用户名: 密码: 验证码:
优化方法在直线加速器设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线加速器产生的束流具有平均流强高、亮度高的特点,但是由于束流只能单次通过一个加速结构,且常温加速腔的功耗很大,在获得高能量时,直线加速器就变得造价昂贵,因此常温直线加速器一般能量较低、运行在脉冲模式、用作同步加速器的注入器。但是随着放射性束物理、高通量散裂中子源、加速器驱动的系统(ADS)、高能量密度物理、基本粒子物理等研究领域强烈需求的推动,以及超导射频技术的高速发展,使得高能、强流、高占空比的直线加速器得到大力的发展,如已建成的SNS、Linac2、ISAC-I、ISAC-II、CEBAF;正在建设中的Spiral2、IFMIF、ESS、FRIB、C-ADS、MYRRHA、Linac4;规划中的ILC、MEIC、 X-ADS、Project X等。一般来说,直线加速器的造价与加速器的长度以及束流孔径直接相关,通过优化加速结构、提升束流品质可以显著减少工程造价,因此对直线加速器进行优化设计是一个很有必要的研究课题。
     经过调研了优化方法在加速器设计和运行领域的应用情况,目前加速器领域的优化研究工作大都集中在同步加速器的lattice优化上,而对于直线加速器的优化工作仅仅局限于局部的传输段的束流匹配。因此该论文工作研究的重点在于直线加速器的全局优化设计和方法,这是直线加速器领域中一项全新的工作。
     优化问题的三个要素包括优化目标、优化算法和优化变量。而直线加速器的优化问题是多变量、多目标问题。论文利用DAKOTA优化包和LINREV设计程序结合的方法,通过对SSC-linac注入器DTL加速段和APF型直线加速器的优化设计,研究分析了直线加速器优化问题中优化目标、优化算法和优化变量对最后优化结果的影响。SSC-linac注入器DTL加速段的优化目标是高的传输效率、低的发射度增长;APF直线加速器的优化目标为满足大的横纵向接受度和具有更大的加速效率。研究结果表明:对于多变量、多目标的直线加速器优化问题,简单依靠数学算法很难得到合理的、稳定的全局优化结果,而且耗时长;必须根据物理需求选择合适的优化目标,并基于物理设计原则对优化变量进行降维处理,以物理设计思想为指导,制定科学的优化策略才能得到全局更优的设计结果,并大幅降收敛到最优变量的迭代次数。
     作者在上述研究工作基础上针对直线加速器这个具体的优化问题,提出了以周期相移平滑度作为优化目标,辅助其他的束流参数,利用公式参数法进行优化变量的降维,协作开发了优化设计软件LinacOpt。它采用具有空间电荷效应的线性矩阵模型;在优化目标的选取上,LinacOpt可以输出更符合直线加速器设计原则的物理变量,如发射度增长、传输效率、接受度、加速能量、周期相移平滑度等;优化方法采用智能优化算法粒子群算法;优化变量的处理采用基于直线加速器设计原则的优化参数降维方法,从而保证了自动优化设计的实现。
     论文就LinacOpt的动力学模拟和优化设计分别与Trace Win和DAKOTA进行了校验。其动力学模拟的误差在简化模型的范围内。作者采用相同的物理模型利用LinacOpt进行APF直线加速器的设计,相对于以前DAKOTA和LINREV结合的方法,在保证相同加速能量和横向发射度接近的情况下,纵向发射度减小了50%,并且迭代次数减小了一个量级。校验的结果表明LinacOpt的设计和模拟的结果是可靠的,并且具备了直线加速器设计、束流品质优化、束流参数匹配等功能。
     论文最后,作者使用LinacOpt进行了C-ADS直线加速器注入器Ⅱ的lattice自动优化设计,结果相比手工优化横纵向发射度增长都有所下降,尤其纵向发射度减少了60%左右,进一步验证了作者提出来的直线加速器全局优化设计理念和优化参数降维方法的可行性和正确性。
     作者在学期间主要完成的工作:
     1、利用DAKOTA优化软件和LINERV软件结合进行SSC-linac和APF-linac的优化设计。
     2、协作开发自己的程序linacOpt,利用智能优化算法和直线加速器设计原则相结合实现直线加速器的设计优化。
     3、利用LinacOpt软件进行ADS注入器Ⅱ的自动优化设计中,取得了很好的结果。
Linear accelerator has become a research hotspot in the accelerator field due to its advantage of high flow, high brightness. While for the one-pass acceleration and high RF power dissipation of room temperature structure, the cost of linac become very high when it is used in high energy field. So room temperature linac is usually operated at low energy, low duty factor injector for synchrotron accelerator. Linear accelerator has been required strongly in the fields, such as radioactive ion beam physics, high flux spallation neutron source, Accelerator driven system (ADS), high energy density physics, and fundamental physics. There are many linear acceleration projects all over the world. The running projects include SNS, Linac2, ISAC-I, ISAC-II, CEBAF, the being constructed ones are Spiral2, IFMIF, ESS, FRIB, C-ADS, MYRRHA, Linac4. There are also some planning projects, such as ILC, MEIC, X-ADS. In general, the cost of linac has direct relation with the length of accelerator and the aperture of acceleration structure. The project budget can be reduced by lattice optimization and improvement. For the situation, the optimization design of linear accelerator becomes a very necessary research topic.
     After the investigation of optimization application in the accelerator field, it is found that for present the optimization problems in the accelerator field are mostly concentrating on lattice of electron synchrotron accelerators. While for the ion linear accelerator optimizations, there are just mating cases in the beam transport line, so the thesis concentrates on the global optimization design of the ion linear accelerator lattice.
     The main elements of optimization problem are optimization objective function, optimization algorithm and optimization variables. The author applied the method of combination of DAKOTA optimization software and LINREV linac optics design code to do the design of SSC-linac and APF-linac. Through the work of the design optimization o, we studyed the effect on the optimization results by the optimization objective functions, optimization algorithm and optimization variables. The optimization problems in linac are mostly multi-variables, multi-objective problems. In the design of DTL section of SSC-linac, the optimization objective functions are low emittance growth, high transmission. The results shown that the optimization objective functions should be chosen based on physics goal not just mathematic number, and the optimization method should be global intelligent optimization algorithm. In the design of APF-linac, the goals are large acceptance and high acceleration efficiency. From this work, we find that the dimensionality reduction of optimization variables can induce better results. In summary, in the linac optimization problems, simple mathematic optimization will time consuming work and the results are usually not so good. So the linear accelerator optimization should study the three optimization elements and be guided by the physics design principle.
     Based on the above study, the author proposed his own design optimization method, using smoothness of periodic phase advance as optimization objective, adding other beam parameters to get stable and reliable solution; for the optimization variables, parametric method is used to realize dimensionality reduction of optimization variables. We developed our own design optimization code LinacOpt, which adopts linear matrix mode including space charge effect. LinacOpt can output the optimization goals such as emittance growth, transmission, acceptance, acceleration energy, smoothness of periodic phase advance; the code use particle swarm optimization algorithms to realized the optimization function; for the optimization variables, parametric method is used to realize dimensionality reduction of optimization variables based on the physics rules is adopted to guarantee the automatically lattice design.
     The code is used to design the APF-linac, compared with the previous method, the results shown that with the same acceleration energy and smaller transverse emittance growth, the longitudinal emittance growth reduce50%, and the iteration number reduce by an order of magnitude. The results prove that the design and optimization function is reliable. The code has the linac lattice optimization design, beam quality optimization, beam parameters matching function.
     At the end of thesis, the LinacOpt is used to do the lattice optimization design of the Injector II of ADS linac. The results showed that the emittances reduced in both directions. Especially in longitudinal direction, the emittance reduces by60%. The work proves the feasibility and veracity of the global optimization idea and method of dimensionality reduction of optimization variables in further. Major work done during the study period:
     1. Completion of SSC-linac and APF-linac optimized design DAKOTA with optimization software combined with LINERV software.
     2. Collaborative-development of our own program LinacOpt, using intelligent optimization algorithms combined to linear accelerator design principles to achieve linear accelerator design optimization.
     3. Using LinacOpt code to design the ADS Injector II automatically, the results are very good.
引文
[1]王书鸿,罗紫华,罗应雄,质子直线加速器原理,原子能出版社,1986年7月.
    [2]R.C.York, X.Wu, Q.Zhao et al, Proceedings of HB2010,Morschach, Switzerland,319-323,2010. http://accelconf.web.cem.ch/accelconf/HB2010/papers/ tuolb05.pdf.
    [3]A.Mosnier, P.YBeauvais, B.Branas et al, Proceeding of IPAC10, Kyoto, Japan,588-590,2010. http://accelconf.web.cern.ch/accelconf/IPAC 10/papers/mopec056.pdf.
    [4]SPeggs. S.Bousson, R.Calaga et al, Proceedings of Linear Accelerator Conference LINAC2010, Tsukuba, Japan,367-371,2010. http://cern.ch/AccelConf/LINAC2010/papers/tu203.pdf
    [5]Yoshi Yamazaki. The J-PARC Linac, XXII International Linear Accelerator Conference, Luebeck, Germany,2004. http://accelconf.web.cern.ch/accelconf/104/TALKS/TH101_TALK.PDF.
    [6]Arnaudon, L, Baudrenghien, P, Bertone, C et al,2nd International Particle Accelerator Conference, San Sebastian, Spain,4-9 Sep 2011, pp.TUOAA03
    [7]N.Holtkamp, STATUS OF THE SNS LINAC:AN OVERVIEW, Proceedings of LINAC 2004, Lubeck, Germany:1-5,2004.
    [8]Z.H. Li, F. Yan, J.Y. Tang et al, BEAM DYNAMICS OF CHINA-ADS LINAC,HB2012,Beijing,China. http://jacow.ihep.ac.cn/pls/hb2012/THO3A02.PDF
    [9]R L Kustom. An Overview of the Spallation Neutron Source Project. Proc. of LINAC 2000, California, USA (2000), p.321.
    [10]J. Mammosser, Sang-ho Kim,J. Galambos, M. Stockli,LSNS power upgrade plan, http://indico.cern.cn/getFile.py/access?contribId=4&sessionId=0&resId=0&materialId=slid es&confld=82809.
    [11]Y.Yamazaki, Y.Mori,M.mizumoto et al, Hign-intensity proton accelerators for the JAERI/KEK joint project, Proc.7th European Particle Accelerator Coonf, Vienna, Austria,p.286-288,2000.
    [12]M. Eshraqi, H. Danared,ESS LINAC, DESIGN AND BEAM DYNAMICS, Proceedings of IPAC2011, San Sebastian, Spain,2637-2639.
    [13]P. A. P. Nghiem, N. Chauvin, O. Delferriere et al, PARAMETER DESIGN AND BEAM DYNAMICS SIMULATIONS FOR THE IFMIF-EVEDA ACCELERATORS, Proceedings of LINAC08, Victoria, BC, Canada,245-247.
    [14]R. C. York, X. Wu, Q. Zhao, M. Doleans, F. Marti, E. Pozdeyev BEAM DYNAMICS IN THE FRIB LINAC,HB2010,319-323.
    [15]R. Assmann, P. Raimondi, G. Roy et al, A METHOD FOR SIMULTANEOUS OPTIMISATION OF ORBIT ANDDISPERSION IN STORAGE RINGS. Proceedings of EPAC 2000, Vienna, Austria,1461-1464.
    [16]M. Borland, L. Emery, V. Sajaev et al, APPLICATION OF DIRECT METHODS OF OPTIMIZING STORAGE RING DYNAMIC AND MOMENTUM APERTURES, Proceedings of ICAP09, San Francisco, CA,255-258.
    [17]L. Yang, D. Robin, F. Sannibale et al, APPLICATION OF MULTIOBJECTIVE GENETIC ALGORITHM IN ACCELERATOR PHYSICS, Proceedings of ICAP09, San Francisco, CA,255-258.251-255.
    [18]C.S. Hwang, Shuting Yeh, C.H. Chang et al, FIELD OPTIMIZATION ALGORITHM FOR VARIOUS VARIABLY POLARIZATION UNDULATOR WITH CHANGING PHASE, Sixth European Particle Accelerator Conference, Stockholm, Sweden,1998,2222-2224.
    [19]L. Emery, GLOBAL OPTIMIZATION OF DAMPING RING DESIGNS USING A MULTI-OBJECTTVE EVOLUTIONARY ALGORITHM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee,2962-2964.
    20. H. Bartosik, Y. Papaphilippou, LINEAR AND NON-LINEAR OPTIMIZATION OF THE PS2 NEGATIVE MOMENTUM COMPACTION LATTICE, Proceedings of HB2010, Morschach, Switzerland,67-71.
    [21]Lingyun Yang, David Robin, Fernando Sannibale et al, MULTIOBJECTIVE LIGHT SOURCE LATTICE OPTIMIZATION, Proceedings of PAC09, Vancouver, BC, Canada.3365-3367.
    [22]B. Mustapha,P. N. Ostroumov, OPTIMIZATION ALGORITHMS FOR ACCELERATOR PHYSICS PROBLEMS, Proceedings of ICAP09, San Francisco, CA,245-250.
    [23]J. Takano, M. Okamura, OPTIMIZATION OF AGS POLARIZED PROTON OPERATION WITH THE WARM HELICAL SNAKE, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee,1003-1005.
    [24]Yu. A. Svistunov, SOLVING OF THE FIELD PROBLEM IN CASE OF CHARGED PARTICLE DYNAMICS OPTIMIZATION, Proceedings of RuPAC XIX, Dubna 2004,228-230.
    [25]V. Sajaev, M. Borland, L. Emery et al, MULTI-OBJECTIVE OPTIMIZATION OF A LATTICE FOR POTENTIAL UPGRADE OF THE ADVANCED PHOTON SOURCE, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA,2354-2356.
    [26]L. Yang, D. Robin, F. Sannibale et al, GLOBAL OPTIMIZATION OF THE MAGNETIC LATTICE USING GENETIC ALGORITHMS, Proceedings of EPAC08, Genoa, Italy,3050-3052.
    [27]H. Bartosik, W. Bartmann, M. Benedikt et al, LINEAR OPTIMIZATION AND TUNABILITY OF THE PS2 LATTICE, Proceedings of IPAC'10, Kyoto, Japan,4560-4562.
    [28]Y. Wa n g, M. Borland, V. Sajaev et al, EXPLORATION OF PARALLEL OPTIMIZATION TECHNIQUES FOR ACCELERATOR DESIGN, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA,787-789.
    [29]C. Sun, D. Robin, H. Nishimura et al, DYNAMIC APERTURE OPTIMIZATION USING GENETIC ALGORITHMS, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA,793-795.
    [30]P. Kowina,W. Kaufmann, J. Scholles et al, OPTIMISATION OF THE LINEAR-CUT BEAM POSITION MONITORS BASED ON FINITE ELEMENT METHODS, Proceedings of DIPAC 2007, Venice, Italy,96-98.
    [31]Nian Chen, Duohui He, Ge Li, MULTI-OBJECTIVE OPTIMIZATION FOR PURE PERMANENT MAGNET UNDULATOR MAGNETS ORDERING USING MODIFIED SIMULATED ANNEALING, Proceedings of the 2004 FEL Conference,490-493.
    [32]C. Johnstone, V. Kashikhin, ADVANCED SIMULATION AND OPTIMIZATION TOOLS FOR YNAMIC APERTURE OF NON-SCALING FFAGS AND RELATED ACCELERATORS INCLUDING MODERN USER INTERFACES, Proceedings of PAC09, Vancouver, BC, Canada,1907-1909.
    [33]L. Yang,Y.Li,W.Guo et al, MULTIOBJECTIVE DYNAMIC APERTURE OPTIMIZATION AT NSLS-Ⅱ, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA,1597-1599.
    [34]L. Yang, TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS
    OPTIMIZATION, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA,1600-1602.
    [35]Zhenghe Bai, Lin Wang, Weimin Li, EMITTANCE OPTIMIZATION USING PARTICLE SWARM ALGORITHM, Proceedings of IPAC2011, San Sebastian, Spain,2271-2273.
    [36]E. Levichev, P. Piminov, ALGORITHM FOR CHROMATIC SEXTUPOLE OPTIMIZATION AND DYNAMIC APERTURE INCREASE, Proceedings of EPAC 2006, Edinburgh, Scotland,2116-2118.
    [37]Min-Huey Wang, Y. Cai, Y. Nosochkov, OPTIMIZATION OF DYNAMIC APERTURE OF PEP-X BASELINE DESIGN, Proceedings of IPAC'10, Kyoto, Japan,3437-3439.
    [38]G.H.Gillespie,O.V.Voronkova,G.B.Coutrakon et al, Proceedings of EPAC 2004, Lucerne, Switzerland,2191-2193.
    [39]彭军CSNS漂移管直线加速器的物理设计和研究.[博士论文].北京,中国科学院高能物理研究所.2008.
    [40]陈佳洱,方家驯,李国树,加速器物理基础,原子能出版社,1993年6月.
    [41]Thomas P. Wangler, RF Linear Accelerators, Second, Completely Revised and Enlarged Edition, WILEY-VCH Verlag GmbH & CoKGaA, Weinheim,2008.
    [42]吕建钦,带电粒子束光学,高等教育出版社,2004.
    [43]王建,迟学斌,谷同祥,浅谈最优化方法的发展及其优化软件.
    [44]何坚勇,最优化方法,清华大学出版社,2007.
    [45]袁亚湘,孙文瑜,最优化理论与方法,北京:科学出版社,1997.
    [46]郭科,陈聆,魏友华,最优化方法以及应用,高等教育出版社,2007.
    [47]王小平、曹立明,遗传算法——理论、应用与软件实现,西安交通大学出版社,2002.
    [48]杨维,李歧强,粒子群优化算法综述,中国工程科学,Vol.16 No.15:97-94,2004.05.
    [49]He Y, Wang Z J, Xiao C 2011 Conceptual Design of Linear Injector For SSC Of HIRFL Proc. IPAC2011 (San Sebastian:Spain) p 2610-2612
    [50]Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis, Version 5.2 User's Manual,2012. http://dakota.sandia.gov/index.html.
    [51]O. Kamigaito,M. Kase,N. Sakamoto etl,Construction of a booster linac for the RIKEN heavy-ion linac, REVIEW OF SCIENTIFIC INSTRUMENTS 76,2005,013306.
    [52]F.G. Garaschenko, V.V. Kushin, S.V. Plotnikov et al,"Optimal regimes of heavy-ion acceleration in a linear accelerator with asymmetric variable-phase focusing", Zh. Tekh. Fiz. 52,460-464.
    [53]Y. Iwata, S. Yamada, T. Murakami et al, NIM A 567 (2006) p.685-696.
    [54]Y.Iwata,T.Furukawa,T.Kanai,et al,BEAM DYNAMICS OF ALTERNATING-PHASE-FOCUSED LINACS FOR MEDICAL ACCELERATORS, Proceedings of APAC 2004, Gyeongju, Korea,p:423-425
    [55]J. J. More", B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne,Ill.,1980.
    [56]P.N. Ostroumov, J.-P. Carneiro, Physics design of front-ends for superconducting ions linacs, Proceedings of the Advanced Beam Dynamics Workshop on High-Intensity,High-Brightness Hadron Beams, Nashville, Tennessee,2008.
    [57]J-P. Carneiro, B.Mustapha,P.N Ostroumov, Beam physics of 8-GeV H-linac, Nuclear Instruments and Methods in Physics Research A 271-280,2009.1178-1181.
    [58]Martin Reiser, Theory and Design of Charged Parcle Beam 2nd, Wiley, New York.2008.
    [59]D. Uriot, TraceWindocumentation, http://irfu.cea.fr/Sacm/logiciels/index3.php.2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700