刘树林,刘健,杨银玲Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报,2006,26(5):119-124.
    [65]查晓明,孙建军,陈允平.并联型有源电力滤波器的重复学习Boost变换控制策略[J].电工技术学报,2005,20(2):56-62.
    [66]王伦耀,吴训威.主从型D触发器的动态功耗分析[J].浙江大学学报(理学版),2003,30(1):35-40.
    [67]C. M. Lo, C. T. Tse. Application of coherency-based dynamic equivalents in small perturbation stability studies.2nd International Conference on Advances in Power System Control, Operation and Management,1993,2:916-921.
    [68]蔡超,陈光东,段三丁,成志明.最小二乘法在感应电机参数辨识中的应用研究[J].武汉化工学院学报,2003.25(2):57-59.
    [69]谭国真,韩宁宁,刘屹.基于聚合树模型的大规模网络动态路由协议[J].华中科技大学学报(自然科学版),2005,,33(z1):94-96.
    [70]戴义平,邓仁纲,刘炯,孙凯基于遗传算法的汽轮机非线性调节系统的参数辨识研究[J].动力工程23(1),2003.2.
    [71]Wallace do Couto Boaventura, M. Reza Iravani&Amauri Lopes:Robust Sparse Network Equivalent for Large Systems:Part Ⅰ-Methodology. IEEE Trans, on P.S.,VOL.19, NO.1, February 2004,157-163唐巍,李殿璞.电力系统经济负荷分配的混沌优化方法[J].中国电机工程学报,2000,20(10):36-40.
    [72]刘小河,殷杰,张奇志.基于Lyapunov方法的一类非线性系统分段线性化自适应控制[J].控制理论与应用,2005,22(5):825-833.
    [73]李剑飞,尹泉,万淑芸.基于扩展卡尔曼滤波器的异步电机转速辨识[J].电工技术学报,7(5),2002.2.
    [74]Joe. H.Chow, R. Galarza, EAccari and Ww. Price:Inertial and Slow Coherency Aggregation Algorithms for Power System Dynamic Model Reduction. IEEE Trans, on Power Systems, Vol.10, No.2, May 1995,680-685.
    [75]R.J. GALARZA; J. H. CHOW; R. C. DEGENEFF, Transformer Model Reduction Using Time and Frequency Domain Sensitivity Techniques, IEEE trans.on Power Delivery, Vol.10, 1995, pp1052-1059.
    [76]Joe. H. Chow, R. Galarza, EAccari and Ww. Price:Inertial and Slow Coherency Aggregation Algorithms for Power System Dynamic Model Reduction. IEEE Trans, on Power Systems, Vol.10, No.2, May 1995,680-685.
    [77]鞠平,李德丰.感应电动机综合负荷的参数辨识[J].电工技术学报,1999,14(1):2-6.
    [78]王茂海,刘会金.通用瞬时功率定义及广义谐波理论[J].中国电机工程学报,2001,21(9):68-73.
    [79]H. M. Rodrigues, L. F. C. Alberto, N. G. Bretas, On the Invariance Principle. Generalizations and Applications to Synchronism, IEEE Trans, on Circuits and Systems I:Fundamental Theory and Applications, vol.47(5), May 2000.
    [80]T. N. Nababhushana, K. T. Veeramanju, Shivanna. Coherency identification using growin self organizing feature maps.1998 International Conference on Energy Management an Power Delivery,1998,1:113-116.
    [81]Wenping Li and A. BOW, A coherency based rescheduling method for dynamic security assessment, IEEE Trans, on Power Systems, vol.13, n.3,1998, pp.810-815.
    [82]Nair V N. Discussion of 'estimation of reliability in field performance studies' by Kalbfleisch J D and Lawless JF. Technometrics,1988,30:379-383.
    [83]蔡金锭,王慧.非线性偏最小二乘回归在电力负荷预测中的应用[J].电工电能新技术,2006,25(2):15-17.
    [84]陈涵,刘会金.基于可变遗忘因子广义RLS算法的频率估计[J].电力自动化设备,2008,28(7):45-51.
    [85]颜拥,文福栓,杨首晖.考虑风电出力波动性的发电调度[J].电力系统自动化,2010,34(6):33-38.
    [86]刘俊,马志瀛,闫静.基于改进梯度矫正法的短路电流实时计算[J].电工技术学报,2007,22(10):13-17.
    [87]龙云,王建全.基于粒子群游算法的同步发电机参数辨识[J].大电机技术,20032003:8-11.
    [88]刘长良,于希宁,姚万业,刘吉臻基于遗传算法的火电厂热工过程模型辨识[J].中国电机工程学报,23(3),2003.3.
    [89]宁伟,陶华学,卿熙宏.广义非线性最小二乘测量参数平差的快速差分迭代解算[J].武汉大学学报(信息科学版),2005,30(7):76-82.
    [90]吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿[J].中国电机工程学报,2006,26(12):86-91.
    [91]张旭梅,李志威.具有动态指标偏好的多指标决策方法[J].系统工程与电子技术,2007,29(4):52-57.
    [92]高阳,朴在林,张旭鹏.基于噪声场合下ARMA模型的风力发电量预测[J].电力系统保护与控制,201 0,38(20):25-29.
    [93]杨光军,刘吉臻,刘向杰.一种用于电站燃烧经济性预测的灰箱建模研究[J].华北电力大学学报,2007,34(6):65-70.
    [94]汪镭,周国兴,吴启迪.神经网络辨识方案在异步电机传动系统参数辨识中的应用讨论[J].电工电能新技术,2001(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700