用户名: 密码: 验证码:
市政再生水补水的电厂循环冷却水系统微生物特征及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用市政再生水作为电厂循环冷却水的补水水源是我国解决城市水危机的关键措施之一。与自然水体相比,市政再生水中微生物数量多,有机物和营养物质含量高,采用市政再生水作为补水水源,电厂循环冷却水系统将面临更为复杂的微生物问题。
     本文在常规水质和微生物指标分析的基础上,综合应用现代分子生物学DNA技术、电化学分析和扫描电镜技术,实验室研究与现场试验相结合,首次系统全面地研究了市政再生水补水的电厂循环冷却水系统的水质特征、微生物特征、微生物对金属腐蚀行为的影响以及微生物化学控制技术,主要结论如下:
     (1)根据23项水质指标的全分析结果,市政再生水中电导率、TDS、氯离子、表面活性剂含量是地表水的2~4倍,CODMn、总磷、溶解性总磷、溶解性正磷、总氮含量是地表水的1.5-2倍,细菌总数高1个数量级,表明采用市政再生水替代地表水作为补水水源,电厂循环冷却水系统的结垢趋势减缓,但腐蚀程度和微生物风险增大。
     (2)市政再生水补水的电厂循环冷却水系统中,增大浓缩倍数,氯离子、电导率、硬度、硫酸根浓度成倍增加,浊度略有增加,铁离子浓度不变,表明水质的腐蚀性增强,析晶垢、颗粒垢、沉积物增多;CODMn浓度增加,氨氮浓度降低,表明硝化和亚硝化自养菌的代谢速率高于异养菌。升高温度,水中的硬度、浊度、正磷酸根浓度降低,表明析晶垢、微粒垢增多;CODMn浓度持续下降,氨氮浓度趋于稳定,异养菌数量大幅增长,因碱度降低,硝化菌和亚硝化菌的生长受到限制。
     (3)市政再生水中污垢产量比地表水低44%,但单位质量污垢中的细菌总数和铁细菌含量分别是地表水的8.6倍和2.7倍,表明市政再生水替代地表水作为补水水源,电厂循环冷却水系统的污垢产量降低,但微生物腐蚀的影响增大。电镜扫描图片显示,碳钢在地表水中以均匀腐蚀为主,市政再生水中则为点蚀。
     (4)市政再生水补水的电厂循环冷却水系统中,浓缩倍数和温度增加,污垢量增大,因此系统传热阻力和能耗损失增加。流速提高,污垢量变化不大,但污垢热阻升高,粘附率提高,剪切作用使污垢的密实度和粘附性能增强,机械清除难度增大。微生物对系统最不利的运行条件是:浓缩倍数4.0倍、温度35℃、流速0.8m/s~1.0m/s。添加缓蚀阻垢剂后,循环冷却水中有机物增加了92%,磷含量增大了43.5倍,因此导致污垢产量增加40%,污垢中粘液形成菌、异养菌总数增加80%,表明缓蚀阻垢剂导致微生物风险加剧。
     (5)市政再生水含有悬浮微生物28种,优势菌种隶属于变形菌门β-变形菌纲的嗜甲基菌科。进入循环冷却水系统后,悬浮和固定微生物的物种分别为18种和44种,优势菌种仍然隶属于变形菌门的β-变形菌纲。添加水处理药剂后,循环冷却水中悬浮微生物种数为38种,菌种的数量分布较为均匀,优势菌种转变为隶属于厚壁菌门的葡萄球菌科,微生物种群结构改变的主要原因是循环水中有机物和磷含量的大幅增加。
     (6)市政再生水补水的电厂循环冷却水系统中,虽然碳钢腐蚀最严重、不锈钢腐蚀最轻,但微生物对不锈钢腐蚀的影响却最大。以15d的平均腐蚀率计算,不锈钢MIC所占的比例为36.36%,是碳钢的1.6倍,黄铜的2.4倍。电镜扫描结果表明,不锈钢点蚀造成的微生物分布不均,可能是其MIC腐蚀严重的主要原因。
     (7)市政再生水补水的电厂循环冷却水系统中,微生物化学控制技术研究结果表明,与异噻唑啉酮、生物分散剂DREWSPERSE738相比,氯锭和次氯酸钠对悬浮和固定微生物的作用效果最优。结合实际,建议采用氯锭为微生物控制药剂,同时根据其对细菌总数、铁细菌和硫酸盐还原菌的有效作用时间试验结果,确定其投加周期为3天。正交试验的结果显示,增加阻垢缓蚀剂,碳钢缓蚀剂和黄铜缓蚀的投加剂量,氯锭的杀菌率会相应增加。通过现场动态中试试验,提出微生物化学控制投药参数为:氯锭150mg/L,阻垢缓蚀剂8mg/L,黄铜缓蚀剂6mg/L,碳钢缓蚀剂6mg/L。
It is one of key measures using municipal reclaimed water as makeup water of circulating cooling water to alleviate the urban water crisis in China. Compared with the natural water, a larger number of microorganisms and more abundant nutrients lie in municipal reclaimed water. Thus, circulating cooling water system makeup by municipal reclaimed water faces more complex microbial problems.
     Water quality, microbial characteristic, microbiologically induced corrosion (MIC) and microbial control technology were researched comprehensively and systematically by DNA technology, electrochemical method, scanning electron microscopy and conventional water quality analysis method in laboratory and on-site for power recycling cooling water system makeup by municipal reclaimed water.
     Main conclusions were as follows:
     (1) Based on water quality analysis, conductivity, total dissolved solid (TDS), chloride and surfactant in municipal reclaimed water were2to4times than those in surface water. CODMn, total phosphorus, dissolved total phosphorus, soluble orthophosphate and total nitrogen were all1.5to2times than those in surface water. Total number of bacteria was higher an order magnitude than that in surface water. Results showed that more serious corrosion and higher microbiological risk would be faced when power recycling cooling water was replenished by municipal reclaimed water rather than surface water.
     (2) Chloride, conductivity, hardness and sulfate increased linearly, turbidity increased slightly and iron ion kept unchanged with the concentration factor rose in the power circulating cooling water system makeup by municipal reclaimed water. More crystallization fouling, particulate fouling and sediment would be occurred and more serious corrosion would be happened in the system. At the same time, CODMn increased and ammonia nitrogen decreased with the concentration factor growth, which meant that metabolic rates of nitrification and nitrosification bacteria were higher than that of heterotrophic bacteria. Hardness, turbidity and orthophosphate in water decreased when temperature increased, showing that crystallization and particulate fouling increased in the system. Moreover, with the temperature growth, CODMn declined continuously but ammonia nitrogen tended to stable, which meant nitrification and nitrosification bacteria growth restricted due to decline of alkalinity.
     (3) Foulant weight in municipal reclaimed water was44%lower than that in surface water. However, total number of bacteria and iron bacteria were8.6times and2.7times higher than those in surface water respectively. These showed that less foulant and more serious MIC would be happened if replacing surface water by municipal reclaimed water to replenish power recycling cooling water. Pitting corrosion in municipal reclaimed water and uniform corrosion in surface water were found by scanning electron microscope.
     (4) More fouling occurred and thus higher heat transfer resistance and energy loss happened when increasing concentration factor and temperature of the power circulating cooling water system makeup by municipal reclaimed water. Foulant weight was unchanged with the variation of flow rate, but heat transfer resistance and adhersion of foulant on the surface increased. Higher density and stronger adhesion were obtained due to the role of shear, which meant it was difficult to remove foulant by mechanical method. Most unfavorable operating conditions of the cooling water system were the concentration factor4.0, temperature35℃and flow rate0.8m/s~1.0m/s. In addition, Foulant weight and microorganisms would increase40%and80%when scale and corrosion inhibitors were added into the system. High TOC and TP caused by scale and corrosion inhibitors was main reason.
     (5)There were28kinds of suspended microorganisms detected by DNA technology in municipal reclaimed water, in which dominant strain belonged to Bacteria Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae. For the recycling cooling water system,18kinds of suspended microorganisms and44kinds of fixed microorganisms were detected, in which dominant strain belonged to Bacteria Proteobacteria Betaproteobacteria. After adding chemical agents, suspended microorganisms increased to38kinds and distribution of bacteria species was more evenly. Thus dominant strain changed and belonged to Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus, which was caused by TOC and TP increased sharply due to scale and corrosion inhibitors.
     (6) MIC on stainless steel was the biggest though corrosion of carbon steel was most serious in three typical metals of the power circulating cooling water system makeup by municipal reclaimed water. According to average corrosion rate of15days, the proportion of MIC in stainless steel corrosion was36.36%, which was1.6times and2.4times more than the values in carbon steel and brass corrosion respectively. Electron microscope scanning result showed that serious MIC may be caused by biofilm uneven distribution on the surface of stainless steel.
     (7)Compared with isothiazole morpholinone and bio-dispersant DREWSPERSE738, sterilization efficiencie of chlorine ingot and sodium hypochlorite on suspended and fixed microorganisms were the higher in the power circulating cooling water system makeup by municipal reclaimed water. Chlorine ingot was selected as microbial control agent due to its stronger UV resistant ability in outdoor environment. At the same time, dosing period was determined for3days according to effect of chlorine ingot on total number of bacteria, iron bacteria and sulfate reducing bacteria. Orthogonal test showed that sterilizing rate of chloride ingot increased when dosages of scale and corrosion inhibitor, carbon steel corrosion inhibitor and brass corrosion inhibitor increased. By the dynamic experiment insite, chemical agent control technology was optimized:chlorine150mg/L, scale and corrosion inhibitor8mg/L, brass corrosion inhibitor6mg/L and carbon steel corrosion inhibitor6mg/L.
引文
[1]唐玉斌.水污染控制工程[M].哈尔滨:哈尔滨工业大学出版社,2006.7:2
    [2]傅涛,郑兴灿,陈吉宁.再生水的战略思考与定位,中国给水排水2007,vol.23(18):5-9
    [3]中国建设部、科技部,建科[2006]100号《城市污水再生利用技术政策》
    [4]仇保兴,我国城镇污水处理发展的状况和面临的挑战,给水排水,2010,36(02):1-3
    [5]2011年09月09日17:49中国财经报,火电用水占工业用水1/6火电节水需做好,http://finance.sina.com.cn/roll/20110909/174910462210.shtml
    [6]Ethan T. Smith, Harry X. Zhang. The case for using reclaimed water [J]. Power Engineering,2008, 112(11):1-7
    [7]韩剑宏.中水回用技术及工程实例[M].北京:化学工业出版社,2004.8:242-275
    [8]安鼎年,张俊贞.污水回用技术国内外现状及发展远景[J].中国环保产业,2003,3:34-37
    [9]A. S.Thomas. Palo verde nuclear generating station secondary sewage effluent as a cooling water source[C],1990, (2):26-34
    [10]A. D.Robert. Controlling microbiological fouling in a refinery cooling water system using sewage treatment plant effluent as makeup[C].1996, (25):254-266.
    [11]伊华,彭辉.我国城市污水工业回用的现状及存在问题的探讨[J].重庆环境科学,2000,22(3):46-48.
    [12]T. A. Shaw. Palo verde nuclear generating station secondary sewage effluent as a cooling water source [J]. International Water Conference.1990, (2):26-34.
    [13]C. Kevin, J.Richard, W.Shuler et al. Wastewater recycle at the bi-provincial upgrader. Saskatchewan international water conference. Lloydminster,1994(15):102-111
    [14]D. Robert, A. Mohsen. Controlling microbiological Fouling in a Refinerycooling water System using Sewage treatment Plant Effluent as Makeup [J]. International Water conference. 1996(25):254-226
    [15]C.Kevin, F.Paul. Wastewater recycle at the bi-provincial upgrader [J]. International Water Conference.Lloyd minster,1984(18):394-355
    [16]王翔,王佩璋.废(污)水回用于火电厂水系统的实践和经验[C].全国火力发电技术年会论文集,2000.
    [17]金兆丰,徐竟成.城市污水回用技术手册[M].北京:化学工业出版社,2003.11:33-36、355-357
    [18]B. Wijesinghe. B.Ralph, K. Reuse of treated sewage effluent for cooling water make up:a feasibility study and a pilot plant study [J]. Water Science & Technology,1996,30(10):363-369.
    [19]L. M. Espinosa, M. Victoria Orozco-Borbon, Patricia Silva-Nava. Quality assessment of reclaimed water for its possible use for crop irrigation and aquifer recharge in Ensenada, Baja California, Mexico [J]. Water Science & Technology,2004,50(2):285-291
    [20]W. H. Traves, E. A. Gardner, B. Dennien and D. Spiller. Towards indirect potable reuse in South East Queensland [J]. Water Science & Technology,2008,58(1):153-160
    [21]T. Cazurra. Water reuse of south Barcelona's wastewater reclamation plant [J]. Science Direct,2008,43-51.
    [22]M.Ogoshi, Y.Suzuki. Water reuse in Japan [J]. Water Science & Technology,2001,43(10):7-8.
    [23]Y. Kahana, M. Avnon. Water conservation measures in Israel. Israel Center for Waterworks Equipment and Israel Municipal Water Works Administration [J].1995.
    [24]Friedler, Eran. Water reuse an integral part of water resources management:Israel as a case study [J]. Water Policy,2001,3(1):29-39.
    [25]L. Pereira, S. T. Oweis, Zairi A. Irrigation management under water scarcity [J]. Agric.Water Manage.2002(57):175-206.
    [26]王洪臣,甘一萍,王佳伟.高碑店污水处理厂改造及再生利用工程方案比选[J].给水排水,2008,34(6):31-33.
    [27]白宇,刘金瀚等.酒仙桥臭氧-活性炭-反硝化生物滤池在污水再生回用中的应用[J].给水排水,2008,34(8):49-52.
    [28]刘钧哲,李珊珊.用于电厂循环冷却水的二级出水再生工艺研究[J].沈阳工程学院学报(自然科学版),2006,2(3):222-224.
    [29]鲁燕宁,刘慧娟.再生水在电厂中的应用与系统设计[J].电力勘测设计,2008,4(2):73-76.
    [30]虞启义,张青,顾小红.城市污水回用于循环冷却水的探讨[J].废水处理,2002,(1):31-34.
    [31]李五勤,张军.北京市再生水利用现状及发展思路探讨.北京水务,2011,(3):26-28
    [32]周本省.工业水处理技术(第二版),北京:化学工业出版社,2002年5月
    [33]方辉.电厂冷却水微生物生长规律及控制措施研究:[学位论文].山西大学,2008
    [34]齐冬子.敞开式循环冷却水系统的化学处理.北京:化学工业出版社,2001
    [35]G. G. Geesey, J. D. Bryers. Biofilms II, process analyses and applications[M]. New York: Wiley-Liss,2000:237-279
    [36]H. C. Flemming. Economical and technical overview [A]. In:Microbially Influenced Corrosion of Materials[C]. Heidelberg:Springer-Verlag,1996
    [37]T. R. Blott. Fouling of heat exchangers [M]. Amsterdam:Elsevier,1995:1-12
    [38]J. Taborek, R. B. Aoki, R. B. Ritter, J. W. Palen, J.G. Knudsen. "Fouling:The unresolved problem in heat transfer", Chemical Engineering Progress,1972,68:59-67
    [39]S. A. Parsons. Overall of recent magnetic treatment research at Cranfield University,3rd symposium, Cranfield University, UK (April 1999)
    [40]M. Steinhagen. Fouling of heat exchanger surfaces. Chemistry&industry,1995, (3):171-175
    [41]徐志明,杨善让,郭淑清等.电站凝汽器污垢费用估算.动力工程,2005,25(1):102-106
    [42]徐志明,杨善让,郭淑清等.电站锅炉污垢费用估算.中国电机工程学报,2004,24(2):196-200
    [43]Z. M. Xu, Z. B. Zhang, S. R. Yang. Costs due to utility fouling in China. Engineering International Conference on Heat Exchanger Fouling and Cleaning Vll. TOmar, Portugal, July 1-7,2007
    [44]E. N. Sieder. Application of fouling factors in the design of heat exchangers, Heat Transfer, ASME, NewYork:1935,82-86
    [45]TEMA. Tubular Exchanger Manufacture Association, Standards of tubular exchanger manufactures association, New York,1941
    [46]D. Q. Kern and R.E.A. Seaton theoretical analysis of thermal surface fouling. Chem.Engineering Progress,1959,4:258-262
    [47]J. C. Knudsen, Edit by PJ. Marto and R. H. Nunn. Power condenser heat transfertechnology.Washington D.C.Hemisphere Pub.Co.,1981:213-246
    [48]S. C. Yiantsion and A.J. Karabelas. Fouling of tube surfaces:modeling of removal kinetics. AIChE J.1994,40(11):1804-1813
    [49]杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社,1995:23-85
    [50]J. H. Howarth, N. F. Glen, A. M. Jenkins. The use of fouling monitoring techniques. In: BottTR, eds. Understanding heat exehanger fouling and its mitigation.New YOrk:Begell House, Inc.,1999:309-314
    [51]H. M. Steinhagen, Q. Zhao, M. Reiss. Iron implantation-a new method of Preparing low fouling metal surfaces. In:BottTR, eds. Understanding heat exehanger fouling and its mitigation. New York:Begell House Inc.,1999:145-154
    [52]E. F. C. Somerscales and E. Knudsen. Fouling of Heat Transfer Equipment. Washington: Hemisphere Publishing Corp.,1981:146-149
    [53]S. K. Beal. Particulate fouling. Fouling of Heat Transfer Equipment, Hemisphere Publishment Corporation, New York,1981:675-679
    [54]F. L. Roe, Z. Lewandowski, T. Funk. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surface. Corrosion,1996,52:744-752.
    [55]A. P. Watkinson and D. I. Wilson, Chemical reaction fouling:A review, Experimental Thermal and Fluid Science,1997,14:361-374
    [56]张仲彬.换热器表面污垢特性的研究.华北电力大学博士论文.2009:1-15
    [57]N. Epstein, Thinking about heat transfer fouling:A5x5 Matrix. Heat Transfer Engineering, 1983,4(1):43-56
    [58]RM Donlan, Biofilm:microbial life on surfaces. Emerg Infect Dis,2002,8:881-890
    [59]R. Donlan, W. Costerton, Biofilm:survival mechanisms of clinically relevant microorganisms. Clin Micro Rev,2002,15:167-193
    [60]L. S.Percival, Review of potable water biofilms in engineered systems [J]. British corrosion journal,1998,33(2):130-137
    [61]刘雨,赵庆良,郑兴灿,生物膜法污水处理技术,北京:中国建筑工业出版社,2000,14-16
    [62]余国忠,王根凤,龙小庆等.给水管网的细菌生长可能机制与防治对策[J].中国给水排水,2000,16(8):18-20.
    [63]P. S. Meadows and J. G. Anderson. The Microbiology of interfaces in the marine environment. Progress in Industrial Microbiology. M. J. Bull ed. (Elsevier Publ.),1979,13:207-265.
    [64]G. I. Loeb and R. A. Neihof. Marine Conditioning Films. In Applied Chemistry at Protein Interfaces. Edited by R. E. Baier. Advances in Chemistry Series 145, Washington, D.C.: Applied Chemistry Society.1975:319-335
    [65]R. F. Baier, Substrata Influences on Adhesion of Microorganisms and Their Resuitant New Surface Properties. In Microbial adhesion to Surfaces, edited by G. Bitton and K. C. Marshall. New York:John Wiley.1980,60-104.
    [66]W. G. Characklis. Mierobiai Fouling:A Process Anaiysis. In Fouling of Heat Transfer Equipment edited by E.EC. Somerscales and J.G. Knudsen. Washington D.C.:Hemisphere, 1981:251-291.
    [67]W. A. Corpe. Microbail Surface Components Involved in Adsorption of Microorganisms Onto Surfaces. In Adsorption of Microorganisms to Solid Surfaces, edited by G. Bitton and K. C. Marshall. New York:John Wiley.1980:106-144
    [68]S. M. Lett, L.A.Mermel, C. Giorgio, et al. Community outbreak of Legionairs' disease:an investigation confirming the potential for cooling towers to transit legionella species [J].Clinical Infectious Diseases,1996,22:257-261.
    [69]K.C. Marshail. Bacterial Behavior at Solid Surfaces-A Prelude to Microbial Fouling. In E.F.C. Somerscales and J.G. Knudsen (Eds.). Fouling of Heat Transfer Equipment:Proceedings of International Conference at Rensselaer Polytechnic Institute USA.1979,4:13-17.
    [70]K. C. Marshall, R. Stout, and R. Mitchell. Selective sorption of bacteria from seawater. Canadian Journal of Microbiology,1971,17:1413-1416.
    [71]K. C. Marshall. Theory and practice in bacterial adhesion processes. In Proceedings of the Fourth International Sylnposium on Microbiology, Ljubljana,1986:112-116.
    [72]C.S.Ho. An understanding of the forces in the adhesion of microoganisms to surfaces. Process Biochemistry,1986,121(5):148-153.
    [73]J. J. Brights and M. Fletcher. Amino Acid Assimilation and Electron Transport System Activity in Attached and Free Living Marine Bacteria. APPlied and Environmental Microbiology,1983,45:818-825.
    [74]S. Y. R. Pugh, I. S. Gosling, H. Simmons and D.P.Kelly. Analysis of Biofilms Subjected to Flowing Conditions. In International Conference on Fouling in Process Plant, Oxford.1988, Chapter 4:9-15.
    [75]任基成,费杰.城市供水管网系统二次污染及防治.北京:中国工业出版社,2006
    [76]B. Nyvad, O. Fejerskov. "Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination", Community Dentistry and Oral Epidemiology,1997, Vol.25 (1):69-75.
    [77]C. W. Keevil, J. T. Walker. Normarski DIC microscopy and image analysis of biofilms. 1992, Binary 4:93-95.
    [78]J. R Lawrence, D. R. Korber, B. D. Hoyle, and J. W. Costerton. Optical sectioning of microbial biofilms. J. Bacteriol.1991,173:6558-6567.
    [79]P. S. Stewart, R. Murga, R. Srinivasan,et al. Biofilm structural heterogeneity visualized by three microscopic methods.Water Research.1995,29(8):2006-2009
    [80]H. C. Flemming, A. Leis. Sorption properties of biofilms. In:Bitton G (ed.) Encyclopedia of environmental microbiology,. Wiley-Interscience, New York,2002,5:2958-2967
    [81]A. D. Benetti. Composition, fate and transformation of extracellular polymers in wastewater and sludge treatment process [D]. A Dissertation presented to the Faculty of the Graduate School of Comell University for the Degree of Doctor of Philosophy,2000
    [82]H. C. Flemming, Thomas R. Neu, and Daniel J. Wozniak. The EPS matrix:the "House of Biofilm Cells". Bacteriol.2007,189(22):7945-7947
    [83]SS Branda, A Vik, L Friedman, R Kolter. Biofilms:the matrix revisited. Trends Microbiol, 2005,13:20-26
    [84]H.Laue, A. Schenk, L. Hongqiao, L. Lambertsen, T. R. Neu, S. Molin, and M. Ullrich. Contribution of alginate and levan to biofilm formation by Pseudomonas syringae. Microbiology,2006,152:2909-2918
    [85]L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak. Analysis of Pseudomonas aeruginosa conditional Psl variant reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol.2006,188:8213-8221
    [86]P. Larsen, J. L. Nielsen, M. S. Dueholm, R. Wetzel, D. Otzen, and P. H. Nielsen. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. [Epub ahead of print.] doi:. 10.1111/j.1462-2920.2007.01418.x.
    [87]U. Bockelmann, A. Janke, R. Kuhn, T. R. Neu, J. Wecke, J. R. Lawrence, and U. Szewzyk.. Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol. Lett. 2006,262:31-38
    [88]C. Mayer, R. Moritz, C. Kirschner, W. Borchard, R. Maibaum, J. Wingender, HC. Flemming. The role of intermolecular interactions:studies on model systems for bacterial biofilms. Int JBiol Macromol 1999,26:3-16
    [89]鹿雯.胞外聚合物EPS对污泥理化性质影响研究.环境科学与管理,2007,32(5):24-28
    [90]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影响研究[J].环境科学学报,2004,24(4):614--620.
    [91]刘芳,侯衍美,赵朝成等.水质对生物黏泥胞外聚合物成分的影响,中国石油大学学报(自然科学版),2009,33(4):99-104
    [92]曹秀芹,赵自玲.胞外聚合物(EPS)构成的影响因素分析,2010,33(S):420-471.
    [93]李久义,左华,栾兆坤等.不同基质条件对生物膜细胞外聚合物组成和含量的影响[J].环境化学,2002,21(6):546-551.
    [94]S. Nataraj, R.Schomacker, M. Kraume, et al. Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration [J]. Journal of Membrane Science, 2008,308(1-2):152-161
    [95]E. Ihan-sugur, A. Cotuk. Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system [J]. Corrosion Science,2010,52(1):161-171
    [96]M. F. Dignac, V. Urbain, D. Rybacki, et al. Chemical description of extrallular polymers: implication on activated sludge flocstructure [J]. Water Science and Technology,1998, 28(8-9):45-53
    [97]J. Wingender, T. R. Neu, H. C. Flemming, Microbial extracellular polymer substances [M]. Berlin:Springer,1999:1-19
    [98]U. Metzger, P. Le-Clech, R. M. Stuetz, et al. Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes[J] Journal of Membrane Science,2007,301(1-2):180-189
    [99]F. Jorand, F. Boue-Bigne, J. C. Block, et al. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances [J]. Water Science and Technology,1998, 37(4-5):307-315
    [100]L. Zhang, X. Feng, N. Zhu, et al. Role of extracellular protein of polymeric fouling in membrane bioreactors and the effect of different filtration modes [J]. Journal of Membrane Science,2007,301(1-2):180-189
    [101]H. Susanto, H. Arafat, E.M. Janssen, et al. Ultrafiltration of polysaccharide-protein mixtures:Elucidation of fouling mechanisms and fouling control by membrane surface modification [J]. Separation and Purification Technology,2008,63(3):558-565
    [102]N. O. Yigit,1. Harman, G. Civelekoglu, et al. Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions [J]. Desalination,2008,231 (1-3):124-132
    [103]F. Y. Bois, T. Fahmy. Dynamic Modelling of Bacteria in a Pilot Drinking Water Distribution System. Water Research.1997,31(12):5618-5623
    [104]姜登岭,曹国凭,张树德等.管网水中AOC-MAP与细菌再生长的关系研究[J].中国给水排水,2006,22(7):50-53.
    [105]吴卿,赵新华.饮用水细菌总数及相关指标关系[J].中国公共卫生,2006,22(3):280-281.
    [106]李爽,张晓健.给水管壁生物膜的生长发育及其影响因素[J].中国给水排水,2003,19(13):49-52.
    [107]姜登岭,张晓健.饮用水中磷对微生物生长的限制作用,中国给水排水,2004,20(1):26-28
    [108]Sathasivan A, Ohgaki S. Application of new bacterial regrowth potential method for water distribution system—a clear evidence of phosphorus limitation [J]. Water Research,1999,33(1):137-144.
    [109]B. Magali, K. Boniface, L. Patrick, et al. Biofim responses to gaeing and to a high phosphate load in a bench-scale drinking water system [J]. Water Research,2003,37:1351-1361
    [110]刘文君,施周.水质与水处理-公共供水技术手册[M].中国建筑工业出版社,2008.
    [111]OECD (Organization for Eeonomic Development).1982. Eutrophication of Waters: Monitoring Assessment and Control. OECD, Paris
    [112]周律,刘晶晶,甘一萍等,再生水回用中氮磷对两种典型水华藻类生长影响研究,给水排水,2009,35(6):40-42
    [113]方浩.中原油田污水处理中化学药剂的应用[J].油田化学,1988,5(4):268-273
    [114]P. Busalmen, M. A. Frontini, S. R. Desanchez, Proc.9th Inc.Congress On Marine Corrosion and Fouling, Portsmouth, UK, July 1995,17-21
    [115]张小里,刘海洪,陈开勋等.硫酸盐还原菌生长规律的研究.西北大学学报,1999,29(5):397-402
    [116]俞敦义,彭芳明,刘小武.环境对硫酸盐还原菌生长的影响.材料保护,1996,29(2):1-3
    [117]P. D. Franzmann, C. M. Haddad, R. B. Hawkes, W J Robertson, J J Plumb. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea:Application of the Ratkowsky equation [J].Minerals Engineering,2005, 18(13-14):1304-1314.
    [118]G. Stotsky. Infiuence of Clay Minerals on Microorganisms. Can. J. Microbiology.1966, 12,831-848.
    [119]Z. FiliP and T. Hattori. Utilization of Substrates and Transfermation of Solid Substrate. In Microbial Adhesion and Aggregation, K.C.Marshall, Ed. PP.251-282. Springer Verlag, Berlin.1984
    [120]K. C. Marshall. Adsorption of Microorganisms to Solids and Sediments. In Adsorption of Microorganisms to Surfaces, G. Bitton and K.C. Marshall, Eds:317-329. Wiley, NewYork,1989
    [121]G. Maghaiinink, M. J. Block, J.C. LeyVal, C. Bottero, J.Y. and Villemin. Biodegradation of Naphthalene in Polyacryamide Suspensions. Water Sci. Technol,1995,31(1),85-94
    [122]R. S. Srinivasan, P. Griebe, T. Chen, C.I. and X. Xu. Biocide Parameters Influnencing Biocide Efficacy. Biotech. Bio-eng.1995,46(6),553-560
    [123]尹宝俊,赵文轸.金属微生物腐蚀的研究.四川化工,2004,7(1):30-33
    [124]L. Tuhela, L. Carlson, O.H. Tuovinen. Ferryhydrite in water well and bacterial enrichment cultures. Water Research,1992,26(9):1159-1162
    [125]俞敦义,彭芳明,吕战鹏.中原油田文10-1井套管腐蚀原因分析.中国腐蚀与防护学报,]996,16(1):64-68
    [126]W. G. Characklis and K.E. Cooksey. Biofilms and Microbial Fouling. Advances in Applied Microbiology,1983,29:93-138.
    [127]D. Schoenen, R. Schulze-Robbecke, and N. Schidewahn. Microbial Contamination of Water by Materials of Pipes and Hoses.2d Communication, Growth of Legionella Pneumophilla. Zentralblatt fur Bakteriology, Hygiene and Parasitenkunde,1988.186:326-332.
    [128]K. Pedersen. Biofilm development on stainless steel and PVC surfaces in drinking water. Water Research,1990,24:239-243.
    [129]H. F. Ridgway. Microbial Fouling of Reverse Osmosis Membranes:Genesis and Control. In:Biological Fouling of Industrial Water Systems. Edited by G.G. Geesey and M.W. Mittelman. San Diego, Calif.:Water Micro Systems,1987:138-193.
    [130]H. C. Flemming and G. Schaule. Investigations on Biofouling of Reverse Osmosis and Ultrafiltration Membranes. Part 1, Initial Phase of Biofouling. Vom Wasser 71:207-223.1988
    [131]P. C Miller. Biological Fouling Film Formation and Destruction. In Phd. Thesis University of Birmingham. Chemical Engineering Department,1982.
    [132]M. Pujo and T. R. Bott. Effects of Fluid Velocities and Reynolds Numbers on Biofilm Development in Water Systems. In Keffer, J.F., Shah, R.K. And Ganie, E.N. Eds. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics,1991, Elsevier, New York,1358-1362
    [133]P. D. Franzmann, C. M. Haddad, R. B. Hawkes, etal. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching bacteria and archaea:application of the Ratkowsky equation[J]. Minerals Engineering,2005,18(13-14):1304-1314.
    [134]J. C. Tardy, M. Magot, F. Laigret, et al. Desulfovibrio.gabonensis sp. Nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline, Int.Jour.Of Systematic Bacteriology,1996,46:710-715
    [135]G. H. Booth, A. K. Tiller. Cathodic characteristics of mild steel in suspensions of sulfat-reducing bacteria. Corr.Sci,1968, (8):583-600
    [136]J. N. Wanklyn, C. J. P. Spruit. Influence of sulfate-reducing bacteria on the corrosion potential of iron. Nature,1952,169:928-929,
    [137]DD Mara, DJA Williams. The mechanism of sulphide corrosion by sulphate-reducing bacteria In:Walters A M, Hueck-van der Plas E H. Biodeterioration of materials. Applied Science Publishers, London; 1972, (2):103-113
    [138]JA Costello. Cathodic depolarization by sulfate-reducing bacteria S Afr J Sci 70:202-204,1974
    [139]DC White, P. D. Nivens, J. Nichols, et al. Role of aerobic bacteria and their extracellular polymers in facilitaion of corrosion:use of fourier transforming infrared spectroscopy and signature phospholipid fatty acid analysis. In:Dexter SC (ed.) Biologically induced corrosion. NACE, Houston,1985:233
    [140]W. H. Dickinson, Z. Lewandowski. Manganese biofouling and the corrosion behavior of stainless steel. Biofouling,1996,10:79-93
    [141]H. C. Flemming and G. G. Geesey. Biofouling and biocorrosion in industrial water systems. Springer-Verlag Berlin, Heidelberg,1991
    [142]N. Washizu, Y. Katada, T. Kodama. Role of H2O2 in microbially influenced ennoblement of open circuit potentials for type 316L stainless steel in seawater. Corrosion science,2004,46: 1291-1300
    [143]I. B. Beech, J. A. Sunner, K. Hiraoka. Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol,2005; 8(3):157-168
    [144]Z. Lewandowski and H. Beyenal. Mechanisms of microbially influenced corrosion. Springer Series on Biofilms, Volume 4. Springer-Verlag Berlin Heidelberg.2009:35-64,
    [145]李淑英.循环冷却水系统中立式蒸发器腐蚀原因分析.材料科学与工艺,2007,15(1):31-39
    [146]应一梅等.循环冷却水输水管壁生物膜生长发育及微生物腐蚀问题研究.给水排水,2008(6):117-121
    [147]L. E. Hostis, C. Comperer, C. Desloais. Characterization of biofilms formed on gold in natural seawater by oxygen diffusion analysis [J]. Corrosion,1997,53(1):4-10
    [148]J. A. Costello. Cathodic depolariozation by sulfate-reducing bacterial. Sci.,1974,70:202-204
    [149]郭鹏.微生物对碳钢海水的影响.[硕士论文].中国海洋大学,2006
    [150]D. G. Honneysett, et al. Microbiological Corrosion Control in a Cooling water system[J]. Materials Performance,1988,24(10):34
    [151]R. U. Vaidya. Corrosion of Mild Steel under Anaerobic Biofilm [J]. Corrosion,1997,53(2): 136-148
    [152]X. J. Su, Q. Zhao, S.Wang, et al. Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion [J]. Surface and Coatings Technology,2010,204(15): 2454-2458
    [153]林安,程学群,张三平等.纳米二氧化钛表面化学改性及在涂料中的应用[J].材料保护,2002,35(11):6-7
    [154]刘智安.电厂水处理技术[C].中国水利水电出版社,2009年2月
    [155]王祥三,王平.磁化污水的生物效应试验[J].环境科学与技术,2000(2):33-36.
    [156]秦生巨,张贤良,郭和厚等.噬菌蛭弧菌对河水中大肠菌群除菌作用的观察[J].中国消毒学杂志,1988,8(3):64-65.
    [157]王劲松.循环冷却水中微生物的控制[J].广州环境科学,2002,17(3):5-8.
    [158]J. Kim, H. J. Park, J. H. Lee, et al. Differential effect of chlorine on the oxidative stressgeneration in dormant and active cells within colony biofilm[J].Water Research,2009,43(20):5252-5259
    [159]T. Schmid, U. Panne, J. Adams, et al. Investigation of biocide efficacy by photoacoustic biofilm monitoring [J]. Water Research,2004,38(5):1189-1196
    [160]中国石油大学(华东)2010马涛博士论文《循环冷却水水质条件对生物粘泥性质及控制的影响研究》
    [161]V. Lazarova, P. Savoye, M. L. Janex, et al. Advanced Wastewater Disinfection Techonlogies. State of the Art and Perspectives [J]. Water Science Technology,1999,40(4-5): 203-213.
    [162]S. Shu, D. Zhang, Y. Wu,. Detecting Pipe Wall Biofilms in Water Distribution System. Energy Procedia,2011,11:3085-3090
    [163]A. W. Lauren, K. J. Patrick, G. Eugenio, et al. Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems. Water Research,2010,44: 5367-5375
    [164]H. Wang, C. Hu, X. Hu, et al. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Research,2012,46(03):1070-1078
    [165]GB50050-2007工业循环冷却水处理设计规范,北京:中国极化出版社,2008
    [166]任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学,科学出版社,2009.8,北京
    [167]王泽红,乔景慧,韩跃新等.pH值对硫酸钙晶须直径的影响,金属矿山,2004,(10):39-42
    [168]XING Xiokai,Ma Chongfang, CHEN Yongchang, A experimental study of influence of pH on calcium carbonate crystallization fouling, PETRO-CHEMiCAL EQUIPMENT,2004,33(5):11-13
    [169]鹿雯.胞外聚合物EPS对污泥理化性质影响研究.环境科学与管理,Vol.32,No.5,2007
    [170]蔡春光,刘军深,蔡伟民.胞外聚合物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [171]朱邦辉,万金保,好氧颗粒污泥中胞外聚合物作用机理的探讨.江西科学,2009,27(6):848-854
    [172]张丽丽,陈效,陈建孟等.胞外多聚物在好氧颗粒污泥形成中的作用机制[J].环境科学,2007,28(4):795-799.
    [173]许保玖,给水处理理论,中国建筑工业出版社,北京,2000.10
    [174]张自杰,林荣忱,金儒霖等.给水工程,中国建筑工业出版社,北京,2000.6
    [175]周怀东等.水污染与水环境修复[M]。北京:化学工业出版社,2005.197-232
    [176]黄廷林,丛海兵,柴蓓蓓.饮用水水源水质污染控制,中国建筑工业出版社,2009.12
    [177]徐轶群,熊慧欣,赵秀兰,底泥磷的吸附与释放研究进展[J]。重庆环境科学,2003,25(11):147-149
    [178]F. L. Roe, Z. Lewandowski, T. Funk. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surface. Corrosion,1996,52:744-752.
    [179]S. Tsuneda*, H. Aikawa, H.Hayashi, A. Yuasa, A. Hirata. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, Vol.223, No.2,2003:287-292.
    [180]闫海波.活性污泥EPS的影响因素及其对污泥絮凝性影响研究,节能,2008,312(7):21-24
    [181]蒲晓芬.生物膜胞外聚合物的研究,国外医学口腔医学分册,2005,vol.32(5)
    [182]廖青,李小明,杨麒等.好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J].工业用水与废水,2008,39(4):13-19
    [183]Y. Liu, S. F. Yang, Q. S. Liu, et al. The role of cell hydrophobicity in the form action of aerobic granules [J]. Curr. Microbiology,2003,46(4):270-274.
    [184]王芳SBAR中好氧颗粒污泥的培养及特性研究[D].大连:大连民族学院,2004.
    [185]周文木,王孝杰,胡碧茹,吴文健等,海洋污损生物粘附机制及防污涂层表面工程,应用化学,2009,Vol.27,No.9:993-997
    [186]刘丽,任婷婷,徐得潜等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学2008,28(4):360-364.
    [187]M. Dubiel, C. H. Hsu, C. C. Chien, F. Mansfeld, D.K. Newan, Application Environment Microbiololical.2002,68:1440
    [188]吴志高.胞外聚合物(EPS)对污泥沉降性能的影响及其在生物除磷中的作用研究[D].重庆:重庆大学硕士学位论文,2006
    [189]李久义,左华,栾兆坤,朱宝霞,贾智萍.不同基质条件对生物膜细胞外聚合物组成和含量的影响[J].环境化学,2002,21(6):546-551.
    [190]Susanto H., Arafat H.,Janssen E.M.L.,et al.Ultrafiltration of polysaccharide-protein mixtures:Elucidation of fouling mechanisms and fouling control by membrane surface modification[J]. Separation and Purification Technology,2008,63(3):558-565
    [191]Yigit N.O., Harman I.,Civelekoglu G.,et al. Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions[J].Desalination, 2008,231(1-3):124-132
    [192]Celmer D.,Oleszkiewicz J.A.,Cicek N.Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J].Water Research,2008,42(12):3057-3065
    [193]Laspidou C.S.,Rittmann B.E.A unified theory for extracellular polymeric substances, soluble microbial products,and active and inert biomass[J]. Water Research,2002, 36(11):2711-2720
    [194]Liu Y.Q.,Liu Y.,Tay J.H.The effects of extracellular polymeric substances on the formation and stability of biogranules[J].Applied Microbiology Biotechnology,2004,65(2):143-148.
    [195]苏芳云,朱文胜,杨志强,等.减压塔填料快速腐蚀失效原因分析.石油化工腐蚀与防护.2006,23(2):42-45
    [196]文湘华、王建龙等译,里特曼(Rittmann, B.E.),麦卡蒂(McCarty, P.L.)著,环境生物技术:原理与应用,北京:清华大学出版社,2004.8
    [197]F. L. Roe, Z Lewandowski, T Funk. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surface. Corrosion,1996,52:744-752.
    [198]高延敏,陈家坚,余刚,等.环烷酸对A3钢腐蚀机理的研究.腐蚀科学与防护技术.2000,12(1):27-29
    [199]陈碧凤,杨启明.六种材料环烷酸腐蚀的动力学分析.石油炼制与化工.2006,37(5):49-52
    [200]罗正贵,闻荻江.铜的腐蚀及防护研究进展[J].武汉化工学院学报,2005,27(2):17-20.
    [201]李进,张万友,李久义等.发电厂冷却系统不锈钢生物膜腐蚀的比较研究[J].中国电机工程学报,2010,30(32):63-70
    [202]闫林娜,尹衍生,常雪婷,等.304不锈钢在微生物介质中的腐蚀行为[J].中国腐蚀与防护学报,2008,28(1):34-37.
    [203]李勇,朱应禄.黄铜脱锌腐蚀的研究进展[J].腐蚀与防护,2006,27(5):222-225.
    [204]齐登谷.异噻唑啉酮杀菌剂,工业水处理,1995,15(2):9-11.
    [205]莫立焕,陈克复,陈祖鑫.异噻唑啉酮杀菌防腐剂的杀菌效果纸和造纸2003,(3):42-44
    [206]何明军,黄健,李春国.新型杀菌剂与生物分散剂在电厂循环水中的应用.工业水处理,2007,27(11):90-92
    [207]王洪英,魏新,郦和生,王岽.三氯异氰尿酸应用特性的研究.石油化工腐蚀与防护,2012,29(3):5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700