用户名: 密码: 验证码:
叶尖小翼控制压气机叶顶间隙流动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶顶间隙流动对压气机性能和稳定性都有着极其重要影响,如何通过合理控制叶顶间隙流动,调控叶尖各旋涡之间的相互作用,对于提高燃气轮机的气动性能和稳定性有着重要意义。近年来,叶尖小翼技术在叶轮机械领域也受到广泛关注,对其作用机理进行详细深入的研究,可以为提高叶尖小翼技术在实际压气机中应用的可靠性、有效性及广延性奠定基础。
     本文采用实验测量并结合数值模拟,针对叶尖小翼控制压气机矩形叶栅和压气机转子间隙流动进行研究,揭示了叶尖小翼对压气机叶栅和转子气动性能的影响规律。通过改变间隙尺寸、来流冲角及小翼几何形状,研究了以上诸因素对叶尖小翼控制间隙泄漏效果的影响。
     本文第一部分首先实验研究了叶尖泄漏与压气机叶栅三维角区分离之间的相互作用机制,而后研究了近零冲角和不同负冲角条件下不同安装方式叶尖小翼对叶栅间隙流场的影响。结果表明适当大小的叶顶间隙引入的泄漏流阻止了端壁二次流动与叶片吸力面附面层之间的相互作用,消除了三维角区分离,改善了叶栅性能。吸力面小翼使得泄漏涡涡核更靠近叶栅流道中部,上通道涡受泄漏涡的挤压作用迁移至相邻叶片压力面侧,叶顶泄漏涡、上通道涡及集中脱落涡之间的相互作用减弱。压力面小翼使得叶尖泄漏流切向动量减弱,泄漏涡涡核向叶片吸力面/端壁角区侧迁移。泄漏涡对上通道涡的抑制作用减弱,上通道涡的作用范围扩大。组合小翼方案中存在着吸力面小翼和压力面小翼的双重作用,受其叶顶较宽及带来的附加摩阻较大的影响,在大负冲角时叶片端壁/吸力面角区处泄漏涡造成的高损失显著降低,近端壁区气流欠偏转程度减弱。
     第二部分实验研究了带不同宽度叶尖小翼叶栅的变间隙特性和变冲角特性。结果表明,小间隙时不同宽度叶尖小翼均使得叶栅损失增加,中等间隙和大间隙时不同宽度的吸力面小翼均使得泄漏涡强度减弱且作用范围减小,通道涡更靠近相邻叶片压力面且作用范围缩小,叶栅总损失降低。最大宽度的压力面小翼降低了50%-80%叶高的叶片尾迹区损失,叶栅总损失较其他叶栅为最低,但会使得叶栅出口气流角沿展向分布的不均匀性增强。在较大的正冲角条件下不同宽度的叶尖小翼仅弱化了间隙中后部的泄漏流强度,减少了其对泄漏涡的补充作用。
     第三部分首先利用数值模拟方法研究了融合式叶尖小翼对叶栅间隙流场的影响,结果表明不同安装方式的融合式叶尖小翼都可以有效降低叶顶泄漏流速,削弱泄漏涡强度,叶尖小翼改变了叶尖负荷及泄漏涡运行轨迹,进而影响了叶尖流场各涡系之间的相互作用。其次研究了端壁相对运动对叶栅间隙流动的影响,发现端壁相对运动时叶栅通道内出现刮削泄漏涡,上通道涡及叶顶分离涡受到抑制,叶尖负荷增大,间隙泄漏流量增加。接着探讨了融合式叶尖小翼对压气机低速孤立转子气动性能的影响,融合式吸力面小翼使得转子中泄漏涡轨迹更远离叶片吸力而,减弱了其对叶片吸力面附而层的卷吸吸作用,导致叶片吸力面附面层分离程度加剧。压力面小翼使得泄漏涡轨迹更靠近叶片吸力面,抑制了转子叶片吸力面的附面层分离,可以在效率略有降低的情况下有效拓宽压气机转子的流量范围。接着针对某跨音压气机级详细分析了影响其失速稳定性的关键因素,压气机级在设计转速工作时,动叶中激波/叶尖泄漏涡相互作用产产的阻塞区和附面层径向涡引发的附面层分离阻塞区及它们所导致的下游静叶附面层分离是影响压气机级失速的关键因索。最后研究了融合式叶尖小翼对跨音速压气机转子动性能的影响,发现吸力面小翼使得泄漏涡较早地与通道激波作用并发生破裂,造成叶片通道上游压力面侧形成的低速区范围较原型动叶显著增大,诱发跨音速转子较早失速。压力面小翼方案中,通道激波位置较原型更远离叶片前缘,同时受从转子前缘叶尖发出的泄漏流强度减弱的影响,泄漏涡与通道激波作用后产生的阻塞区缩小,推迟了跨音转子失速的发生。
     第四部分详细介绍了跨音速压气机级试验系统的组成,设计了带叶尖小翼的压气机级试验件,给出了跨音速压气机级常规性能的测量方案及数据处理方法设计了三维PIV可视化流场测量方案,为下一步开展带叶尖小翼的的跨音速压气机级试验验证奠定了基础。
It is well known that tip clearance flow is detrimental to the pressure rise capability, stability and efficiency of the compressor. To improve the performance and reliability of gas turbine, it is important for the researchers to understand how to control the tip clearance flow and corporate the interaction of the vortices. Recently, blade tip winglet controlling gap flow technique has also been concerned in the field of turbomachinery. In order to enhance the reliability, validity and universality of tip winglet technique application, it is necessary to investigate the action effect of winglet and its mechanism.
     In this paper, a detailed experimental and numerical study was conducted to investigate the influences of blade tip winglet on tip clearance flow control in compressor cascade and rotors, and reveal the mechanism of the winglets. Results for a variation of the tip clearance size, incidence and winglet geometry are presented.
     First of all, detailed experimental investigations were carried out to uncover the interaction of the tip clearance flow with three-dimensional separation in the corner region of a compressor cascade and the influences of three different winglet geometries, suction side winglet, pressure side winglet and double-side winglet. The results show that the three-dimensional separation on the blade suction surface is largely removed by the clearance flow for a proper tip clearance size and the aerodynamic performance of the cascade is improved. For the suction side winglet case, the tip leakage vortex is shift toward the core of the passage and pushes the passage vortex near the tip toward the pressure side of the adjacent blade, the strength of the interaction between tip leakage, passage vortex and concentrated shed vortex is reduced. For the pressure side winglet case, the tangential momentum of tip leakage flow is reduced; the pressure side winglet manages to displace the tip leakage vortex to the left, or toward the tip/outer casing corner of the suction side. For the double side winglet case with a high ratio of blade thickness to tip clearance height, the strength of tip leakage flow is reduced clearly due to more friction resistance between the blade tip and the endwall, and the flow undergoes a less underturning near the easing.
     Extensive traverse measurements were made of the three dimensional flows in a low speed linear cascade with tip winglet of different widths for various tip clearance si- zes and for various cascade inlet flow angles. It is found that the winglets increase aerodynamic loss of the cascade for small tip gap height. For middle and large tip clearance sizes, the suction side winglets reduce loss in the tip leakage vortex region and passage vortex region. The pressure side winglet with the largest width can reduce the aerodynamic loss of the wake in50%-80%span region noticeably. At large incidence conditions, the winglets can only reduce the strength of the rear part tip clearance flow.
     A numerical study was conducted to explore the effects of three different blended tip winglet geometries on tip clearance flow field of compressor cascade. The current results show that a significant tip leakage velocity and strength of tip leakage vortex reduction is possible by using blended winglet. The blade loading near the tip and the tip leakage vortex trajectories are changed by the tip winglets, thus the interaction between passage vortex and tip leakage vortex is also changed. The effect of endwall movement on the3D flow field in a compressor cascade with different tip clearances was studied; the simulation results show that when relative movement of endwall exists, the scrapped tip leakage vortex appearing in the cascade passage will move toward the pressure surface of adjacent blade; both the upper passage vortex and tip separation vortex are to be inhibited; the load near the tip region will rise which may result in tip leakage mass flow rate increased. Two types of blended tip winglet were investigated to control tip clearance flow in an isolated axial compressor rotor. The suction side blended tip winglet shifts the tip vortex trajectory toward the pressure side of adjacent blade, which results in the corner separation on the suction surface becoming seriously. For the pressure side winglet case, the presence of a tip leakage vortex near the suction surface induces spanwise flow towards the blade tip and helps to wash away the corner separation zone on the blade surface, and this type of winglet is found to increase the compressor rotor stall margin with a little loss in efficiency.3D numerical simulation was conducted for a single transonic compressor Stage37. It is found that the low energy zones due to breakdown of the tip leakage vortex, radial vortex and corner separation of the stator are the factors leading to flow instability at design speed. Based on an improved understanding of compressor rotor tip leakage flow development from CFD simulations, two kinds of blended tip winglet have been designed for a transonic compressor rotor and numerical simulation of three dimensional flows in the rotor were carried out to verify the designed winglet. For the case with suction-side winglet, the breakdown of the tip leakage vortex occurs due to the interaction of shock/tip leakage vortex appeared early than datum rotor, thus leading to more low energy fluid accumulated near the pressure side of the rotor tip passage. For the pressure-side winglet case, the passage choke caused by fluid of low energy and tip leakage flow can be improved, thus the compressor rotor surge point can be effectively delayed.
     In order to carry out the experimental study of the stage aerodynamic performances of the original and redesigned transonic compressors in the next step, the structure of the compressor test rig was introduced firstly, and the single transonic compressor stage with tip winglet was design. The traditional average flow field measurements and instantaneous velocity measurements obtained with3D-PIV will make it a powerful technique to understand the flow field occurring within compressor with winglet.
引文
[1]牛利民.船舶燃气轮机结构.哈尔滨:哈尔滨船舶工程学院出版社,1992.
    [2]堀桂明.海军-燃气轮机重要的市场.燃气轮机技术,1993,6(2):7-14.
    [3]张慧.燃机应用于商船的现状和展望.热能动力工程,1996,11(2):101-104.
    [4]思娟.燃用重油运行的GT35燃气轮机.热能动力工程,2002(3):299.
    [5]刘柱.孟凡立.船舶喷水推进技术发展.航海技术,2004(4):42-44.
    [6]朱哲仁.LNG船推进系统的研究与展望:(硕十学位论文).大连:大连海事大学,2005.
    [7]刘振坤.蔡睿贤院十谈我国燃气轮机的发展.燃气轮机技术,2001,14(2):1.
    [8]Vavra M H. Aero-Thermodynamics and Flow in Turbomachines. New York:Wiley Pr.,1969.
    [9]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1995.
    [10]陈懋章.压气机气动力学发展的一些问题.航空学报,1985,6(5):405-410.
    [11]Wisler D C. Advanced Compressor and Fan Systems. Cincinnati:GE Aircraft Fngine Business Group,1988.
    [12]Wisler D C. Aerodynamic Effects of Tip Clearance, Shrouds, Leakage Flow, Casing Treatment and Trenching in Compressor Design. Von Karman Institute Lecture Series 1985-05,1985.
    [13]Smith L H. The Effect of Tip Clearance on the Peak Pressure Rise of Axial-Flow Fans and Compressors. ASME Symposium on Stall.1958.
    [14]吴艳辉,楚武利,张皓光.轴流压气机失速初始扰动的研究进展.力学进展,2008,38(5):571-584.
    [15]杜鹃.跨音压气机/风扇转子叶顶泄漏流动的丰定常机制研究:(博士学论文).北京:中国科学院研究生院,2010.
    [16]程朝青,崔健,李志平,等.一种改进的压气机叶尖泄漏流堵塞预估模型及数值验证.航空动力学报,2011,26(5):1104-1110.
    [17]Rains D A. Tip Clearance Flows in Axial Compressor and Pumps, (dissertation).Pasadena:California Institute of Technology,1954.
    [18]Lakshminarayana B B, llorlock J H. Tip-Clearance Row and Losses for an Isolated Compressor Blade. British ARC R&M 3316,1963.
    [19]Lakshminarayana B B, llorlock J H. Leakage and Second Flows in Compressor Cascades. British ARC R&M 3483,1967.
    [20]Lakshminarayana B B. Method for Predieting the Tip Clearance Effects in Axial Flow Turbomachinery. ASME Journal of Basic Engineering,1970,92:467-482.
    [21]Chen G T, Gretizer E M, Tan C S et al. Similarity Analysis of Compressor Tip Clearance Flow Structure. ASME Journal of Turbomachinery,1991,113:260-269.
    [22]Chen G T. Vortical Structures in Turbomachinery Tip Clearance Flows. (dissertation). Boston:Massachusetts Institute of Technology,1991.
    [23]Denton J D. Loss Mechanisms in Turbomachinery. ASME Paper,93-GT-435,1993.
    [24]Storer J A, Cumpsty N A. An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors. ASME Journal of Turbomachinery,1994,116:648-656.
    [25]Storer J A, Cumpsty N A. Tip Leakage Flow in Axial Compressors. ASME Journal of Turbomachinery,1991,113:252-259.
    [26]周正贵,吴国钏,阮立群.采用平面叶栅模拟压气机动叶叶尖间隙流.航空学报,2002,23(1):69-71.
    [27]Inoue M, Kuroumaru M, Fukuhara M. Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor. ASME Journal of Engineering for Gas Turbine and Power,1986, 108:7-14.
    [28]Kang S, Hirsch C. Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅱ-The Tip Leakage Vortex. ASME Journal of Turbomachinery,1993,115:444-450.
    [29]邵卫卫,季路成,程荣辉,等.叶尖泄漏掺混损失影响因素分析.航空动力学报,2007,22(10):1722-1729.
    [30]Storer J A. Tip Clearance Flow in Axial Compressor.(dissertation). Cambridge: University of Cambridge,1991.
    [31]Kang S, Hirsch C. Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅰ-Velocity and Pressure Fields. ASME Journal of Turbomachinery,1993,115:435-443.
    [32]Kang S, Hirsch C. Tip Leakage Flow in Linear Compressor Cascade. ASME Journal of Turbomachinery,1994,116:657-664.
    [33]Lee G H, Park J, Baek J. Performance Assessment of Turbulence Models for the Quantitative Prediction of Tip Leakage Flow in Turbomachines. ASME Paper, GT2004-53403,2004.
    [34]Borello D, Rispoli F. Prediction of Tip-Leakage Flow in Axial Flow Compressor with Second Moment Closure. ASME Paper, GT2006-90535,2006.
    [35]Gbadebo S, Cumpsty N A, Hynes T P. Interaction of Tip Clearance Flow and Three-Dimensional Separation in Axial Compressor. ASME Journal of Turbomachinery, 2007,129:679-685.
    [36]Williams R, Gregory-Smith D, He L et al. A Study of Large Tip Clearance Flows in an Axial Compressor Blade Row. ASME Paper, GT2006-90463,2006.
    [37]Williams R, Gregory-Smith D, He L et al. Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade. ASME Journal of Turbomachinery,2010, 132:021018
    [38]Will iams R, Ingram G, Gregory-Smith D. Large Tip Clearance Flows in Two Compressor Cascades. ASME Paper, GT2010-22952,2010.
    [39]Muthanna C. The Effects of Free Stream Turbulence on the Flow Field through a Compressor Cascade. (dissertation).Blacksburg:Virginia Polytechnic Institute and State University,2002.
    [40]Tang G. Measurements of the Tip-Gap Turbulent Flow Structure in a Low-Speed Compressor Cascade. (dissertation).Blacksburg:Virginia Polytechnic Institute and State University,2004.
    [41]Tang G, Simpson R L, Tian Q. Experimental Study of Tip-Gap Turbulent Flow Structure. ASME Paper, GT2006-90359,2006.
    [42]Mailach R, Sauer H, Vogeler K. The Periodical Interaction of The Tip Clearance Flow in the Blade Rows of Axial Compressors. ASME Paper, GT2001-0299,2001.
    [43]Bae J. Active Control of Tip Clearance Flow in Ax ial Compressors,(dissertation). Boston:Massachusetts Institute of Technology,2001.
    [44]李成勤.低速轴流压气机平面叶栅叶顶泄漏流动的研究:(博士学位论文).北京:中国科学院研究生院,2011.
    [45]Schrapp H, Stark U, Saathoff H. Breakdown of the Tip Clearance Vortex in a Rotor Equivalent Cascade and in a Single-Stage Low-Speed Compressor. ASME Paper, GT2008-50195,2008.
    [46]Schrapp H, Stark U, Saathoff H. Unsteady Behaviour of the Tip Clearance Vortex in a Rotor Equivalent Compressor Cascade. Proc. IMechE Part A:J. Power and Energy, 2009,223:635-643.
    [47]马宏伟,蒋浩康.扩压叶栅端壁区旋涡流动显示研究.航空动力学报,1997,12(3)258-262.
    [48]杨策,马朝臣,王延生,等.透平机械叶尖间隙流场研究的进展.力学进展,2001,31(1):70-83.
    [49]吴艳辉,楚武利,刘志伟.移动壁对压气机叶栅间隙流动的影响.航空动力学报,2006,21(1):112-118.
    [50]Kang S, Hirsch C. Numerical Simulation of Three-Dimensional Viscous Flow in a Linear Compressor With Tip Clearance. ASME Journal of Turbomachinery,1996, 118:492-502.
    [51]Peter L J. Influence of a Moving Endwall on the Tip Clearance Vortex in an Axial Compressor Cascade. (dissertation) Ohio:Air Force Institute of Technology,1995.
    [52]Yaras M I, Sjolander S A. Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades:Part Ⅰ-Tip Gap Flow. ASME Journal of Turbomachinery,1992, 114:652-659.
    [53]Yaras M I, Sjolander S A. Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades:Part Ⅱ-Downstream Flow and Blade Loading. ASME Journal of Turbomachinery,1992,114:660-667.
    [54]Mcmullan R J. Influence of Tip Clearance on the Flow Field in a Compressor Cascade with a moving endwall. (dissertation) Ohio:Air Force Institute of Technology,1996.
    [55]韩少冰,钟兢军,严红明.端壁相对运动对压气机叶栅间隙流场影响的数值研究.动力工程学报,2011,34(4):257-262.
    [56]周正贵.模拟叶尖间隙流的转动平面叶栅实验方案.南京航空航天大学学报,2002,34(2):182-185.
    [57]Kato H, Taniguchi H, Matsuda K et al. Experimental and Numerical Investigation on Compressor Cascade Flows with Tip Clearance at a Low Reynolds Number Condition. Journal of Thermal Science,2011,20:481-485.
    [58]Ma R. Unsteady Turbulence Interaction in a Tip Leakage Flow Downstream of a Simulated Axial Compressor Rotor, (dissertation).Blacksburg:Virginia Polytechnic Institute and State University,2003.
    [59]Staubs J K. Correlation between Unsteady Loading and Tip Gap Flow Occurring in a Linear Cascade wi th Simulated Stator-Rotor Interaction.(dissertation). Blacksburg: Virginia Polytechnic Institute and State University,2005.
    [60]Intaratep N. Formation and Development of the Tip Leakage Vortex in a Simulated Axial Compressor with Unsteady Inflow. (dissertation).Blacksburg:Virginia Polytechnic Institute and State University,2006.
    [61]You D, Wang M, Mittal R et al. Study of Rotor Tip-Clearance Flow Using Large-Eddy Simulation. AIAA 2003-0838,2003.
    [62]You D, Mittal R, Wang M et al. Computational Methodology for Large-Eddy Simulation of Tip-Clearance Flows. AIAA Journal,2004,42:271-279.
    [63]You D, Wang M, Moin P et al. Effect of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade. Physics of Fluids,2006,18:105102.
    [64]You D, Wang M, Moin P et al. Vortex Dynamics and Low-Pressure Fluctuations in the Tip-Clearance Flow. ASME Journal of Fluids Engineering,2007,129:1002-1014.
    [65]You 1), Wang M, Moin P et al. Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow. J. Fluid Mech.,2007, 586:177-204.
    [66]Ufer H. Analysis of the Velocity Distribution at the Blade Tips of Axial Flow Compressors. NASA TT F-16366,1975.
    [67]Pandya A, Lakshminarayana B. Investigation of the Tip Clearance Flow Inside and at the Exit of a Compressor Rotor Passage-Part I:Mean Velocity Field. ASME Journal of Engineering for Power,1983,105:1-12.
    [68]Pandya A, Lakshminarayana B. Investigation of the Tip Clearance Flow Inside and at the Exit of a Compressor Rotor Passage-Part Ⅱ:Turbulence Properties. ASME Journal of Engineering for Power,1983,105:13-17.
    [69]Lakshminarayana B, Pandya A. Tip Clearance Flow in a Compressor Rotor Passage at Design and Off-Design Conditions. ASME Journal of Engineering for Gas Turbines and Power,1984,106:570-577.
    [70]Lakshminarayana B, Sitaram N, Zhang J. End-Wall and Profile Losses in a Low-Speed Axial Flow Compressor Rotor. ASME Journal of Engineering for Gas Turbines and Power, 1986,108:22-31.
    [71]Stauter R C. Measurement of Three-Dimensional Tip Region Flow Field in an Axial Compressor. ASME Journal of Turbomachinery,1993,115:468-476.
    [72]邓向阳.压气机叶顶间隙流的数值模拟研究:(博十学位论文).北京:中国科学院研究生院,2006.
    [73]马宏伟,蒋浩康.压气机转子通道内尖区三维平均流场.航空动力学报,1997,12(2):167-171.
    [74]马宏伟,蒋浩康.单转子压气机设计状态和近失速状态出口三维紊流流场.工程热物理学报,1997,18(2):153-158.
    [75]蒋浩康,马宏伟.压气机转子三维紊流流场.工程热物理学报,1998,19(3):287-292.
    [76]马宏伟,蒋浩康.压气机不同状态-下转子出口三维紊流流场.航空动力学报,1997,12(3):167-171.
    [77]马宏伟,蒋浩康,叶大均,等.轴流压气机叶尖泄漏涡的时均流动.工程热物理学报,1998,19(6):681-686.
    [78]马宏伟,蒋浩康.压气机设计状态转子出口及下游三维紊流流场.燃气涡轮试验与研究,1998,11(2):31-35.
    [79]马宏伟,蒋浩康.从端壁动态压力场看压气机转子尖区流动.工程热物理学报,2000,21(1):42-45.
    [80]马宏伟,蒋浩康.轴流压气机小流量状态转子叶尖泄漏涡的三维流动.工程热物理学报,2001,22(1):31-35.
    [81]刘宝杰,于宏军,蒋浩康.用三维SPIV技术研究压气机转子尖部的非定常复杂流动.科学工程与技术,2003,3(2):175-178.
    [82]于宏军,刘宝杰,蒋浩康,等.用SPIV技术测量压气机转子尖区复杂流动.工程热物理学报,2003,24(4):575-578.
    [83]于宏军,刘宝杰,刘火星,等.设计状态下压气机转子叶尖泄漏涡流动研究.航空学报,2004,25(1):1-8.
    [84]于宏军,刘宝杰,刘火星,等.近失速状态下压气机转子叶尖旋涡流动研究.航空学报,2004,25(1):9-15.
    [85]Liu Baojie, Wang Hongwei, Liu Huoxing et al. Experimental Investigation of Unsteady Flow Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition With Stereoscopic Particle Image Velocimetry. ASME Journal of Turbomachinery,2004,126:360-373.
    [86]Liu Baojie, Yu Xianjun, Wang Hongwei et al. Evolution of the Tip Leakage Vortex in an Axial Compressor Rotor. ASME Paper, GT2004-53703,2004.
    [87]Liu Baojie, Yu Xianjun, Liu Huoxing et al. Appl ication of SPIV in Turbomachinery. Experiments in Fluids,2006,40:621-642.
    [88]刘宝杰,于贤君,蒋浩康.用SPIV测量结果分析叶轮机内流动损火的方法初探.航空动力学报,2009,24(11):2551-2557.
    [89]Wernet M P, Zante D V, Strazisar T J, et al. Characterization of the Tip Clearance Flow in an Axial Compressor Using 3-D Digital P1V. Experiments in Fluids,2005,39: 743-753.
    [90]Wu Y, Chu W. Behaviour of Tip-Leakage Flow in an Axial Flow Compressor Rotor. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy.2007,221:99-109.
    [91]Wu Yanui, Li Qingpeng, Tian Jiangtao et al. Investigation of Pre-Stall Behavior in an Axial Compressor Rotor-Part 1:Unsteadiness of Tip Clearance Flow. ASME Paper, GT2011-46119,2011.
    [92]Wu Yanui, Li Qingpeng, Tian Jiangtao et al. Investigation of Pro-Stall Behavior in an Axial Compressor Rotor-Part 2:Flow Mechanism of Spike Emergence. ASME Paper, GT2011-46122,2011.
    [93]吴艳辉,李清鹏,田江涛,等.轴流压气机转子叶尖次涡的试验验证及形成机理.推进技术,2012,33(3):363-370.
    [94]Lakshminarayana B, Zhang J, Murthy K N S. The Effects of Tip Clearance on Flow Field and Losses in a Compressor Rotor. Z. Flugwiss. Weltram.,1990,14:273-281.
    [95]Lakshminarayana B, Zaccaria M, Marathe B. The Structure of Tip Clearance Flow in Axial Flow Compressors. ASME Journal of Turbomachinery,1995,117:336-347.
    [96]万钎君,石小江,李浩,等.某小型轴流压气机转子尖区流动测量.烯气涡轮试验与研究,2010,23(1):22-25.
    [97]Inoue M, Kuroumaru M. Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor. ASME Journal of Turbomachinery,1989,111:250-256.
    [98]吴艳辉,楚武利,刘志伟.轴流压气机转子性能及间隙流动研究.西北工业大学学报,2005,23(6):737-741.
    [99]吴艳辉,楚武利,卢新根.间隙区域的流动结构对压气机气动性能的影响.工程热物理学 报,2006,27(6):950-952.
    [100]吴艳辉,楚武利,张燕峰.间隙大小对压气机转子间隙泄漏流场的影响.西北工业大学学报,2007,25(6):838-842.
    [101]马文生,顾春伟.叶顶间隙对压气机性能的影响.动力工程,2007,27(6):863-867.
    [102]罗飞腾,宋文艳,李建平,等.某型发动机高压12级转子叶尖间隙控制研究.航空动力学报,2009,24(4):851-857.
    [103]Khalid, S A, Khalsa A S, Waitz I A et al. Endwall Blockage in Axial Compressor. ASME Journal of Turbomachinery,1999,121:499-509.
    [104]Yoon Y S, Song S J, Shin H W. Influence of Flow Coefficient, Stagger Angle, and Tip Clearance on Tip Vortex in Axial Compressor. ASME Journal of Fluids Engineering, 2006,128:1274-1280.
    [105]Hunter I H, Cumpsty N A. Casing wall boundary layer development through an isolated compressor rotor. ASME Journal of Engineering for Power,1982,104:805-817
    [106]Hah C. A Numerical Modeling of Endwall and Tip-Clearance Flow of an Isolated Compressor Rotor. ASME Journal of Turbomachinery,1986,108:15-21.
    [107]Saathoff H, Stark U. Tip Clearance Flow Induced Endwall Boundary Layer Separation in a Single-Stage Axial-Flow Low-Speed Compressor. ASME Paper, 2000-GT-0501,2000.
    [108]Saathoff H, Stark U. Endwall Boundary Layer Separation in a Single-Stage Axial-Flow Low-Speed Compressor and a High-Stagger Compressor Cascade. Engineering Research,2000,65:217-224.
    [109]Brandt H, Fottner L, Saathoff H, et al. Effects of the Inlet Flow Conditions on the Tip Clearance Flow of an Isolated Compressor Rotor. ASME Paper,2002-GT-30639, 2002.
    [110]Valkov T V, Tan C S. Effect of Upstream Rotor Vortical Disturbances on the Tim-Averaged Performance of Axial Compressor Stators:Part Ⅰ-Framework of Technical Approach and Wake-Stator Blade Interaction. ASME Journal of Turbomachinery,1999, 121:373-386.
    [111]Valkov T V, Tan C S. Effect of Upstream Rotor Vortical Disturbances on the Tim-Averaged Performance of Axial Compressor Stators:Part II-Rotor Tip Vortex/Streamwise Vortex-Stator Blade Interactions. ASME Journal of Turbomachinery, 1999,121:373-386.
    [112]Sirakov B T, Tan C S. Effect of Unsteady Stator Wake-Rotor Double-Leakage Tip Clearance Flow Interaction on Tim-Average Compressor Performance. ASME Journal of Turbomachinery,2003,125:465-474.
    [113]Mailach R, Lehmann I. Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor-Part II:Wake-Tip Clearance Vortex Interaction. ASME Journal of Turbomachinery,2008,130:041005
    [114]邓向阳,张宏武,黄伟光.低速轴流压气机中前后静叶对动叶顶部区域流动的影响.航空学报,2005,26(5):535-539.
    [115]Adamczyk J J, Celestina M L, Greitzer E M. The Role of Tip Clearance in High-Speed Fan Stall. ASME Journal of Turbomachinery,1993,115:28-38.
    [116]Suder, K L, Celestina. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. ASME Journal of Turbomachinery, 1996,118:218-229.
    [117]Chima R V. Calculat ion of Tip Clearance Effects in a Transonic Compressor Rotor. ASME Journal of Turbomachinery,1998,120:131-140.
    [118]Gerolymos G A, Vallet I. Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor. ASME Journal of Turbomachinery,1999,12:751-762.
    [119]Yamada K, Furukawa M, Inoue M et al. Numerical Analysis of Tip Leakage Flow Field in a Transonic Compressor Rotor. Proceeding of the international Gas Turbine Congress 2003 Tokyo, November 2-7,2003, IGTC2003Tokyo TS-030.
    [120]Yamada K, Funazaki K, Furukawa M. The Behavior of Tip Clearance Flow at Near-Stall Condition in a Transonic Axial Compressor Rotor. ASME Paper GT2007-27725.
    [121]Hofmann W H, Ballman J. Some Aspects of Tip Vortex Behavior in a Transonic Turbocompressor. LSABE-2003-1223.
    [122]桂幸民,王同庆,于清,等.跨音压气机转子叶尖流场试验与分析工程热物理学报,1998,19(5):553-558.
    [123]桂幸民,妓超群,王同庆,等.跨音压气机转子叶尖问隙复杂流动观测.工程热物理学报,2000,21(9):570-572.
    [124]刘建勇,袁巍,周盛,等.不同顶部间隙对跨声风扇转子的影响分析.航空动力学报,2007,22(11):18741878.
    [125]Zhang Yanfeng, Lu Xingen, Chu Wuli et al. Numerical Investigation of the Unsteady Tip Leakage Flow and Rotating Stall Inception in a Transonic Compressor. Journal of Thermal Science,2010,119:310-317.
    [126]张燕峰,楚武利,吴艳辉.跨音轴流压气机间隙泄漏流流动特性研究.热能动力工程,2008,23(5):473-477.
    [127]胡书珍,张燕峰,卢新根,等.跨声速轴流压气机间隙泄漏流触发旋转失速.推进技术,2010,31(1):47-51.
    [128]黄旭东,陈海昕,符松.跨音速压气机中的涡结构与失速机理分析.空气动力学报,2007,25(增刊),75-79.
    [129]Beradanier R A. Design of a Multi-Stage Research Compressor for Cantilevered Stator Hub Clearance Flow Investigations. (dissertation). West Lafayette:Purdue University,2012.
    [130]蔡睿贤,王锡刚,彭惠君,等.静叶内围带对轴流压气机气动性能的影响及4500马力机车燃气轮机的热力性能.工程热物理学报,1980,1(1):3-9.
    [131]Dong Y, Gallimore S J, Hodson, H P. Three Dimensional Flows and Loss Reduction in Axial Compressor. ASME Journal of Turbomachinery,1987,109:354-361.
    [132]贾希诚,王正明.叶顶间隙对环形叶栅三维粘性流场影响的数值分析.工程热物理学报,1999,20(6):707-710.
    [133]贾希诚,王正明.叶轮机械中间隙流与通道二次流相互作用的数值研究.航空动力学报,2002,17(4):399-403.
    [134]贾希诚,王正明.叶轮机械中的泄漏流与泄漏涡.工程热物理学报,2003,24(5):753-756.
    [135]左志涛,朱阳历,张冬阳,等.静叶轮毂间隙对高压压气机气动性能的影响.推进技术,2011,32(3):329-333.
    [136]田江涛,吴艳辉,李清鹏,等.静子轮毅角区失速与尖隙流动相互作用机理分析.工程热物理学报,2011,32(12):2034-2039.
    [137]Doukelis A, Mathioudakis K, Papailiou K. The Effect of Tip Clearance Size and Wall Rotation on the Performance of a High-Speed Annular Compressor Cascade. ASME Paper,98-GT-38,1998.
    [138]Doukelis A, Mathioudakis K, Papailiou K. Effect of Wall Rotation on the Performance of a High-Speed Compressor Cascade with Tip Clearance.ISABE 99-7267, 1999.
    [139]卢新根,楚武利,朱俊强,等.轴流压气机机匣处理研究进展及评述.力学进展,2006,36(2):222-232.
    [140]Koch C C. Experimental Evaluation of Outer Case Blowing or Bleeding of Single-Stage Axial-Flow Compressor. NASA CR-54592,1970.
    [141]Oscarson R P, Wright D L. Experimental Evaluation of a Honeycomb Rotor Shroud Configuration to Improve the Stall Margin of a 0.5 Hub-Tip Ratio Single Stage Compressor. NASA CR-72809,1970.
    [142]Moore, R D, Kovich G, Blade R J. Effect of Casing Treatment on Overall and Blade-Element Performance of a Compressor Rotor. NASA TN D-6538,1971.
    [143]Moore, R D, Osborn W M. Effects of Tip Clearance on Overall Performance of Transonic Fan Stage With and Without Casing Treatment. NASA TM X-3479.
    [144]朱俊强,刘志伟.4种不同型式机匣处理的实验.航空学报,1997,18(5):567-570.
    [145]吴艳辉,张皓光,楚武利.槽式机匣处理几何结构参数的正交试验.航空动力学报,2009,24(4):825-829.
    [146]Thompson D W, King P I, Rabe D C. Experimental Investigation of Steeped Tip Gap Effects on the Performance of a Transonic Axial-Flow Compressor Rotor. ASME Journal of Turbomachinery,1998,120:477-486.
    [147]Xingen Lu, Junqiang Zhu, Wuli Chu et al. The Effects of Stepped Tip Gap on Performance and Flowfield of a Subsonic Axial-Flow Compressor Rotor. ASME Paper GT2005-69106.
    [148]孙大坤,侯睿炜,孙晓峰.非定常机匣处理扩大压气机稳定裕度实验.航空动力学报,2008,23(4):662-670.
    [149]孙大坤,孙晓峰.非定常机匣处理对失速先兆波的抑制作用实验研究.航空动力学报,2008,23(4):671-679.
    [150]孙大坤,刘小华,孙晓峰.非定常机匣处理扩稳实验研究.工程热物理学报,2008,29(12):2022-2026.
    [151]Liu X, Sun D, Sun X et al. Flow Stability Model for Fan/Compressor with Annular Duct and Novel Casing Treatment. Chinese Journal of Aeronautics,2012,25:143-154.
    [152]Wilke I, Kau H P. A Numerical Investigation of the How Mechanisms in a HPC Front Stage With Axial Slots. ASME Paper, GT2003-38481,2003.
    [153]卢新根.轴流压气机内部流动失稳及其被动控制策略研究:(博十学位论文).西安:西北工业大学,2007.
    [154]Hathaway M D. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance. ASME Paper, GT2002-30368,2002.
    [155]Iyengar V, Sankar L N, Niazi S. Assessment of the Self-Recirculating Casing Treatment Concept to Axial Compressors. AIAA-2005-0632.
    [156]Weichert S, Day I, Freeman C. Self-Regulating Casing Treatment for Axial Compressor Stability Enhancement. ASME Paper, GT2011-46042,2011.
    [157]Day I J. Active Suppression of Rotating Stall and Surge in Axial Compressor. ASME Journal of Turbomachinery.1993,11(1):40-47.
    [158]Suder K L, Hathaway M D, Thorp S A. Compressor Stability Enhancement Using Discrete Tip Injection. ASME Journal of Turbomacinery,2001,123:14-23.
    [159]Nie C, Xu G, Cheng X et al. Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor. ASME Journal of Turbomacinery,2002,124:572-579.
    [160]徐纲,聂超群,黄伟光,等.低速压气机顶部微量喷气控制失速机理的数值模拟.工程热物理学报,2004,25(1):37-40.
    [161]Xu G, Zhang H, Nie C et al. Numerical Simulation of Stall Suppression By Micro Air Injection in a Low-Speed Axial Compressor. Proceeding of the Interactional Gas Turbine Congress 2003 Tokyo, IGTC2003Tokyo TS-027.
    [162]童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究:(博士学位论文).北京:中国科学院研究生院,2006.
    [163]耿少娟,张宏武,朱俊强,等.喷气对低速轴流压气机转子叶顶区域流动的影响.工程热物理学报,2007,28(3):395-398.
    [164]Geng S, Zhang H, Chen J et al. Numerical Study of the Response of Tip Leakage Flow Unsteadiness to Micro Tip Injection in a Low-Speed Isolated Compressor. ASME Paper GT2007-27729,2007.
    [165]Geng S, Zhang H, Chen J et al. Unsteady Tip Clearance Flow Pattern in an Isolated Axial Compressor Rotor with Micro Tip Injection. Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Lyon, July 2007, ISAIF8-0062.
    [166]吴艳辉,田江涛,李清鹏,等.跨音轴流压气机转子叶尖喷气扩稳机理分析.工程热物理 学报,2011,32(7):1119-1122.
    [167]周军伟,侯安平,周盛.射流频率对转子失速裕度影响的探索.中国科学:技术科学,2010,40(4):392-398.
    [168]Corke T, Post M. Overview of Plasma Flow Control:Concepts, Optimization and Application. AIAA 2005-563,2005.
    [169]李钢,聂超群,朱俊强,等。介质阻挡放电等离子体流动控制技术的研究进展.科技导报,2008,26(4):87-92.
    [170]Jukes T N, Choi K S, Johnson G A. Turbulent Boundary-Layer Control for Drag Reduction Using Surface Plasma. AIAA 2004-2216,2004.
    [171]Ramakumar K, Jacob J D. Flow Control and Lift Enhancement Using Plasma Actuators. AIAA 2005-4635,2005.
    [172]Morris S C, Corke T C, VanNess D et al. Tip Clearance Control Using Plasma Actuators. AIAA 2005-782,2005.
    [173]VanNess D, Corke T C, Morris S C. Tip Clearance Flow Control in a Linear Turbine Cascade Using Plasma Actuation. AIAA 2009-300,2009.
    [174]VanNess D, Corke T C, Morris S C. Tip Clearance Flow Visualization of a Turbine Blade Cascade With Active and Passive Flow Control. ASME Paper GT2008-50703.
    [175]李钢,徐燕骥,林彬,等.利用介质阻挡放电等离子体控制压气机叶栅端壁二次流.中国科学E辑:技术科学,2009,39(11):1843-1849.
    [176]李钢.等离子体流动控制机理及其应用研究:(博士学位论文).北京:中国科学院研究生院,2010.
    [177]吴云,李应红,朱俊强,等.等离子体气动激励扩大低速轴流式压气机稳定性的实验.航空动力学报,2007,22(12):2025-2030.
    [178]Wu Y, Li Y, Zhu J et al. Experimental Investigation of a Subsonic Compressor with Plasma Actuation Treated Casing. A1AA-2007-3849,2007.
    [179]Vo H D. Suppression of Short Length-Scale Rotating Stall Inception With Glow Discharge Actuation. ASMF Paper, GT2007-27673,2007.
    [180]Vo H D. Control of Rotating Stall in Axial Compressor Using Plasma Actuator. AIAA-2007-3845,2007.
    [181]Vo H D, Cameron J D, Morris SC. Control of Short-Scale Rotating Stall Inception on a High-Speed Axial Compressor With Plasma Actuation. ASME Paper, GT2008-50967, 2008.
    [182]Jothiprasad G, Murray R C, Essenhigh K et al. Control of Tip-Clearance Flow in a Low Speed Axial Compressor Rotor With Plasma Actuation. ASME Journal of Turbomachinery,2012,134:021019.
    [183]宋彦萍,李娜,王松涛,等.弯曲动叶对跨音轴流压气机性能的影响.工程热物理学报,2004,25(4):582-584.
    [184]毛明明.跨声速轴流压气机动叶弯和掠的数值研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2008.
    [185]姜斌,郑群,王松涛,等.跨声速风扇的弯、掠三维设计研究.航空动力学报,2012,27(8):1815-1825.
    [186]Gallimore S J, Bolger J J, Cumpsty N A et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part I:University Research and Methods Development. ASME Journal of Turbomachinery,2002,124:521-532.
    [187]Gallimore S J, Bolger J J, Cumpsty N A. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part Ⅱ:Low and High-Speed Design and Test Verification. ASME Journal of Turbomachinery,2002,124:533-541.
    [188]McNulty G S, Decker J J, Beacher B F. The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressor. ASME Journal of Turbomachinery, 2004,126:445-454.
    [189]Ramakrishna P V, Govardhan M. Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages-Part I:Design Considerations-Changes in Incidence, Deflection, and Streamline Curvature. International Journal of Rotating Machinery, Volume 2009, Article ID 787145.
    [190]Ramakrishna P V, Govardhan M. Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages-Part Ⅱ:Detailed Study of the Effects on Tip Leakage Phenomena. International Journal of Rotating Machinery, Volume 2010, Article ID 491413.
    [191]Ramakrishna P V, Govardhan M. Stall Characteristics and Tip Clearance Effects in Forward Swept Axial Compressor Rotors. Journal of Thermal Science,2009,18(1): 40-47.
    [192]Ramakrishna P V, Govardhan M. Aerodynamic Performance of Low Speed Axial Flow Compressor Rotors With Sweep and Tip Clearance. Engineering Applications of Computational Fluid Mechanics.2009,3(2):195-206.
    [193]王雷,刘波,赵鹏程.前掠对高负荷风扇转子叶尖间隙效应的影响.航空动力学报,2012,27(8):1841-1847
    [194]赵胜丰,卢新根,张宏武,等.前掠提高跨音速压气机转子失速裕度的机理研究.中国工程热物理学会论文,082066,2008.
    [195]季路成,陈江,林峰.轴流压气机设计中“掠”的另类认识.工程热物理学报,2005,26(4):567-571.
    [196]贾希诚,王正明,蔡睿贤.叶轮机械中叶顶间隙形态对气动性能影响的数值研究.工程热物理学报,2001,22(4):431-434.
    [197]Wang Z, Jia X, Cai R. Influence of Blade Tip Clearance Shapes on Aerodynamic Performance of an Axial-Flow Compressor Stator. IMechE, Journal of Power and Energy, 2002,216:395-401.
    [198]张辉.若干几何调整对压气机流场和性能影响的实验和数值模拟研究:(博士学位论文).北京:北京航空航天大学,2005.
    [199]李百合.用数值模拟研究叶顶间隙对单转子轴流压气机性能的影响:(硕士学位论文).北京:北京航空航天大学,2007.
    [200]Ma H, Li B. Effects of Axial Non-uni form Tip Clearance on Aerodynamic Performance of a Transonic Axial Compressor. Journal of Thermal Science,2008,17(4):331-336.
    [201]王召锋.叶顶非均匀间隙影响扩压叶栅流动的实验研究:(硕士学位论文).北京:北京航空航天大学,2007.
    [202]Mall, Zhang J, Zhang J. Experimental Study of Effects of One Kind of Tangentially Non-uni form Tip Clearance on the Flow Field at an Exit of a Compressor Cascade Passage. Journal of Thermal Science,2010,19(1):7-13.
    [203]Zhang J, Ma H, Li J. Effects of Suction Squealer Tip on the Performance of a Low-Speed Axial Compressor. Journal of Thermal Science,2012,21(3):223-229.
    [204]邵卫卫,季路成,黄伟光.轴流压气机叶尖片削全工况特·性分析.航空动力学报,2008,23(2):367-373.
    [205]Lu J, Chu W, Zhang 11. Influence of Blade Tip Cutting on Axial Compressor Aerodynamic Performance. IMechE, Journal of Power and Energy,2009,223:19-29.
    [206]Gourdain N, Leboeuf F. Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments. ASME Journal of Turbomachinery,2009,131: 021013.
    [207]王维,楚武利,张皓光,等.轴流压气机转子叶顶凹槽及其改进结构研究.流体机械,2012,40(6):33-39.
    [208]Wbitcomb R T. A Design Approach and Selected Wind-Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets. NASA TN D-8260.
    [209]江永泉.飞机翼梢小翼设计.北京:航空工业出版社,2009.
    [210]林鹰.现代旅客机青睐翼梢小翼.交通与运输,2007,(3):54-55.
    [211]萧蓉.波音翼梢小翼帮助航空公司降低运营成本.航空制造技术,2003, (4):13.
    [212]Holten V. Windmill with Diffuser Effect Induced by Small Tip Vanes. Cambridge, U. K:Proc. Int. System. Wind Energy Syst.1976
    [213]Shimizu Y, Yoshikawa T, Mastumura S. Power Augmentation Effects of a Horizontal Axis Wind Turbine With a Tip Vane-Part 1:Turbine Performance and Tip Vane Configuration, ASME J. Fluids Eng,1994,116:287-292.
    [214]Shimizu Y, Imamura H, Meada T. Power Augmentation of a Horizontal Axis Wind Turbine Using a Mie Type Tip Vane:Velocity Distribution Around the Tip of a HAWT Blade With and Without a Mie Type Tip Vane. ASME Journal of Solar Energy Engineering, 1995.117(11):297-303.
    [215]Shimizu Y, Ismaili E, Maeda T. Rotor Configuration Effects on Performance of a HAWT With Tip-Mounted Mie-Type Vanes. ASME Journal of Solar Energy Engineering,2003, 125:441-447.
    [216]汪建文,贾瑞博,吴克启.具有叶尖加小翼风力机动力放大特性数值模拟.太阳能学报,2007,27(1):55-61.
    [217]贾瑞博.风力机叶尖加小翼动力放大的数值模拟研究:(硕士学位论文).呼和浩特:内蒙古工业大学,2005年6月.
    [218]张智羽.带小翼的风力机叶片气动性能的数值模拟及其优化:(硕十学位论文).呼和浩特:内蒙古工业大学,2006年6月.
    [219]全建军.风力机叶尖加小翼动力放大特性实验研究:(硕十学位论文).呼和浩特:内蒙占工业大学,2006年6月
    [220]韩炜.风力机叶尖加小翼周围流场的PIV试验研究:(硕十学位论文).呼和浩特:内蒙古 工业大学,2007年5月.
    [221]汪建文,闰建校,刘博,等.谱分析法测量叶尖小翼对风轮旋转时固有频率的影响.中国工程热物理学报,2007,28(5):784-786.
    [222]汪建文,韩炜,闫建校,等.平板V型小翼各参数对风力机功率系数的影响.动力工程,2008,28(3):483-486.
    [223]开夏.新型螺旋桨和双尾鳍船的开发.航海科技动态,1999,11:16-21.
    [224]Gomez G P, Gonzales-Adal id J. Tip Loaded Propellers Justification of Their Advantages Over Conventional Propellers Using the Momentum Theory. ISP,1995,42 (429):5.
    [225]崔承根,施能继.叶梢带端板螺旋桨的性能研究.华中理工大学学报,1991,19(3)117-120.
    [226]罗奕鑫,崔承根,廖浔莉.叶梢带端板螺旋桨的设计方法.造船技术,1997,8:18-22.
    [227]依凤鸣.带附加导叶轴流风机的实验研究.流体工程,1990,19(7):224.
    [228]吕文灿.旋转导叶风机的理论分析与试验研究.华中理工大学学报,1991,19(1):69-75.
    [229]Yen S C, Lin F K T. Exit Flow Field and Performance of Axial Flow Fans. ASME Journal of Fluids Engineer ing,2006,128:332-3-10.
    [230]郑国胜,戴韧.轴流风扇叶片端导叶作用的研究,工程热物理学报,2006,6,27(1):165-168.
    [231]Akturk A, Camci C. Development of a Tip Leakage Control Device for an Axial Flow Fan. ASME Paper GT2008-50785,2008.
    [232]Corsini A, Perugini B, Rispoli F, et al. Investigation on Improved Blade Tip Concept for Axial Flow Fan. ASME Paper GT2006-90592,2006.
    [233]Corsini A, Rispoli F, Sheard A G. Development of Improved Blade Tip Fnd-Plate Concepts for Low-Noise Operation in Industrial Fans. Journal of Power and Energy. 2007,221(5):669-681.
    [234]Bianchi S, Corsini A, Rispoli F, et al. Experimental Aeroacoustic Studies on Improved Tip Geometries for Passive Noise Signature Control in Low-Speed Axial Fan. ASME Paper GT2008-51057,2008.
    [235]Corsini A, Rispoli F, Sheard A G. Shaping of Tip Fnd-Plate to Control Leakage Vortex Swirl in Axial Flow Fans. ASME Paper GT2008-51062,2008.
    [236]Corsini A, Rispoli F, Sheard A G. Aerodynamic Performance of Blade Tip End-Plates Designed for Low-Noise Operation in Axial Flow Fans. ASME Journal of Fluids Engineering,131:081101.
    [237]黄中华,陈泽,戴韧.带端导叶平面叶栅流动结构与性能的数值研究,流体机械.2008,6,36:30-33.
    [238]黄中华,戴韧,陈泽.带端导叶直列叶栅间隙内流动结构的实验研究.中国工程热物理年会学术会议论文,论文编号:087071,2008.
    [239]Dai R, Huang Z, Chen Z, et al. PIV Study of Tip Leakage in Linear Compressor Cascade. The 4th International Symposium on Fluid Machinery and Fluid Engineering, November 24-27,2008, Beijing, China. NO.41SFMFE-Ch03.
    [240]Booth T C, Dodge P R. Rotor-Tip Leakage:Part I-Basic Methodology. ASME Journal of Engineering for Power,1982,104:154-161.
    [241]Wadia A R, Booth T C. Rotor-Tip Leakage:Part II-Design Optimization Through Viscous Analysis and Experiment. Journal of Engineering for Power,1982,104:163-169.
    [242]Yaras M I, Sjolander S A. Measurements of the Effects of Winglets on Tip-Leakage Losses in a Linear Turbine Cascade. ISABE 91-7011:127-135.
    [243]Harvey N W, Ramsden, K. A Computation Study of a Novel Turbine Rotor Partial Shroud. ASME Journal of Turbomachinery,2001,123:534-543.
    [244]Dey D, Camci C. Tip Desensitization of an Axial Turbine Rotor Using Tip Platform Extensions. VKI Lecture Series 2004-02.
    [245]Saha A K, Acharya S, Bunker R, et al. Blade Tip Leakage Flow and Heat Transfer with Pressure-Side Winglet. International Journal of Rotating Machinery, Volume 2006, Article ID 17079:1-15.
    [246]Kusterer K, Moritz N, Bohn D, et al. Reduction of Tip Clearance Losses in an Axial Turbine by Shaped Design of the Blade Tip Region. ASME Paper GT2007-27303.
    [247]Stephens J E, Corke T, Morris S C. Turbine Blade Tip Leakage Flow Control: Thick/Thin Blade Effects and Separation Line Studies. ASME Paper GT2008-50705.
    [248]Shavalikul A., Camci C. A Comparative Analysis of Pressure Side Extensions for Tip Leakage in Axial Turbines. ASME GT2008-50782,2008.
    [249]0'Dowd D 0, Zhang Q, He L, et al. Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers. ASME Journal of Turbomachinery,2011,133: 041026.
    [250]Zhou C,Hodson H,Tibbott I,et al.The Aero-thermal Performance of a Cooled Winglet Tip in a High Pressure Turbine Cascade. ASME Paper GT2011-46369, 2011.
    [251]Zhou C, Hodson H, Tibbott I, et al. Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine. ASME Paper GT2011-46373, 2011.
    [252]Tallman J A. A Computation Study of Tip Desensitization in Axial Flow Turbines. (dissertation).Pennsylvania: The Pennsylvania State University, 2002.
    [253]童秉纲,尹协远,朱克勤.涡运动理论.合肥:中国科技大学出版社,1994.
    [254]Kuchemann D. Report on the IUTAN Symposium on the Concentrated Vortex Motion in Fluids. J. of Mech.1965, Nol.21,No.1.
    [255]Lugt H J. Vortex Flow in Nature and Technology. New York: John Wiley & Sons. 1985.
    [256]吴介之,马晖扬,周明德.涡动力学引论.北京:高等教育出版社,1993.
    [257]童秉纲,张炳暄,崔尔杰.非定常流与涡运动.北京:国防工业出版社,1993.
    [258]Furkawa M, Inoue M,Saiki K. The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamic.ASME journal of Turbomachinery, 1999, 121: 469-480.
    [259]Kang S.Investigation of the Three Dimensional Flow within a Compressor Cascade with and without TipClearance,(dissertation). Brussel: VrijeUniversiteit Brussel, 1993.
    [260]于贤君,亚音轴流压气流机端壁区复杂流动研究及其模化分析:(博士学位论文).北京:北京航空航天大学,2008年12月.
    [261]Inoue M, Kuroumaru M. Three-Dimensional Structure and Decay of Vortices Behind an Axial Flow Rotating Blade Row. ASME Journal of Engineering for Gas Turbines and Power. 1984, 106: 561-569.
    [262]于贤君,刘宝杰,蒋浩康.轴流压气机转子尖三维复杂流动Ⅰ-实验和理论研究,航空学报,2010,31(1):48-57.
    [263]于贤君,刘宝杰,蒋浩康.轴流压气机转子尖部三维复杂流动Ⅱ一数值模拟研究.航空学报,2010,31(1):58-67.
    [264]El-Batsh H M, Hanna M B. An Investigation on the Effect of Endwall Movement on the Tip Clearance Loss Using Annular Turbine Cascade.International Journal of Rotating Machinery, Volume 2011, Article ID 489150.
    [265]宋更生,沈承龙.五孔探针流场测试新方法流体机械,1990,4:17-21.
    [266]林峰,张元,彭成一.五孔探针的标定技术.航空动力学报,1990,5(3):236-238.
    [267]韩少冰.压气机平面叶栅加装叶尖小翼的数值研究:(硕十学位论文).大连:大连海事大学,2009年6月.
    [268]陈鑫.矩形叶栅风洞设计及流场品质分析:(硕十学位论文).大连:大连海事大学,2011年6月.
    [269]叶大均,王仲奇.叶轮机械真实流动损失机理及控制方法的研究,国家自然科学基金委重大项目“工程热物理中关键性问题的研究”,第一部分—学术研究总结,1992年6月。
    [270]Yamamoto A, Yanagi R. Production and Development of Secondary Flows and Losses within a Three-Dimensional Turbine Stator Cascade. ASME Paper 85-GT-217,1985.
    [271]彭泽琰,刘刚,桂幸民,等.航空燃气轮机原理.北京:国防工业出版社,2008.
    [272]郑正泉,姚贵喜,马芳梅,等.热能与动力工程测试技术.武汉:华中科技大学出版社,2001.
    [273]周作元,李荣光.温度与流体参数测量基础.北京:清华大学出版社,1986.
    [274]张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究:(博十学位论文).哈尔滨:哈尔滨工业大学,2007年4月.
    [275]郭爽,陆华伟,宋彦萍,等.吸附式高负荷扩压叶栅的旋涡结构.中国工程热物理学会学术会议论文,论文编号:122026,哈尔滨,2012.
    [276]李根深,陈乃兴,强国芳.船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)下册.北京:国防工业出版社,1985.
    [277]Tian Qing. Near Wall Behavior of Vortical Flow around the Tip of an Axial Pump Rotor Blade, (dissertation).Blacksburg:Virginia Polytechnic Institute and State University,2006.
    [278]卢新根,楚武利,朱俊强,等.梯状间隙结构对轴流压气机影响的试验与数值模拟.工程热物理学报,2005,26(2):234-236.
    [279]Vo H D, Tan C S, Gretizer E M. Criteria for Spike Initiated Rotating Stall. ASME GT2005-68374,2005.
    [280]Camp T R, Day I J. A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor. ASME Journal of Turbomachinery,1998,120(3):393-401.
    [281]Takahiro N, Toshio K, Hiroshi H. Rotor-Tip Flow Fields near Inception Point of Modal Disturbance in an Axial-Flow Fan. ASME GT2010-22187.
    [282]苏中亮,吴艳辉,楚武利,等.影响某双级跨声风扇流动稳定性的关键因素分析.航空 动力学报,2010,25(2):459-465.
    [283]Reid L, Moore R D. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor. NASA TP-1337,1978.
    [284]米攀,楚武利,张皓光,等.跨音级轴流压气机转子轮榖非轴对称造型研究.计算机仿真,2012,29(1):58-61.
    [285]张卓勋,吴艳辉,楚武利,等.激波/泄漏涡相互干扰对跨声压气机流动稳定性的影响.航空动力学报,2010,25(7):1615-1621.
    [286]王如根,周敏,赵英武,等.跨声速压气机低雷诺数流动失稳机制研究.航空动力学报,2009,24(2):414-419.
    [287]Suder K L. Experimental Investigation of the Flow Field in a Transonic Axial Flow Compressor with Respect to Development of Blockage and Loss. Technical Memorandum 107310,NASA, Cleveland, Ohio,U.S. A., October 1996.
    [288]Hofmann W, Ballmann J. Tip Clearance Vortex Development and Shock-Vortex-Interaction in a Transonic Axial Compressor Rotor. AIAA Paper, AIAA-2002-0083,2002.
    [289]HAH C, BERGNER J, SCHIFFER H P. Short Length Rotating Stall Inception in a Transonic Axial Compressor-Criteria and Mechanismas. ASMF GT2006-90045,2006.
    [290]Deley, J M. Aspects of Vortex Breakdown. Prog. Aerospace Sci.1994,30:1-59.
    [291]王仲奇,秦仁.透平机械原理(修订本).北京:机械工出版社,1987.
    [292]李绍斌.跨音速压气机高负荷弯扭静叶设计及其级的气动性能研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2007年1月.
    [293]Sieverding C H, Arts T, Denos, et al. Measurement Techniques for Unsteady Flows in Turbomachines. Experiments in Fluid,2000,28(4):285-321.
    [294]于宏军.压气机转子尖区复杂流动及其与静子相互作用:(博士学位论文).北京航空航天大学,2004年.
    [295]刘宝杰.尾流旋涡的流动机制及其应用:(博士学位论文).北京航空航天大学,1998年.
    [296]刘宝杰,严明,刘胤,等.叶轮机械复杂流动的PIV应用研究.工程热物理学报,2001,22(5):578-580.
    [297]王同庆,刘胤,吴怀宇.用PIV技术测量跨音压气机转子内流的激波结构,工程热物理学报,2002,23(3):297-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700