用户名: 密码: 验证码:
基于电活性聚合物的全有机电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展先进的储能方式是开发新能源技术的关键。目前,锂离子电池以其高能量密度被认为是下一代电动汽车以及储能电站等应用的理想选择。然而,由于受到正极材料结构的限制,进一步提高电池的能量密度和功率密度十分困难;此外,目前锂离子电池还存在成本较高、锂资源短缺和安全性等问题。因此,发展新的储能体系是当前二次电池研究的重要课题。有机聚合物具有结构多样、资源丰富、环境友好等特点,采用氧化还原活性聚合物开发全有机二次电池,正成为能源领域的研究热点。本论文旨在探索全有机电池正负极材料,构建在储能密度、功率密度、环境资源效益等方面更具有优势的储能体系。主要研究内容和结果如下:
     1.研究了聚三苯胺(PTPAn)(?)乍为二次电池正极材料的电化学性质。聚三苯胺及其衍生物的结构中既具有导电性良好的聚对苯主链结构,又具有高能量密度的聚苯胺结构,兼高能量密度和高功率密度特性。据此,我们采用化学氧化法合成了聚4-氰基三苯胺和聚4-硝基三苯胺,期望通过在三苯胺的4位上修饰拉电子基团以提高这些聚合物的氧化还原电位,从而获得到更高的比能量。实验结果表明:该类聚合物的充放电过程为阴离子的掺杂-脱掺杂。聚4-氰基三苯胺电极在锂离子电解液中首周放电比容量为83mAh g-1,平均充放电电压为3.9V,且循环100周容量无明显衰减;以4C(1C=99.8mAg-1)的电流密度充放电时,仍有55mAh g-1的比容量。相同条件下,聚4-硝基三苯胺电极首周放电比容量为70mAh g-1,平均充放电电压为3.9V,且循环100周容量为64.3mAh g-1,与首周比容量相比具有91.8%的保持率;以320mAg-1的电流密度充放电时,仍具有接近50mAh g-1的比容量。两种聚合物都表现出较好的循环稳定性和大电流充放电性能,且合成方法简单易操作,有望成为低成本、环境友好的有机正极材料。
     2.研究了聚合物储锂及储钠负极材料。基于以往对聚噻吩以及聚噻吩衍生物的研究,设计合成了结构规整、分子量较大的聚联二噻吩(PBT),并通过简单球磨制备了PBT/C复合材料,进而考察了这种复合物材料作为锂离子和钠离子电池负极材料时的电化学行为。实验结果表明:该聚合物作为电池负极时的充放电过程是通过阳离子的掺杂-脱掺杂而实现。在用于锂离子电池时,复合物正极在1.25V和2.25V处表现出两个放电电压平台,经过十几周充放电循环,容量稳定在-850mAh g-1,且在随后的几十周循环过程中保持稳定;当电流密度增大到近4C (1C=318mAg-1)时,仍有280mAh g-1的比容量,表现出了良好的循环稳定性和大电流充放电性能。在钠离子电池中,这种复合物电极经过几十周充放电循环,容量稳定在-400mAh g-1,表明该材料具有可逆的储钠能力。
     3.为了寻找合适的全有机电池负极材料,本工作采用过渡金属催化的氧化偶联方法,现场合成了分子量较大、结构较为规整、导电性良好的PDHT/碳复合材料。考察了该复合材料作为锂离子电池负极材料的电化学行为,并将其与聚三苯胺组装了全有机电池,验证了该复合物作为全有机电池负极材料的可行性。实验结果表明,在锂离子电池中,复合物电极在0.02-3.0V之间充放电,掺杂反应的电位低于+0.6V,容量可达-300mAh g-1.在随后的100周循环过程中,这种材料的可逆容量基本不衰减,即使电流密度增大到近400mA g-1时,仍具有120mAh g-1的比容量,表现出了良好的循环稳定性和大电流充放电性能。组装的全有机电池在3.5-0.5V的电压区间,40mA g-1的电流密度下进行充放电测试,充放电电压平台在~3.0V。以负极材料的活性物质质量为标准,实际扣式电池的放电容量,-250mAh g-10这一结果为后续构建全有机电池提供了经验。4.大多的聚合物链段结构对掺杂离子的选择较为敏感。体积较大的阴离子
     一般掺杂度很低,因此很难实现较高的电化学利用率。为解决这一问题,我们合成了自掺杂聚合物--聚N-(3-丙基磺酸钠)吡咯(PP-PS),探索了这种材料作为钠离子二次电池正极材料的可行性。实验结果表明,该聚合物作为钠离子正极材料使用时,其氧化还原机理是Na+脱-嵌机理。在2.0-4.0V电压区间充放电,这种聚合物电极具有-90mAh g-1的放电比容量,且循环较稳定。这一结果提供了一种通过改变聚合物掺杂离子种类改善电化学容量的方法。
     5.采用同一种聚合物的p-型和n-型氧化还原性质,将其作为正负极材料构建了全有机电池。我们发现,聚对苯((C6H4)。或者PPP)既具有p-掺杂活性又具有n-掺杂活性,同时聚对苯的结构具有高导电率,可能兼具高能量密度和高功率密度。实验结果表明,PPP电极在锂离子电解液中,0-3.0V电压区间充放电,掺杂电位平台低于1.5V,经过十几周循环容量稳定在-600mAh g-1,且在随后的几十周循环过程中无明显衰减;当电流密度增大到1280mA g-1时,仍具有200mAh g-1的比容量,表现出了良好的循环稳定性和大电流充放电性能。同时,PPP电极在3.0-4.6V之间充放电,电压平台在~4.2V,放电容量为80mAh g-1,且循环100周容量无明显衰减,表明该材料可以作为锂离子电池正极材料使用。以PPP组装的全有机电池在1.0-4.0V之间充放电,电压平台为~3.0V且电池经过几十周充放电循环,仍具有~150mAh g-1的容量,证实了基于聚合物的全电池的可行性。
The development of advanced energy storage is the key for effective use of renewable energies. Currently, lithium-ion batteries are considered to be the ideal choice as energy storage devices for next-generation electric vehicles and renewable power stations due to its high energy density. However, it is very difficult to enhance the energy density of Li-ion battery due to the low utilization of the present materials; moreover, the Li-ion battery has intrinsic problems of, cost, safety and natural shortage of lithium resources. Therefore, it is of great importance to develop new battery systems for large scale energy storage. The redox-active polymers seem to be an attractive candidate for such new batteries, because of their advantages of structural diversity, rich resources and environment-friendlyness. In this thesis, we were aimed at exploring new anode and cathode materials for all-organic rechargeable batteries with higher energy storage density, higher power density and better environmental compatibility. The main results and new findings in this work are summarized as follows:
     1. Development of Polytriphenylamine (PTPAn)-based cathode materials for Li-ion batteries. Because of their conductive PPP backbone and electroactive PAn unit, PTPAn and its derivatives have not only superior high power capability but also high energy density. In this work, poly (4-cyano) triphenylamine and poly (4-nitro) triphenylamine bearing electron-drawing groups were chemically synthesized enhance their redox potential of the polymer and specific energy. The experimental results show that the charging and discharging process of the polymer is accomplished by doping-dedoping of the anions. It was found that poly (4-cyano) triphenylamine cathodes display areversible capacity of83mAh g-1at an average discharge voltage of3.9V, with slight capacity decay over hundreds of charge-discharge cycles. And also, this material shows a storng rate capability with55mAh g-1delivered at a very high rate of4C. The poly (4-nitro) triphenylamine cathode displays a redox capacity of70mAh g-1at an average discharge voltage of3.9V, and remains64.3mAh g-1,91.8%of initial capacity, after hundreds of charge-discharge cycles. Even at a rate of320mA g-1, the material can still delivers a capability of50mAh g-1. Overall, these polymers show excellent performance with sufficient cycleability and quit a high-rate capacity, capable to be a low cost and environmentally benign cathode material for next generation of organic batteries.
     2. Development of polymers as lithium storage anode materials. In this thesis, a polybithiophene-carbon (PBT/C) composite was synthesized by ball-milling chemically polymerized polybithiophene with carbon nanofibiers and tested as anode materials for Li-ion and Na-ion batteries. The experimental results show that the charging and discharging process of the polymer is accomplished by doping-dedoping of the cations. It was found that PBT-C composite displays a anodic capacity of~850mAh g-1at two potential plateaus of~2.25V and~1.25V and remains its initial capacity after hundreds of charge-discharge cycles. This material also has a superior high rate capability with280mAh g-1delivered at a very high rate of4C. Overall; the polymer composite showed excellent performance with sufficient cycleability and quit a high-rate capacity. Also, the polymer composite can be cycled in Na+-electrolyte, delivering a reversible capacity of500mAh g-1at a potential plateau of~1.7V, and remained~400mAh g-1after40cycles, exhibiting a considerable cyclability as Na-storage anode material.
     3. In the search for suitable anode material for all-organic rechargeable batteries, we synthesized n-dopable poly (3,4-dihexylthiophene)(PDHT) with longer conjugated, highly regular and coplanar chains by a Ni-catalyzed oxidative coupling reaction and also synthesized a novel polythiophene/carbon composite by in-situ chemically polymerization on carbon nanofibers. Then we tested the n-type redox behavior of PDTH and constructed an all-organic battery to test its possible battery applications as organic anodes. The PDHT-C composite displays a reversible capacity of~300mAh g-1at the potential below0.6V and remains its initial capacity after hundreds of charge-discharge cycles. Even at a very high rate of1280mA g-1this composite can still deliver200mAh g-1, showing a superior high rate capability. In addition, the all-organic PTPAn-PDHT/C cells could be charged and then discharged at~3.0V and can realize a reversible capacity of~250mAh g-1. These results suggest that these polymers may be used to construct sustainable and high efficiency organic batteries, which are greatly needed for electric storage.
     4. Most of the polymer can only deliver a very small capacity when used as a cathode-active material, possibly due to the frustrated doping and dedoping of the larger anions into/from the polymer chains. To solve this problem, we synthetized poly{pyrrole-co-[3-(pyrrol-1-yl) propanesulphonate]}(PP-PS) and examined its p-type redox reversibility of the self-doped polymer as a cathode-active material for Na-ion battery applications. The experimental results show that the charging and discharging process of the polymer is accomplished by doping-dedoping of the Na+It was found that the self-doped PP-PS polymer displays a capacity of90mAh g-1at an average discharge voltage of3.6V and remains its initial capacity after hundreds of charge-discharge cycles, showing a great promise for Na-storage anode material.
     5. An all-organic battery is build up with the same polymer as both cathodic and anodic material. In this thesis, we found that polyparaphenylene (PPP) is an attractive candidate for such new battery systems because of its p-and n-doping properties and a large potential gap between its n-and p-type reactions. Because the polymer molecule has a highly conductive backbone and potentially high redox capacity, it is expected for the polymer to have superior high power capability and high energy density. The experimental results show that PPP can be either p-doped with a reversible redox capacity of80mAh g-1at a high potential>3.9V or n-doped with a huge reversible redox capacity of600mAh g-1at quite low potential<1.5V and all of those can maintain quite steadily during100successive cycles. Such a PPP-based organic battery can work at3.0V with considerably high capacity of150mAh g-1and cycling stability, providing a possible alternative to the widely used, transition metals-based conventional batteries.
引文
[1]林伯强,2011中国能源发展报告,清华大学出版社.2011.
    [2]刘铁男,中国能源发展报告2011,经济科学出版社,2011.
    [3]B. Global. BP statistical review of world energy.2010.
    [4]查全性,化学电源选论,武汉大学出版社,2005.
    [5]王革华,艾德生.新能源概论:化学工业出版社;2006.
    [6]陈凯,史红亮,清洁能源发展研究,上海财经大学出版社有限公司,2009.
    [7]张宇,俞国勤,施明融,杨林青,何维国,卫春,电力储能技术应用前景分析,华东电力,2008;4.
    [8]杨根生,液流电池储能技术的应用与发展,湖南电力,2008;28(3):59-62.
    [9]俞恩科,陈梁金,大规模电力储能技术的特性与比较,浙江电力,2011;12.
    [10]吴宇平,电化学储能系统及其材料,世界科学,2010;(003):36-37.
    [11]P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, Y. Liu, Energy storage systems for advanced power applications, Proceedings of the IEEE,2001; 89(12):1744-1756.
    [12]B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid:A battery of choices, Science,2011; 334(6058):928-935.
    [13]B. Fang, S. Iwasa, Y. Wei, T. Arai, M. Kumagai, A study of the Ce (III)/Ce (IV) redox couple for redox flow battery application, Electrochim. acta,2002; 47(24):3971-3976.
    [14]Y. Liu, X. Xia, H. Liu, Studies on cerium (Ce4+/Ce3+)-vanadium (V2+/V3+) redox flow cell-cyclic voltammogram response of Ce4+/Ce3+redox couple in H2SO4 solution, J. Power Sources,2004; 130(1-2):299-305.
    [15]C. H. Bae, E. Roberts, R. Dryfe, Chromium redox couples for application to redox flow batteries, Electrochim. acta,2002; 48(3):279-287.
    [16]M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery, J. Power Sources,2003; 124(1):299-302.
    [17]T. Yamamura, K. Shirasaki, Y. Shiokawa, Y. Nakamura, S. Y. Kim, Characterization of tetraketone ligands for active materials of all-uranium redox flow battery, J. Alloy. Compd., 2004; 374(1):349-353.
    [18]杨裕生,蔡生民等,简述发展大规模蓄电的液流蓄电池[J],物理,2006;3(3):4.
    [19]Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, Carbon-based supercapacitors produced by activation of graphene, Science,2011; 332(6037):1537-1541.
    [20]J. R. Miller, P. Simon, Electrochemical capacitors for energy management, Science Magazine, 2008; 321(5889):651-652.
    [21]钱江锋,先进储钠电极材料及其电化学储能应用,武汉大学博士论文,2012.
    [22]M. Ceraolo, New dynamical models of lead-acid batteries, Power Systems, IEEE Trans. Power Syst.,2000; 15(4):1184-1190.
    [23]K. E. Aifantis, S. A. Hackney, R. V. Kumar. High Energy Density Lithium Batteries: Materials, Engineering, Applications:Wiley-VCH; 2010.
    [24]C. A. Nogueira, F. Delmas, New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction, Hydrometallurgy,1999; 52(3):267-287.
    [25]T. Sakai, I. Uehara, H. Ishikawa, R&D on metal hydride materials and Ni-MH batteries in Japan, J. Alloy. Compd.,1999; 293:762-769.
    [26]A. Yoshino, The Birth of the Lithium-Ion Battery, Angew. Chem. Int. Ed.,2012; 51(24): 5798-5800.
    [27]K. T. T. Nagaura, Lithium ion rechargeable battery, Prog. Batt. Solar Cells,1990; 9:209.
    [28]M. M. Thackeray, C. Wolverton, E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energ. Environ. Sci.,2012.
    [29]T. Ohzuku, Y. Makimura, Layered lithium insertion material of LiCo 1/3 Ni 1/3 Mn 1/3 O2 for lithium-ion batteries, Chem. Lett.,2001; 30(7):642-643.
    [30]M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. Hackney, Li2MnO3-stabilized LiMO2(M= Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem.,2007; 17(30):3112-3125.
    [31]J. S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney, W. Yoon, C. P. Grey, Electrochemical and Structural Properties of xLi2M'03(1-x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M'=Ti, Mn, Zr; 0≤x≤0.3), Chem. Mater.,2004; 16(10):1996-2006.
    [32]A. Padhi, K. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc.,1997; 144(4):1188-1194.
    [33]Y. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, J. Power Sources, 2003; 114(2):228-236.
    [34]G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries, Adv. Mater.,2007; 19(17):2336-2340.
    [35]H. Kim, J. Cho, Superior lithium electroactive mesoporous Si@ carbon core-shell nanowires for lithium battery anode material, Nano lett.,2008; 8(11):3688-3691.
    [36]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. mater.,2010; 9(4):353-358.
    [37]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide:A high-capacity lithium-ion-storage material, Science,1997; 276(5317):1395-1397.
    [38]Y. Yu, L. Gu, C. Zhu, P. A. van Aken, J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes:Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries, J. Am.Chem. Soc.,2009; 131(44): 15984-15985.
    [39]C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev.,2010; 39(8):3115-3141.
    [40]H. Kim, B. Han, J. Choo, J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angew. Chem.,2008; 120(52): 10305-10308.
    [41]D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, J. M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, J. Mater. Chem.,2007; 17(36):3759-3772.
    [42]R. Yazami, P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, J. Power Sources,1983; 9(3):365-371.
    [43]H. Z. X. H. C. Jiang, C. Wan, Recent Advance of Tin-Based Alloy Anodes for Lithium Ion Batteries, Progress in Chemistry,2006; 18(12):1710-1719.
    [44]V. Palomares, P. Serras,1. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy & Environmental Science,2012; 5(3):5884-5901.
    [45]C. Wadia, P. Albertus, V. Srinivasan, Resource constraints on the battery energy storage potential for grid and transportation applications, J. Power Sources,2011; 196(3):1593-1598.
    [46]B. L. Ellis, W. R. M. Makahnouk, W. Rowan-Weetaluktuk, D. Ryan, L. F. Nazar, Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A= Na, Li; M= Fe, Mn, Co,Ni), Chem. Mater.,2009; 22(3):1059-1070.
    [47]朱文龙,黄万抚,国内外锂矿物资源概况及其选矿工艺综述,现代矿业,2010;(007):1-4.
    [48]艾新平,曹余良,杨汉西,高比能电池新材料与安全性新技术的研究进展Ⅰ.锂离子电池自激发安全保护机制,电化学,2010;16(1).
    [49]肖丽芬,艾新平,曹余良,杨汉西,联苯用作锂离子电池过充安全保护剂的研究,电化学,2003;9(1):23-29.
    [50]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature,2001; 414(6861):359-367.
    [51]A. Bito. Overview of the sodium-sulfur battery for the IEEE Stationary Battery Committee. Power Engineering Society General Meeting,2005. IEEE; 2005:IEEE; 2005. p.1232-1235.
    [52]Z. G. Yang, J. L. Zhang, Micheal C. W. Kintner-Meyer, X. C. Lu, D. W. Choi, J. P. Lemmon, J.Liu, Electrochemical Energy Storage for Green Grid, Chem. Rev.,2011; 111(5):3577-3613.
    [53]X. Lu, J. P. Lemmon, V. Sprenkle, Z. Yang, Sodium-beta alumina batteries:Status and challenges, J. Minerals, Metals and Materials Society,2010; 62(9):31-36.
    [54]X. Lu, G. Coffey, K. Meinhardt, V. Sprenkle, Z. Yang, J. P. Lemmon, High Power Planar Sodium-Nickel Chloride Battery, ECS Transactions,2010; 28(22):7-13.
    [55]P. Novak, K. Muller, K. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries, Chem. Rev.,1997; 97(1):207-282.
    [56]P. Poizot, F. Dolhem, Clean energy new deal for a sustainable world:from non-CO2 generating energy sources to greener electrochemical storage devices, Energ. Environ. Sci., 2011; 4(6):2003-2019.
    [57]H. Nishide, Toward flexible batteries, surfaces,2008; 4:10.
    [58]M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribiere, P. Poizot, J. M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater,2009; 8(2):120-125.
    [59]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene,(CH)x, J. Chem. Soc, Chem. Commun.,1977; (16):578-580.
    [60]Y. C. Liu, K. C. Chung, Characteristics of conductivity-improved polypyrrole films via different procedures, Synth. Met.,2003; 139(2):277-281.
    [61]Y. A. Udum, K. Pekmez, A. Yildiz, Electropolymerization of self-doped polythiophene in acetonitrile containing FSO3H, Synth. Met.,2004; 142(1-3):7-12.
    [62]M. Ahlskog, M. Reghu, T. Noguchi, T. Ohnishi, Doping and conductivity studies on poly(p-phenylene vinylene), Synth. Met.,1997; 89(1):11-15.
    [63]B. D. Yang, K. H. Yoon, K. W. Chung, Effect of TiO2 and SiO2 nanoparticles on the stability of poly(p-phenylene vinylene) precursor. Synthetic Metals,2004; 143(1):25-29.
    [64]X. Wei, A. J. Epstein, Synthesis of highly sulfonated polyaniline, Synth. Met.,1995; 74(2): 123-125.
    [65]K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Rechargeable batteries with organic radical cathodes, Chem. phys. lett.,2002; 359(5):351-354.
    [66]J. Feng, Y. Cao, X. Ai, H. Yang, Polytriphenylamine:A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources,2008:177(1):199-204.
    [67]T. Suga, Y. J. Pu, S. Kasatori, H. Nishide, Cathode-and anode-active poly (nitroxylstyrene) s for rechargeable batteries:p-and n-type redox switching via substituent effects, Macromolecules,2007; 40(9):3167-3173.
    [68]P. Nigrey, A. MacDiarmid, A. Heeger, Electrochemistry of (CH)x:Lightweight rechargeable batteries using (CH)x as the Cathode-and anode-active materials, Mol. Cryst. Liq. Cryst.,1982; 83(1):309-317.
    [69]J. H. Edwards, W. J. Feast, A new synthesis of poly (acetylene), Polymer,1980; 21(6): 595-596.
    [70]P. J. Nigrey, D. MacInnes, D. P. Nairns, A. G. MacDiarmid, A. J. Heeger, Lightweight Rechargeable Storage Batteries Using Polyacetylene,(CH)x as the Cathode-Active Material. J. Electrochem. Soc.,1981; 128(8):1651-1654.
    [71]B. Broich, J. Hocker, Investigation of a rechargeable electrochemical cell with polyacetylene electrodes, Berichte der Bunsengesellschaft fur physikalische Chemie,2010; 88(5):497-503.
    [72]T. Nagatomo. T. Honma, C. Yamamoto, K. Negishi, O. OMOTO, A long-lasting polyacetylene battery with high energy density, Japanese Journal of Applied Physics,1983; 22(5):L275-L277.
    [73]A. MacDiarmid, J. Chiang, A. Richter, A. Epstein, Polyaniline:a new concept in conducting polymers, Synth. Met.,1987; 18(1):285-290.
    [74]A. G. MacDiarmid, A. J. Epstein, Secondary doping in polyaniline. Synth. Met.,1995; 69(1): 85-92.
    [75]G. Tourillon, T. Skotheim, Handbook of conducting polymers, by Ta Skotheim,1986; 1: 293-350.
    [76]E. Genies, P. Hany, C. Santier, A rechargeable battery of the type polyaniline/propylene carbonate-LiCIO 4/Li-Al, J. appl. electrochem.,1988; 18(5):751-756.
    [77]A. MacDiarmid, L. Yang, W. Huang, B. Humphrey, Polyaniline:Electrochemistry and application to rechargeable batteries, Synth. Met.,1987; 18(1):393-398.
    [78]T. Osaka, T. Nakajima, K. Shiota, B. Owens, Office of Naval Research Technical Report 6, Contract; (00014).
    [79]J. Desilvestro, W. Scheifele, O. Haas, In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes Polyaniline in Aqueous and Nonaqueous Electrolytes, J. Electrochem. Soc.,1992; 139(10):2727-2736.
    [80]E. Genies, P. Hany, C. Santier, Secondary organic batteries made with thick free standing films of electrochemical ly prepared polyaniline, Synth. Met.,1989; 28(1):647-654.
    [81]J. W. Loveland, G. R. Dimeler, Anodic Voltammetry to+2.0 Volts. Application to Hydrocarbons and Oxidation Stability Studies, Anal. Chem.,1961; 33(9):1196-1201.
    [82]K. Nishio, M. Fujimoto, N. Yoshinaga, N. Furukawa, O. Ando, H. Ono, T. Suzuki, Characteristics of a lithium secondary battery using chemically-synthesized conductive polymers, J. Power Sources,1991; 34(2):153-160.
    [83]N. Mermilliod, J. Tanguy, F. Petiot, A study of chemically synthesized polypyrrole as electrode material for battery applications, J. Electrochem. Soc.,1986; 133(6):1073-1079.
    [84]H. M. Wu, H. J. Shy, H. W. Ko, Application of chemical synthesized polypyrrole for a rechargeable lithium battery, J. Power Sources,1989; 27(1):59-67.
    [85]P. Novak, O. Inganas, R. Bjorklund, Cycling behaviour of the polypyrrole-polyethylene oxide composite electrode, J. Power Sources,1987; 21(1):17-24.
    [86]P. Novak, O. Inganas, R. Bjorklund, Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries, J, Electrochem. Soc.,1987; 134(6):1341-1345.
    [87]P. Novak, Limitations of polypyrrole synthesis in water and their causes, Electrochim. Acta, 1992; 37(7):1227-1230.
    [88]K. Nishio, M. Fujimoto, O. Ando, H. Ono, T. Murayama, Characteristics of polypyrrole chemically synthesized by various oxidizing reagents, J. appl. electrochem.,1996; 26(4): 425-429.
    [89]S. Rapi, V. Bocchi, G. Gardini. Conducting polypyrrole by chemical synthesis in water, Synth. Met.,1988; 24(3):217-221.
    [90]S. Machida, S. Miyata, A. Techagumpuch, Chemical synthesis of highly electrically conductive polypyrrole, Synth. Met.,1989; 31(3):311-318.
    [91]J. H. Park, J. M. Ko, O. O. Park, D. W. Kim. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber, J. Power Sources,2002; 105(1):20-25.
    [92]K. Naoi, H. Sakai, S. Ogano, T. Osaka, Application of electrochemically formed polypyrrole in lithium secondary batteries:Analysis of anion diffusion process, J. Power Sources,1987; 20(3):237-242.
    [93]P. Novak, B. Rasch, W. Vielstich, Overoxidation of Polypyrrole in Propylene Carbonate An In Situ FTIR Study, J. Electrochem. Soc.,1991; 138(11):3300-3304.
    [94]S. Panero, P. Prosperi, F. Bonino, B. Scrosati, A. Corradini, M. Mastragostino, Characteristics of electrochemically synthesized polymer electrodes in lithium cells-Ⅲ. Polypyrrole, Electrochim. Acta,1987; 32(7):1007-1011.
    [95]F. Trinidad, J. Alonso-Lopez, M. Nebot, Electrochemical behaviour of polypyrrole films as secondary battery electrodes in LiC104-propylene carbonate, J. appl. electrochem.,1987; 17(1): 215-218.
    [96]D. Naegele, R. Bittihn, Electrically conductive polymers as rechargeable battery electrodes, Solid State Ionics,1988; 28:983-989.
    [97]T. Yamamoto, M. Zama, M. Hishinuma, A. Yamamoto, Lithium secondary cells using LiX (X= ClO4, BF4) as electrolyte and poly (2,5-pyrrolylene) and poly (2,5-thienylene) as materials for positive electrodes, J. appl. electrochem.,1987; 17(3):607-612.
    [98]R. C. D. Peres, M. A. De Paoli. S. Panero, B. Scrosati. A new electrode for a poly (pyrrole)-based rechargeable battery, J. Power Sources,1992; 40(3):299-305.
    [99]J. Wang, C. Too, D. Zhou, G. Wallace, Novel electrode substrates for rechargeable lithium/polypyrrole batteries, J. Power Sources,2005; 140(1):162-167.
    [100]S. Panero, E. Spila, B. Scrosati, A New Type of a Rocking-Chair Battery Family Based on a Graphite Anode and a Polymer Cathode, J. Electrochem. Soc.,1996; 143(2):L29-L30.
    [101]T. Shimidzu, A. Ohtani, T. Iyoda, K. Honda, Charge-controllable polypyrrole/polyelectrolyte composite membranes:Part Ⅱ. Effect of incorporated anion size on the electrochemical oxidation-reduction process, J. Electroanal. Chem. and Interfacial Electrochem.,1987; 224(1): 123-135.
    [102]T. Otero, H. Grande, J. Rodriguez, A new model for electrochemical oxidation of polypyrrole under conformational relaxation control, J. Electroanal. Chem.,1995; 394(1): 211-216.
    [103]K. Naoi, M. M. Lien, W. H. Smyrl, Quartz crystal microbalance analysis. I:Evidence of anion or cation insertion into electropolymerized conducting polymers, J. Electroanal. Chem. and Interfacial Electrochem.,1989; 272(1-2):273-275.
    [104]M. Zhou, J. Qian, X. Ai, H. Yang, Redox-Active Fe(CN)64--Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries, Adv. Mater.,2011.
    [105]K. S. Park, S. B. Schougaard, J. B. Goodenough, Conducting-Polymer/Iron-Redox-Couple Composite Cathodes for Lithium Secondary Batteries, Adv. Mater.,2007; 19(6): 848-851.
    [106]J. Roncali, Conjugated poly (thiophenes):synthesis, functionalization, and applications, Chem. Rev.,1992; 92(4):711-738.
    [107]H. Kooreman, H. Wynberg, The chemistry of polythienyls. Part III:The synthesis of terthienyls, Recueil des Travaux Chimiques des Pays-Bas,1967; 86(1):37-55.
    [108]H. Wynberg, J. Metselaar, A convenient route to polythiophenes, Synth. Commun.,1984; 14(1):1-9.
    [109]J. Kagan, S. K. Arora, The synthesis of alpha-thiophene oligomers by oxidative coupling of 2-lithiothiophenes, Heterocycles,1983; 20(10):1937-1940.
    [110]J. Kagan, S. K. Arora, The synthesis of alpha-thiophene oligomers via organoboranes, Tetrahedron Lett.,1983; 24(38):4043-4046.
    [111]H. S. Nalwa, Chemical synthesis of processible electrically conducting poly (3 dodecylthiophene), Die Angewandte Makromolekulare Chemie,2003; 188(1):105-111.
    [112]T. Yamamoto, A. Morita, T. Maruyama, Z. Zhou, T. Kanbara, K. Sanechika, New method for the preparation of poly (2,5-thienylene), poly (p-phenylene), and related polymers, Polymer, 1990; 22(2):187-190.
    [113]T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z. H. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki, K. Kubota, Preparation of π-conjugated poly (thiophene-2, 5-diyl), poly (p-phenylene), and related polymers using zerovalent nickel complexes. Linear structure and properties of the π-conjugated polymers, Macromolecules,1992; 25(4): 1214-1223.
    [114]M. Ueda, T. Abe, H. Awano, Synthesis of poly (2,5-dialkoxyphenylene), Macromolecules, 1992; 25(20):5125-5130.
    [115]R. Cloutier, M. Leclerc, Poly (3,3'-dibutoxy-2,2'-bithiophene):a new highly conjugated polythiophene derivative, J. Chem. Soc. Chem. commun.,1991; (17):1194-1195.
    [116]S. Tanaka, M. Sato, K. Kaeriyama, Electrochemical preparation and properties of poly (3-methoxy-2,5-thiophenediyl) and poly (3-methylthio-2,5-thiophenediyl), Synth. Met.,1988; 25(3):277-288.
    [117]K. Faid, R. Cloutier, M. Leclerc, Design of novel electroactive polybithiophene derivatives, Macromolecules.1993; 26(10):2501-2507.
    [118]M. Gallazzi, L. Castellani, R. Marin, G. Zerbi, Regiodefined substituted poly (2,5-thienylene) s, J. Polymer Science Part A:Polymer Chemistry,1993; 31(13):3339-3349.
    [119]G. Daoust, M. Leclerc. Structure-property relationships in alkoxy-substituted polythiophenes, Macromolecules,1991; 24(2):455-459.
    [120]M. Leclerc, G. Daoust, Design of new conducting 3,4-disubstituted polythiophenes, J. Chem. Soc., Chem. Commun.,1990; (3):273-274.
    [121]G. Tourillon, F. Gamier, New electrochemically generated organic conducting polymers, J. Electroanal. Chem. and Interfacial Electrochem.,1982; 135(1):173-178.
    [122]K. Kaneto, K. Yoshino, Y. Inuishi, Characteristics of electro-optic device using conducting polymers, polythiophene and polypyrrole films, Japanese Journal of Applied Physics,1983; 22(7):L412-L414.
    [123]J. Kaufman, T. C. Chung, A. Heeger, F. Wudl, Poly (thiophene):a stable polymer cathode material, J. Electrochem. Soc.,1984; 131(9):2092-2093.
    [124]A. Corradini, M. Mastragostino, A. Panero, P. Prosperi, B. Scrosati, Electrochemical stability of electrosynthesized heterocyclic semiconducting polymers as cathode-active materials in advanced batteries, Synth. Met.,1987; 18(1):625-630.
    [125]M. Mastragostino, A. Marinangeli, A. Corradini, C. Arbizzani, Polythienothiophene as cathode active material. A comparative study with polythiophene and polydithienothiophene, Electrochim. acta,1987; 32(11):1589-1593.
    [126]K. S. Ryu, Y. Lee, K.-S. Han, M. G. Kim, The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Mater. Chem. Phy.,2004; 84(2-3):380-384.
    [127]G. Kim, F. Basarir, T. H. Yoon, Synthesis and characterization of poly (triphenylamine) s with electron-withdrawing trifluoromethyl side groups for emissive and hole-transporting layer. Synth. Met.,2011; 161(19):2092-2096.
    [128]I. K. Yakushchenko. M. G. Kaplunov, O. N. Efimov. M. Y. Belov, S. N. Shamaev, Polytriphenylamine derivatives as materials for hole transporting layers in electroluminescent devices:Conduction and transport mechanisms in organic materials:preparation, characterisation and application, PCCP. Phys. chem. chem. phy.,1999; 1(8):1783-1785.
    [129]A. Petr, C. Kvarnstrom, L. Dunsch, A. Ivaska, Electrochemical synthesis of electroactive polytriphenylamine, Synth. Met.,2000; 108(3):245-247.
    [130]C. Takahashi, S. Moriya, N. Fugono, H. C. Lee, H. Sato, Preparation and characterization of poly(4-alkyltriphenylamine) by chemical oxidative polymerization, Synth. Met.,2002; 129(2): 123-128.
    [131]K. Koshika, N. Sano, K. Oyaizu, H. Nishide, An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte, Chem. Commun.,2009; (7):836-838.
    [132]K. Koshika, N. Sano. K. Oyaizu, H. Nishide, An Aqueous, Electrolyte-Type, Rechargeable Device Utilizing a Hydrophilic Radical Polymer-Cathode, Macromolecular Chem. Phys., 2009; 210(22):1989-1995.
    [133]K. Oyaizu, T. Suga. K. Yoshimura, H. Nishide, Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries, Macromolecules,2008; 41(18):6646-6652.
    [134]T. Suga, K. Yoshimura, H. Nishide. Nitroxide-Substituted Polyether as a New Material for Batteries. Macromolecular Symposia; 2006:Wiley Online Library; 2006. p.416-422.
    [135]J. Qu, T. Katsumata. M. Satoh, J. Wada. J. Igarashi, K. Mizoguchi, T. Masuda, Synthesis and Charge/Discharge Properties of Polyacetylenes Carrying 2,2,6,6-Tetramethyl-1 piperidinoxy Radicals, Chemistry-A European Journal,2007; 13(28):7965-7973.
    [136]T. Katsumata, M. Satoh, J. Wada, M. Shiotsuki, F. Sanda, T. Masuda, Polyacetylene and polynorbornene derivatives carrying TEMPO. Synthesis and properties as organic radical battery materials, Macromol. Rapid Commun.,2006; 27(15):1206-1211.
    [137]T. Katsumata, J. Qu, M. Shiotsuki, M. Satoh, J. Wada, J. Igarashi, K. Mizoguchi. T. Masuda. Synthesis, characterization, and charge/discharge properties of polynorbornenes carrying 2,2,6, 6-tetramethylpiperidine-l-oxy radicals at high density, Macromolecules,2008; 41(4): 1175-1183.
    [138]A. Rudge, I. Raistrick, S. Gottesfeld, J. P. Ferraris, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochim. Acta,1994; 39(2):273-287.
    [139]V. Krylov, N. Konoshchuk, V. Pokhodenko, Influence of the Electrolyte Nature on the Electrochemical Synthesis and Doping of Poly-3-Phenylthiophene, Russian J. Electrochem., 1993; 29(10):1013-1016.
    [140]T. Johansson, M. Svensson, M. R. Andersson, O. Inganas, Electrochemical bandgaps of substituted polythiophenes, J. Mater. Chem.,2003; 13(6):1316-1323.
    [141]S. C. Ng, P. Miao, Electrochemical syntheses and doping properties of poly (3, 3'-dialkylsulfanyl-2,2'-bithiophene) s:novel materials which exhibit facile n-and p-dopability, Chem. Commun.,1998; (1):153-154.
    [142]M. Tabata, M. Satoh, K. Kaneto, K. Yoshino, Electrochemical n-type doping of poly (p-phenylene) film, J. Phy. C:Solid State Physics,2000; 19(5):L101.
    [143]L. Shacklette, R. Elsenbaumer, R. Baughman, J. de Physique, Coll, C3,1983; 44:559.
    [144]M. Dubois, A. Naji, D. Billaud, Electrochemical insertion of alkaline ions into polyparaphenylene:effect of the crystalline structure of the host material, Electrochim. Acta, 2001; 46(28):4301-4307.
    [145]T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Emerging N-Type Redox-Active Radical Polymer for a Totally Organic Polymer-Based Rechargeable Battery, Adv. Mat.,2009; 21(16):1627-1630.
    [146]G. Farrington, B. Scrosati, D. Frydrych, J. DeNuzzio, The electrochemical oxidation of polyacetylene and its battery applications, J. Electrochem. Soc.,1984; 131(1):7-12.
    [147]A. Mohammadi, O. Inganas, I. Lundstrom, Properties of Polypyrrole-Electrolyte-Polypyrrole Cells, J. Electrochem. Soc.,1986; 133(5):947-949.
    [148]J. Lee, L. Ong, G. Chuah, Rechargeable thin film batteries of polypyrrole and polyaniline, J. appl. electrochem.,1992; 22(8):738-742.
    [149]T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, p-and n-Type Bipolar Redox-Active Radical Polymer:Toward Totally Organic Polymer-Based Rechargeable Devices with Variable Configuration, Adv. Mat.,2011; 23(6):751-754.
    [150]K. Oyaizu, Y. Ando, H. Konishi, H. Nishide, Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes, J. Am. Chem. Soc.,2008; 130(44): 14459-14461.
    [1]T. Ohzuku, Y. Makimura, Layered lithium insertion material of LiCo1/3 Ni1/3 Mn1/3 O2 for lithium-ion batteries, Chem. Lett.,2001; 30(7):642-643.
    [2]M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. Hackney, Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem.,2007; 17(30):3112-3125.
    [3]J. S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney, W. Yoon, C. P. Grey, Electrochemical and Structural Properties of xLi2M'O3 (1-x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M'= Ti, Mn, Zr; 0≤x≤0.3), Chem. Mater.,2004; 16(10):1996-2006.
    [4]艾新平,杨汉西,高比能电池新材料与安全性新技术研究进展Ⅱ.基于多电子反应的高能量密度电极材料,电化学,2010;16(03):239-243.
    [5]X. P. Gao, H. X. Yang, Multi-electron reaction materials for high energy density batteries, Energ. Environ. Sci.,2010; 3(2):174-189.
    [6]M. Armand, J. M. Tarascon, Building better batteries, Nature,2008; 451(7179):652-657.
    [7]A. Padhi, K. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc.,1997; 144(4):1188-1194.
    [8]J. Feng, Y. Cao, X. Ai, H. Yang, Polytriphenylamine:A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources,2008; 177(1):199-204.
    [9]I. K. Yakushchenko, M. G. Kaplunov, O. N. Efimov, M. Y. Belov, S. N. Shamaev, Polytriphenylamine derivatives as materials for hole transporting layers in electroluminescent devices:Conduction and transport mechanisms in organic materials:preparation, characterisation and application, PCCP. Phys. chem. chem. phys.,1999; 1(8):1783-1785.
    [10]A. Petr, C. Kvarnstrom, L. Dunsch, A. Ivaska, Electrochemical synthesis of electroactive polytriphenylamine, Synth. Met.,2000; 108(3):245-247.
    [11]G. Kim, F. Basarir, T. H. Yoon, Synthesis and characterization of poly (triphenylamine) s with electron-withdrawing trifluoromethyl side groups for emissive and hole-transporting layer, Synth. Met.,2011; 161(19):2092-2096.
    [12]C. Takahashi, S. Moriya, N. Fugono, H. C. Lee, H. Sato, Preparation and characterization of poly(4-alkyltriphenylamine) by chemical oxidative polymerization, Synth. Met.,2002; 129(2): 123-128.
    [13]H. Lin, G. S. Liou, Poly (triphenylamine) s derived from oxidative coupling reaction: Substituent effects on the polymerization, electrochemical, and electro-optical properties, Journal of Polymer Science Part A:Polymer Chemistry,2009; 47(1):285-294.
    [14]T. H. Su, S. H. Hsiao, G. S. Liou, Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties, Journal of Polymer Science Part A:Polymer Chemistry,2005; 43(10):2085-2098.
    [15]M. Thackeray, J. Vaughey, C. Johnson, A. Kropf, R. Benedek, L. Fransson, K. Edstrom, Structural considerations of intermetallic electrodes for lithium batteries, J. Power Sources, 2003; 113(1):124-130.
    [16]C. Lambert, G. Noll, The class Ⅱ/Ⅲ transition in triarylamine redox systems, J. Am. Chem. Soc.,1999; 121(37):8434-8442.
    [17]C. Lambert, G. Noll, Intervalence charge-transfer bands in triphenylamine-based polymers, Synth. Met.,2003; 139(1):57-62.
    [18]M. Malagoli, J. Bredas, Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules, Chem. phys. lett.,2000; 327(1):13-17.
    [1]Y. Wu, E. Rahm. R. Holze. Carbon anode materials for lithium ion batteries, J. Power Sources, 2003; 114(2):228-236.
    [2]Y. S. Cohen, Y. Cohen, D. Aurbach, Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy, J. Phys. Chem. B,2000; 104(51):12282-12291.
    [3]D. Aurbach. E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics,2002; 148(3-4):405-416.
    [4]G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries, Adv. Mater.,2007; 19(17):2336-2340.
    [5]H. Kim, J. Cho, Superior lithium electroactive mesoporous Si@ carbon core-shell nanowires for lithium battery anode material, Nano lett.,2008; 8(11):3688-3691.
    [6]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater.,2010; 9(4):353-358.
    [7]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide:A high-capacity lithium-ion-storage material, Science,1997; 276(5317):1395-1397.
    [8]Y. Yu, L. Gu, C. Zhu, P. A. van Aken, J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes:Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries, J. Am. Chem. Soc.,2009; 131(44): 15984-15985.
    [9]C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev.,2010; 39(8):3115-3141.
    [10]H. Kim, B. Han, J. Choo, J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angew. Chem.,2008; 120(52): 10305-10308.
    [11]D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, J. M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, J. Mater. Chem.,2007; 17(36):3759-3772.
    [12]R. Yazami, P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, J. Power Sources,1983; 9(3):365-371.
    [13]J. Besenhard, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries, J. Power Sources,1997; 68(1):87-90.
    [14]M. Winter, J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta,1999; 45(1):31-50.
    [15]M. Obrovac, L. Christensen, D. B. Le, J. Dahn, Alloy design for lithium-ion battery anodes, J. Electrochem. Soc.,2007; 154(9):A849-A855.
    [16]M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering:R:Reports,2001; 33(4):109-134.
    [17]M. Noel, V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes, J. Power Sources,2002; 111(2):193-209.
    [18]B. Guo, X. Wang, P. F. Fulvio, M. Chi, S. M. Mahurin, X. G. Sun, S. Dai, Soft-Templated Mesoporous Carbon-Carbon Nanotube Composites for High Performance Lithium-ion Batteries, Adv. Mater.,2011; 23(40):4661-4666.
    [19]T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, p-and n-Type Bipolar Redox-Active Radical Polymer:Toward Totally Organic Polymer-Based Rechargeable Devices with Variable Configuration, Adv. Mater.,2011; 23(6):751-754.
    [20]K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Rechargeable batteries with organic radical cathodes, Chem. phys. lett.,2002; 359(5):351-354.
    [21]J. K. Feng, Y. L. Cao, X. P. Ai, H. X. Yang, Polytriphenylamine:A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources,2008; 177(1): 199-204.
    [22]Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene, Energ. Environ. Sci..2012; 5(1): 5221-5225.
    [23]T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Emerging N-Type Redox-Active Radical Polymer for a Totally Organic Polymer-Based Rechargeable Battery, Adv. Mater., 2009; 21(16):1627-1630.
    [24]K. Oyaizu, A. Hatemata, W. Choi, H. Nishide, Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials:expanding the functional horizon of polyimides. J. Mater. Chem.,2010; 20(26):5404-5410.
    [25]M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribiere, P. Poizot, J. M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries, Nat. Mater.,2009; 8(2):120-125.
    [26]T. Johansson. M. Svensson, M. R. Andersson, O. Inganas, Electrochemical bandgaps of substituted polythiophenes, J. Mater. Chem.,2003; 13(6):1316-1323.
    [27]K. Kaneto, Y. Kohno, K. Yoshino, Y. Inuishi, Electrochemical preparation of a metallic polythiophene film, J. Chem. Soc., Chem. Commun.,1983; (7):382-383.
    [28]J. Kaufman, T. C. Chung, A. Heeger, F. Wudl, Poly (thiophene):a stable polymer cathode material, J. Electrochem. Soc.,1984; 131(9):2092-2093.
    [29]O. A. Semenikhin, E. V. Ovs.yannikova, N. M. Alpatova, Z. A. Rotenberg, V. E. Kazarinov, Symmetric photoelectrochemical behaviour of anion-and cation-doped polybithiophene. Mendeleev Communications,1997; 7(4):147-148.
    [30]1. F. Perepichka, D. F. Perepichka, H. Meng, F. Wudl, Light-Emitting Polythiophenes, Adv. Mater.,2005; 17(19):2281-2305.
    [31]V. Krylov, N. Konoshchuk, V. Pokhodenko, Influence of the Electrolyte Nature on the Electrochemical Synthesis and Doping of Poly-3-Phenylthiophene, Russian J. Electrochem., 1993; 29(10):1013-1016.
    [32]S. C. Ng, P. Miao, Electrochemical syntheses and doping properties of poly (3, 3'-dialkylsulfanyl-2,2'-bithiophene) s:novel materials which exhibit facile n-and p-dopability, Chem. Commun.,1998; (1):153-154.
    [33]Y. Li, Z. Li, C. Wang, H. Li, H. Lu, B. Xu, W. Tian, Novel low-bandgap oligothiophene-based donor-acceptor alternating conjugated copolymers:Synthesis, properties, and photovoltaic applications, J. Polymer Sci. Part A:Polymer Chem.2010; 48(13):2765-2776.
    [34]M. Thackeray, J. Vaughey, C. Johnson, A. Kropf, R. Benedek, L. Fransson, K. Edstrom, Structural considerations of intermetallic electrodes for lithium batteries, J. Power Sources, 2003; 113(1):124-130.
    [35]Z. Zhang, F. Wang, F. e. Chen, G. Shi, Preparation of polythiophene coated gold nanoparticles. Mater. Lett.,2006; 60(8):1039-1042.
    [36]G. Tourillon, F. Gamier, New electrochemically generated organic conducting polymers, J. Electroanal. Chem.. Interfacial Electrochem..1982; 135(1):173-178.
    [37]K. Nishio, M. Fujimoto, N. Yoshinaga, N. Furukawa, O. Ando, H. Ono. T. Suzuki, Characteristics of a lithium secondary battery using chemically-synthesized conductive polymers, J. Power Sources,1991; 34(2):153-160.
    [38]K. S. Ryu, Y. Lee, K.-S. Han, M. G. Kim, The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Mater. Chem. Phys.,2004; 84(2):380-384.
    [1]N. Armaroli, V. Balzani, Towards an electricity-powered world, Energ. Environ. Sci.,2011; 4(9):3193-3222.
    [2]V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries:a review, Energ. Environ. Sci.,2011; 4(9):3243-3262.
    [3]B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energ. Environ. Sci.,2011; 4(9):3287-3295.
    [4]P. Novak, O. Haas, K. Santhanam, K. Mueller, Electrochemically active polymers for rechargeable batteries, Chem. Rev.,1997; 97(1).
    [5]J. Feng, Y. Cao, X. Ai, H. Yang, Polytriphenylamine:A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources,2008; 177(1):199-204.
    [6]T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, p-and n-Type Bipolar Redox-Active Radical Polymer:Toward Totally Organic Polymer-Based Rechargeable Devices with Variable Configuration, Adv. Mater.,2011; 23(6):751-754.
    [7]K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Rechargeable batteries with organic radical cathodes, Chem. phys. lett.,2002; 359(5):351-354.
    [8]M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribiere, P. Poizot, J. M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries, Nat. mater.,2009; 8(2):120-125.
    [9]T. Johansson, M. Svensson, M. R. Andersson, O. Inganas, Electrochemical bandgaps of substituted polythiophenes, J. Mater. Chem.,2003; 13(6):1316-1323.
    [10]K. Oyaizu, A. Hatemata, W. Choi, H. Nishide, Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials:expanding the functional horizon of polyimides, J. Mater. Chem.,2010; 20(26):5404-5410.
    [11]T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Emerging N-Type Redox-Active Radical Polymer for a Totally Organic Polymer-Based Rechargeable Battery, Adv. Mater., 2009; 21(16):1627-1630.
    [12]T. Suga, Y. J. Pu, S. Kasatori, H. Nishide, Cathode-and anode-active poly (nitroxylstyrene) s for rechargeable batteries:p-and n-type redox switching via substituent effects, Macromolecules,2007; 40(9):3167-3173.
    [13]M. D. Levi, A. S. Fisyuk. R. Demadrille. E. Markevich, Y. Gofer, D. Aurbach. A. Pron, Unusually high stability of a poly (alkylquaterthiophene-alt-oxadiazole) conjugated copolymer in its n and p-doped states, Chem. Commun.,2006; (31):3299-3301.
    [14]M. Levi, R. Demadrille, E. Markevich, Y. Gofer, A. Pron, D. Aurbach, Unusually stable and highly electrochemically reversible n-doping of regioregular alternate copolymer of dialkylthiophene and fluorenone, Electrochem. Commun.,2006; 8(6):993-998.
    [15]F. Demanze, A. Yassar, F. Garnier, Alternating donor-acceptor substitutions in conjugated polythiophenes, Macromolecules,1996; 29(12):4267-4273.
    [16]E. Naudin, N. El Mehdi, C. Soucy, L. Breau, D. Belanger, Poly (3-arylthiophenes):Syntheses of monomers and spectroscopic and electrochemical characterization of the corresponding polymers, Chem. Mater.,2001; 13(2):634-642.
    [17]A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, Polythiophene-based supercapacitors, J. Power Sources,1999; 80(1):142-148.
    [18]S. Gunes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev.-Columbus,2007; 107(4):1324-1338.
    [19]I. Gur, N. A. Fromer, C.-P. Chen, A. G. Kanaras, A. P. Alivisatos, Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals, Nano lett.,2007; 7(2):409-414.
    [20]B. Kippelen, J.-L. Bredas, Organic photovoltaics, Energ. Environ. Sci.,2009; 2(3):251-261.
    [21]J. M. Lee, J. S. Park, S. H. Lee, H. Kim, S. Yoo, S. O. Kim, Selective Electron-or Hole-Transport Enhancement in Bulk-Heterojunction Organic Solar Cells with N-or B-Doped Carbon Nanotubes, Adv. Mater.,2011; 23(5):629-633.
    [22]G. Tourillon, F. Garnier, New electrochemically generated organic conducting polymers, J. Electroanal. Chem. Interfacial Electrochem.,1982; 135(1):173-178.
    [23]K. Nishio, M. Fujimoto, N. Yoshinaga, N. Furukawa, O. Ando, H. Ono, T. Suzuki, Characteristics of a lithium secondary battery using chemically-synthesized conductive polymers, J. Sources,1991; 34(2):153-160.
    [24]K. S. Ryu, Y. Lee, K.-S. Han, M. G. Kim, The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Mater. Chem. Phys.,2004; 84(2):380-384.
    [25]K. Kaneto, K. Yoshino, Y. Inuishi, Electrical properties of conducting polymer, poly-thiophene, prepared by electrochemical polymerization, Japanese J. Appl. Phys.,1982; 21: L567-L568.
    [26]K. Kaneto, Y. Kohno, K. Yoshino, Y. Inuishi, Electrochemical preparation of a metallic polythiophene film, J.Chem. Soc, Chem. Commun.,1983; (7):382-383.
    [27]J. Kaufman, T. C. Chung, A. Heeger, F. Wudl, Poly (thiophene):a stable polymer cathode material, J. Electrochem. Soc.,1984; 131(9):2092-2093.
    [28]M.-a. Sato, S. Tanaka, K. Kaeriyama, Soluble conducting polythiophenes, J. Chem. Soc, Chem. Commun.,1986; (11):873-874.
    [29]J. Roncali, Conjugated poly (thiophenes):synthesis, functionalization, and applications, Chem. Rev.,1992; 92(4):711-738.
    [30]M. Leclerc, G. Daoust, Design of new conducting 3,4-disubstituted polythiophenes, J. Chem. Soc., Chem. Commun.,1990; (3):273-274.
    [1]B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid:A battery of choices, Science,2011; 334(6058):928-935.
    [2]V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energ. Environ. Sci.,2012; 5(3):5884-5901.
    [3]X. P. Gao, H. X. Yang, Multi-electron reaction materials for high energy density batteries, Energ. Environ. Sci.,2010; 3(2):174-189.
    [4]A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascon, M. R. Palacin, In search of an optimized electrolyte for Na-ion batteries, Energ. Environ. Sci.,2012.
    [5]M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Sodium-Ion Batteries, Adv. Funct. Mater.,2012.
    [6]K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici, M. Antonietti, J. Maier, Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries, Adv. Energ. Mater., 2012.
    [7]B. Ellis, W. Makahnouk, Y. Makimura, K. Toghill, L. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nat. Mater.,2007; 6(10):749-753.
    [8]J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang, Nanosized Na4Fe (CN) 6/C Composite as a Low Cost and High-Rate Cathode Material for Sodium-Ion Batteries, Adv. Energ. Mater.,2012, 4(2),410-414.
    [9]H. X. Yang, J. Qian, Y. Chen, L. Wu, Y. Cao, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chem. Commun.,2012,48,7070-7072.
    [10]Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang, J. Liu, Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life, Adv. Mater.,2011; 23(28):3155-3160.
    [11]D. Kim, S. H. Kang, M. Slater, S. Rood, J. T. Vaughey, N. Karan, M. Balasubramanian, C. S. Johnson, Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes, Adv. Energ. Mater.,2011; 1(3):333-336.
    [12]M. M. Doeff, T. J. Richardson, J. Hollingsworth, C.-W. Yuan, M. Gonzales, Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure, J. Power Sources,2002; 112(1):294-297.
    [13]R. Zhao, L. Zhu, Y. Cao, X. Ai, H. X. Yang, An Aniline-Nitroaniline Copolymer as a High Capacity Cathode for Na-ion Batteries, Electrochem. Commun.,2012,21,36-38.
    [14]L. Zhu, Y. Niu, Y. Cao, A. Lei, X. Ai, H. Yang, n-Type Redox Behaviors of Polybithiophene and Its Implications for Anodic Li and Na Storage Materials, Electrochim. acta,2012,78, 27-31.
    [15]L. Zhu, W. Shi, R. Zhao, Y. Cao, X. Ai, A. Lei, H. Yang, n-Dopable Polythiophenes as High Capacity Anode Materials for All-Organic Li-ion Batteries, J. Electroanal. Chem.,2012,688, 118-122.
    [16]H. X. Yang, M. Zhou, L. min Zhu, Fe (CN)6-4-doped Polypyrrole:A High Capacity and High Rate Cathode Material for Sodium-ion Batteries, RSC Advances,2012,2,5495-5498.
    [17]P. Novak, W. Vielstich, Performance of the Low-Current-Density-Synthesized Polypyrrole in Lithium Cells Containing Propylene Carbonate, J. Electrochem. Soc.,1990; 137(6):1681-1689.
    [18]T. Osaka, T. Momma, K. Nishimura, S. Kakuda, T. Ishii, Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system, J. Electrochem. Soc.,1994; 141(8).
    [19]C. Chenthamarakshan, A. Ajayaghosh, Synthesis and properties of water-soluble squaraine oligomers containing pendant propanesulfonate moieties, Chem. Mater.,1998; 10(6): 1657-1663.
    [1]B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid:A Battery of Choices, Science,2011; 334(6058):928-935.
    [2]X. P. Gao, H. X. Yang, Multi-electron reaction materials for high energy density batteries, Energ. Environ. Sci., 2010; 3(2):174-189.
    [3]M. Armand, J. M. Tarascon, Building better batteries, Nature,2008; 451(7179):652-657.
    [4]Y. Liang, Z. Tao, J. Chen, Organic Electrode Materials for Rechargeable Lithium Batteries, Adv. Energ. Mater.,2012.
    [5]P. Novak, O. Haas, K. Santhanam, K. Mueller, Electrochemically active polymers for rechargeable batteries, Chem. Rev.,1997; 97(1).
    [6]T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, p-and n-Type Bipolar Redox-Active Radical Polymer:Toward Totally Organic Polymer-Based Rechargeable Devices with Variable Configuration, Adv. Mater.,2011; 23(6):751-754.
    [7]M. Tabata, M. Satoh, K. Kaneto, K. Yoshino, Electrochemical n-type doping of poly (p-phenylene) film, J. Phys. C:Solid State Phys.,2000; 19(5):L101.
    [8]M. Dubois, A. Naji, D. Billaud, Electrochemical insertion of alkaline ions into polyparaphenylene:effect of the crystalline structure of the host material, Electrochim. Acta, 2001; 46(28):4301-4307.
    [9]P. Kovacic, A. Kyriakis, Polymerization of benzene to p-polyphenyl by aluminum chloride-cupric chloride, J. Am. Chem. Soc.,1963; 85(4):454-458.
    [10]J. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science,1995; 270(5236):590-593.
    [11]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons, Science,1994; 264(5158):556.
    [12]T. Zheng, Y. Liu, E. Fuller, S. Tseng, U. Von Sacken, J. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc.,1995; 142:2581.
    [13]T. Zheng, W. McKinnon, J. Dahn, Hysteresis during Lithium Insertion in Hydrogen-Containing Carbons, J. Electrochem. Soc.,1996; 143(7):2137-2145.
    [14]G. Sandi, R. E. Winans, K. A. Carrado, New carbon electrodes for secondary lithium batteries, J. Electrochem. Soc.,1996; 143(5):L95-L98.
    [15]M. Thackeray, J. Vaughey, C. Johnson, A. Kropf, R. Benedek, L. Fransson, K. Edstrom, Structural considerations of intermetallic electrodes for lithium batteries, J. Power Sources, 2003; 113(1):124-130.
    [16]C. Marvel, G. E. Hartzell, Preparation and Aromatization of Poly-1,3-cyclohexadienel, J. Am. Chem. Soc.,1959; 81(2):448-452.
    [17]P. Kovacic, J. Oziomek, p-Polyphenyl from Benzene Lewis Acid Catalyst Oxidant. Reaction Scope and Investigation of the Benzene Aluminum Chloride Cupric Chloride Systeml, J.Org. Chem.,1964; 29(1):100-104.
    [18]S. Aeiyach, P. Soubiran, P. Lacaze, G. Froyer, Y. Pelous, A new method for obtaining polyparaphenylene films by electrochemical oxidation of (Benzene-SbF5) π-complexes in SO2 medium, Synth. Met.,1989; 32(1):103-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700