用户名: 密码: 验证码:
轻型消能摇摆结构体系抗震性能评估与动力可靠度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国现有及新建建筑中,钢筋混凝土框架结构是最主要的结构体系,但是从近年来几次实震的震害来看,钢筋混凝土框架结构在地震中的表现并不尽如人意。究其原因不难发现,现行的钢筋混凝土框架结构抗震设计方法在整体的抗震设计上仍存在不均匀性,同时由于各方面条件的限制在施工过程中存在诸多不确定性的危险因素,因此钢筋混凝土框架结构在强烈地震作用下会有很多的安全性问题。如何切实有效的提高现有或新建钢筋混凝土框架结构在地震作用下的可靠性和安全性,成为工程设计人员与研究人员关注的焦点之一。本文针对这一问题,在现有研究成果的基础之上提出了轻型消能摇摆结构体系的结构设计方案,利用基于性能的抗震设计理论,系统的研究了轻型消能摇摆结构体系在地震动作用下的变形模式、耗能机制以及动力可靠度等问题。主要内容包括以下几个方面:
     (1)首先以实际工程结构为研究对象,分别构建了钢筋混凝土框架结构、轻型摇摆刚架结构和轻型消能摇摆刚架结构的精确有限元模型。其次对钢筋混凝土框架结构体系和轻型摇摆刚架结构体系分别进行基于位移的静力弹塑性推覆分析。最后以所获得分析结果为依据,结合我国现行建筑抗震设计规范,着重探讨了不同刚度比的钢管混凝土摇摆刚架对结构体系整体抗震性能的影响。
     (2)针对钢筋混凝土框架结构、轻型摇摆刚架结构和轻型消能摇摆刚架结构三种结构体系建立了动力计算模型和运动微分方程。首先利用动力弹塑性时程分析法对其进行分析求解,获得了各结构体系在地震动作用下的结构动力响应。其次从能量的角度出发,利用能量法对三种结构体系的耗能机制进行计算和研究。最终探讨了三种结构体系在强烈地震作用下的动力响应和耗能机制对各结构体系抗震性能的影响。
     (3)采用增量动力分析方法,选取实际地震动记录20条,对钢筋混凝土框架结构、轻型摇摆刚架结构和轻型消能摇摆刚架结构三种结构体系进行从弹性到弹塑性,直至结构失效全过程的分析。依据所获取的分析结果,绘制了各结构体系基于不同损伤指标的IDA曲线,并分别对其进行16%、50%、84%分位的IDA曲线分析,获取了不同水平地震动作用下各结构体系的抗震性能水准。
     (4)对轻型摇摆刚架结构体系的随机响应进行了分析,在考虑了地震动作用的不确定性的同时,利用虚拟激励法与状态空间分析相结合的方法,计算了不同刚度比的钢管混凝土摇摆刚架对轻型摇摆刚架结构体系在多遇及罕遇地震动作用下动力可靠度的影响。根据所获取的各层的条件失效概率进一步计算了各结构体系的条件失效概率
     (5)针对各结构体系的地震动响应,进行了模拟地震动的振动台试验研究。结合实际工程和理论分析,分别制作了钢筋混凝土框架结构、轻型摇摆刚架结构和轻型消能摇摆刚架结构的的缩尺试验模型,并最终进行了33个工况的振动台实验,得到了动力荷载作用下结构模型各测点的动力响应数据。通过与理论分析和数值仿真的计算结果相对比,发现试验的最终结果与理论分析的规律相吻合。
Among the existing and new buildings in our country, the reinforced concrete frame structure is the most primary structure system. However, from the earthquake damage of the real earthquakes in the recent years, the performance of the reinforced concrete frame structure is not so satisfactory. It is not difficult to find out that the existing Anti-seismic designing method of the reinforced concrete frame structure is uneven in terms of the whole Anti-seismic design. Meanwhile, due to limits of various aspects, many dangerous factors exist in the process of the construction. Therefore, the reinforced concrete frame structure has many safety problems under the influence of violent earthquakes. How to enhance the reliability and safety of the reinforced concrete frame structure under the influence of violent earthquakes in an effective way has become one of the focuses of the engineering designers and the researchers. Aiming at this problem, this paper proposes the designing scheme of light energy-dissipation swaying structure system on the basis of the existing research result by making use of the anti-seismic design theory based on the performance and studies the deformation pattern, energy-dissipation mechanism and dynamic reliability of the light energy-dissipation swaying structure system under the influence of the earthquake. The main content includes the following aspects:
     (1) First of all, establish the accurate finite element model of the reinforced concrete frame structure and the light energy-dissipation swaying structure system respectively by taking the actual engineering structure as the research target. Secondly, make pushover analysis of the reinforced concrete frame structure and the light energy-dissipation swaying structure system respectively based on the displacement. Finally, focus on the discussion of the influence on the anti-seismic performance of the structure system by the reinforced concrete swaying structure of different stiffness ratio by combining the regulation of the existing anti-seismic design in accordance with the analysis result.
     (2) Having established the dynamic calculating model and differential equation of motion by aiming at three structure systems:the reinforced concrete frame structure and the light swaying rigid frame structure and light energy-dissipation swaying rigid frame structure. First of all, make analysis by adopting the method of dynamic elastic-plastic time history analysis and obtain the structural dynamic response of each structure system under the influence of earthquakes. Secondly, calculate and study the energy-dissipation mechanism of three structure systems with the energy method from the perspective of energy. Finally, discuss the influence on the anti-seismic performance of the three structure systems by the dynamic response and energy-dissipation mechanism under the influence of violent earthquakes.
     (3) Select20records of the real earthquakes and simulate the process of the three structure systems above, from elasticity, elastic-plastic to the ineffectiveness of the structure by adopting the increment dynamic analysis method. Draw the IDA curve of each structure system based on the different damage criteria according to the analysis results. Make16%,50%and80%IDA curve analysis of them respectively and obtain the anti-seismic performance level of each structure system under the influence of earthquakes of different levels.
     (4) Make analysis of the random response of the light swaying rigid frame structure system. On considering the uncertainty of the earthquake, calculate the influence of the dynamic reliability of the light swaying rigid frame structure by the reinforced concrete swaying rigid frame structure of different stiffness under the influence of frequent and rare earthquakes by adopting the method of combining pseudo excitation method with state space analysis. Make further calculation of the conditional failure probability of each structure system according to the conditional failure probability of each level obtained.
     (5) Conduct the simulative research on the shaking table tests by aiming at the seismic response of each structure system. Formulate the reduced scale test model of the reinforced concrete frame structure, light swaying rigid frame structure and light energy-dissipation swaying rigid frame structure respectively by combining the actual project and theoretical analysis. Conduct the shaking table tests of33working conditions in the end and get the dynamic response data of each measuring point of the structure model under the influence of dynamic loading. Find that the final results coincide with the regular patterns of the theoretical analysis by contrasting the calculating results of the theoretical analysis with that of the numerical simulation.
引文
[1]宋治平,张国民,刘杰等.全球地震灾害信息目录[M].北京:地震出版社,2011
    [2]周福霖.工程结构减震控制[M].北京:地震出版社,1997
    [3]谢礼立.抗震性态设计和基于性态的抗震设防.大型复杂结构的关键科学问题及设计理论研究文集.大连:大连理工出版社,2000
    [4]Yao,J,T,P., Concept of structural control, J.Struct, Div., ASCE. 98,1567-1574,1972.
    [5]刘季,滕军.结构振动控制的理论与实践[J].哈尔滨建筑大学学报,1990,23(4):10-19.
    [6]周锡元,阎维明,杨润林.建筑结构的减震、减震和振动控制[J].建筑结构学报,2002,23(2):2-12
    [7]刘文光译.隔震结构设计/日本建筑学会著[M].北京:地震出版社,2006.3
    [8]洗巧铃,周福霖,王伟.橡胶垫框架结构试验研究[J].世界地震工程,1996,17(2):23-28
    [9]唐家祥,李黎,李英杰等.叠层橡胶基础房屋结构设计与研究[J].建筑结构学报.1996,17(2):37-47
    [10]杜永峰,李慧.关于四川汶川5.12大地震时甘肃省陇南市武都区—隔震建筑宏观性能的调研报告[R].兰州:兰州理工大学,2008
    [11]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社,1993
    [12]Building Seismic Safety Council. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA273/274, Federal Emergency Management Agency,1997, Washington, D. C.
    [13]Markesan., and Constantinou,M.C., Analytical Model of Viscoelastic Fluid Dampers, J.Struct.Eng., ASCE,119:3310-3325,1993.
    [14]Arima F. and Miyazaki,M., A Study on Buildings with Large Damping using Viscous Damping Walls, Proceedings of Ninth World Conference on Earthquake Engineering, JAPAN,1988,5:821-826.
    [15]Miyazaki M and Mitsusaka Y Design of A Building with 20% or greater damping, Proceedings of Tenth World Conference on Earthquake Engineering, SPAIN,1992,7:4142-4148.
    [16]Constantinou,M. C. and Symans,M.D., Experimental and analytical investigation of seismic response of structures with supplemental fluid viscous dampers[R],NCEER Rep.92-0032, State Univ. of New York at Buffalo, Buffalo,N.Y.1992.
    [17]Rein horn, A. M., Li, C. and Constantinou,M. C., Experimental and analytical investigation of seismic retrofit of structures with supplement damping:Part I:Fluid viscous damping devices[R], NCEER Rep.95-0001, State Univ. of New York at Buffalo, Buffalo,N.Y.1995.
    [18]Zhang R. H, Soong T.T. and Mahmoodi P.Seismic response of steel frame structures with added viscoelastic dampers[J].Earthquake Engineering Structural Dynamics,1989,18(2).386-396.
    [19]Sheng K L and Soong T.T. Modeling of viscoelastic dampers for structural application. Journal of the Engineering Mechanics [J], ASCE, 1995,121(6):694-701.
    [20]Kelly J M, Skinner R L and Heine A J. Mechanics of Energy Absorption in Special Devices for Use in Earthquake-Resistant Structures[J]. Bull N N. National Society for Earthquake Engineering,1972,5(3).63-88.
    [21]Aiken I.D,Nims D. K, Whittaker A. S and Kelly J. M. Testing of Passive Energy Dissipation Systems[J],Earthquake Spectra,1993,9(3).335-370.
    [22]Skinner R I, Kelly 1 M, Heine, A.J and Robinson W H, Hysteretic Dampers for the Protection of Structures from Earthquake[J],Bull.n.z, Nat. Soc. for Earthquake Engineering,1993,139(1).22-260
    [23]Pall A S and Marsh C. Response of friction damped braced frames[J]. Journal of the Structural Division,ASCE,1982,108(6):2325-2336.
    [24]Aiken J D and Kelly J. M. Earthquake simulator testing and analytical studies of two energy-absorbing system for multistory structure[R]. Report No.UCB/EERC-90/03, Earthquake Engineering Research Center, University of California, Berkeley, CA,1990.
    [25]Ramirez OM, Constantinou MC, Kircher CA, Whittaker AS, Johnson MW, Gomez JD, Chrysostomou CZ. Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems[R]. Report No:MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, University of New York at Buffalo, New York,2000.
    [26]Kasai,. K., Fu,Y. Watanabe, A. Passive Control Systems for Seismic Damage Mitigation[J]. Journal of Structural Engineering,ASCE,1998, 124(5):501-512.
    [27]Yaomin Fu and Kazuhiko Kasai. Comparative study of frames using viscoelastic and viscous dampers[J]. Journal of Structural Engineering, ASCE,1998,124(5):513-522.
    [28]Lin, Y Y, Tsai, M.H., Hwang,J.S., and Chang,K.C. Direct displacement based design for buildings with passive energy dissipation systems[J]., Eng. Struct.,2003,25(1):25-37.
    [29]吴斌,欧进萍.钢筋混凝土结构的损伤控制及性能设计方法[J].2000年中国博士后学术大会论文集,土木与建筑分册:471-474.
    [30]何政.钢筋混凝土结构非线性分析及地震损伤性能设计与控制[D].哈尔滨工业大学,2000.
    [31]Sonia E. Ruiz and Hiram Badillo. Performance-based design approach for seismic rehabilitation of buildings with displacement dependent dissipators[J]. Earthquake Spectra,2001.17(3):531-548.
    [32]Wenshen pong. Performance-Based Design Examples for Steel Moment Resisting Frames with Supplemental Damping[J]. Electronic Journal of Structural Engineering,2002,2:44-58.
    [33]Jinkoo Kim and Hyunhoon Choi. Performance-based design of added viscous dampers using capacity spectrum method[J]. Journal of structural engineering,2003,7(1):1-24.
    [34]吴波,李艺华.安装速度相关型消能器结构直接基于位移可靠度的抗震设计方法[J].世界地震工程,2003,19(4):7-11.
    [35]Bruno Palazzo, Luigi PETI, Massimiliano DE IULIIS. Reduction factors for performance based seismic design of structures with supplemental dampers[J].13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada,2004,Paper No.2286.
    [36]Jinkoo Kim, Youngil Seo. Seismic design of low-rise steel frames with buckling-restrained braces[J].Engineering Structures,2004,26:543-551.
    [37]Jinkoo Kim and Hyunhoon Choi. Displacement based design of supplemental dampers for seismic retrofit of a framed structure [J]. Journal of structural engineering,2006,132(6):119-126
    [38]蒋通,贺磊.非线性粘滞阻尼器消能结构设计方法探讨[J].世界地震工程,2007.23(1):134-140.
    [39]韩建平,阎茹,李慧.基于性能的黏弹性阻尼器减震结构抗震设计[J].地震工程与工程振动,2008,28(1):175-181
    [40]邓雪松,汤统壁,周云,郭永恒.耗能减震钢结构性能水准与目标的初步研究[J].防灾减灾工程学报,2008.28(1):104-109.
    [41]Kuo-Chun Chang, Yu-Yuan Lin and Chang-Yu Chen. Shaking table study on displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers[J]. Journal of structural engineering, ASCE,2008.134(4):671-681.
    [42]George W. Housner. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963,53(2):403-417.
    [43]Hukelbridge A.A., Clough R W., Preliminary experimental study of seismic uplift of a steel frame[R], Report No.UCB/EERC-77/22,Berkely, University of California,Berkely,1977.
    [44]Ioannis N. Psycharis, Paul C. Jennings. ROCKING OF SLENDER RIGID BODIES ALLOWED TO UPLIFT[J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1983,11:57-76.
    [45]Priestley M. J. N., Evison R. J., Carr A J. Seismic response of structures free to rock on their foundations. Bulletin of the New Zealand National Society for Earthquake Engineering,1978,11(3):141-150.
    [46]Nicos Makris, Dimitrios Konstantinidis. The rocking spectrum and the limitations of practical design methodologies [J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,2003,32:265-289.
    [47]Babak Alavi, Helmut Krawinkler. Strengthening of moment resisting frame structures against near-fault ground motion effects [J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, 2004,33:707-722。
    [48]Jack J. Ajrab, Gokhan Pekcan, M.ASCE2, John B. Mander. Rocking Wall Frame Structures with Supplemental Tendon Systems[J], JOURNAL OF STRUCTURAL ENGINEERING,2004,130:895-903
    [49]A. Wada, Z. Qu, H. Ito, S. Motoyui, H. Sakata, K. Kasai. Seismic Retrofit Using Rocking Walls and Steel Dampers. ATC/SEI Conference on Improving The Seismic Performance of Existing Buildings and Other Structures, San Francisco, CA, U.S., Dec.2009.
    [50]Weng Yuen Kam, Stefano Pampanin, Alessandro Palermo, Athol J. Carr. Self centering structural systems with combination of hysteretic and viscous energy dissipations[J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,2010,39:1083-1108;
    [51]Nicos Makris, Dimitrios Konstantinidis. The rocking spectrum and the limitations of practical design methodologies[J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,2003,32:265-289;
    [52]曲哲,叶列平.附加子结构抗震加固方法及其在日本的应用[J].建筑结构,2010,40(5):55-59;
    [53]曹海韵等.混凝土框架摇摆墙结构体系的抗震性能分析[J].建筑科学与工程学报,2011,28(1):64-70;
    [54]周颖,吕西林.摇摆结构及自复位结构研究综述[J].建筑结构学报,2011,32(9):1-10;
    [55]曹海韵,潘鹏,叶列平.基于推覆分析混凝土框架摇摆墙结构抗震性能研究[J].振动与冲击,2011,30(11):240-245;
    [56]曲哲,叶列平.摇摆墙-框架体系的抗震损伤机制控制研究[J].地震工程与工程振动,2011,31(4):40-5 1;
    [57]曲哲,和田章,叶列平.摇摆墙在框架结构抗震加固中的应用[J].建筑结构学报,2011,32(9):2-11
    [58]Parlay T., Priestly M.J.N., Seismic design of reinforced concrete and masonry buildings. John Wiley & Sons, INC. New York,1992.
    [59]California Office of Emergency Services.Vision2000:Performance Based Seismic Engineering of Buildings[M]. Structural Engineering Association of California, Vision2000 Committee, California,1995
    [60]ATC-34. A Critical Review of Current Approaches to Earthquake Resistant Design[R]. Applied Technology Council, Redwood City,1995.
    [61]ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council, Redwood City,1996.
    [62]FEMA356.Pre-Standard and Commentary for The Seismic Rehabilitation of Buildings[R]. Report FEMA356,Federal Emergency Management Agency,Washington DC,2000.
    [63]EC8. Euro code 8:Design of Structures for Earthquake Resistance. Gene-ralrules, Seismic Auctions and Rules for Buildings[C]. EN1998-1:2003, British Standards Institution, London. ECS,2003
    [64]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构2000,30(6):3-9.
    [65]GB50011-2001建筑抗震设计规范.北京:中国建筑工业出版社,2001
    [66]JGJ3-2002高层建筑混凝土结构技术规程.北京:中国建筑工业出版社2002
    [67]CECS160:2004,建筑工程抗震性态设计通则(试用).北京:中国计划出版社,2004
    [68]GB50011-2010建筑抗震设计规范.北京:中国建筑工业出版社,2010
    [69]J.J. Bommer, A.S. Inashai. Displacement spectra for seismic design. Journal of Earthquake Engineering,1999,3(1):1-32
    [70]Priestley M. J. N and Kowalsky M. J. Direct Displacement-Based Design of Concrete Buildings. Bulletin of the New Zealand National Society for Earthquake Engineering,2000,33(4):421-444.
    [71]Aschheim M.A. and Black E.F. Yield Point Spectra for Seismic Design and Rehabilitation [J]. Earthquake Spectra,2000,16(2):317-336.
    [72]Browning J.P Proportioning of Earthquake-Resistant RC Building Structures[J]. Journal of the Structural Division ASCE,2001,127(2): 145-151.
    [73]Teran-Gilmore, A., Performance-Based Earthquake-Resistant Design of Frame Buildings Using Energy Concept[D], PhD. Thesis, University of California, Berkeley, CA,1996.
    [74]Leelataviwat,S., Goel,S.C. and Stojadinovic,B. Energy-Based Seismic Design of Structures using Yield Mechansim and Target Drift[J]. Journal of Structural Engineering,2002,128(8):1046-1054.
    [75]Kevin R. Collins, Yi-K Wei Wen,Douglas A. Foutch. Dual-Level Seismic Design:A Reliability-Based Methodology[J]. Earthquake Engineering and Structural Dynamics,1996,25:1433-1467
    [76]Pires,J.A., Ang, A.H.S. and Lee, J. C., Target Reliabilities for Minimum Life Cycle Cost Design:Application to A Class of R.C.Frame Wall Buildings.11th World Conference on Earthquake Engineering,Acapulco, Mexico,1996,Paper No.1062.
    [77]Fajfar, P, (Peter), Krawinkler,Helmut.,Seismic design methodologies for the next generation of codes:proceedings of the International Workshop on Seismic Design Methodologies for the Next Generation of Codes, Bled, Slovenia, June 1997.
    [78]M. A. Sozen. review of earthquake response of RC buildings with a view to drift control[J].State ofthe Art in earthquake Engineering,1981, Ankara,383-418.
    [79]X.Qi and J.P.Moehle. Displacement design approach for reinforced concrete structures subjected to earthquakes[R].Report No.UCB/EERC-91/02, Berkeley, Earthquake Engineering Research Center, University of California,1991.
    [80]Kowalsky MJ, Priestley MJN, MacRae GA. Displacement-based design of RC bridge columns in seismic regions[J]. Earthquake Engineering and Structural Dynamics,1995,24(12):1623-1643.
    [81]Q Xue. A direct displacement-based seismic design procedure of inelastic structures[J]. Engineering Structure,2001,23(11):1453-1460
    [82]M. J. Kowalsky. A displacement-based approach for the seismic design of continuous concrete bridges[J]. Earthquake Engineering and Structural Dynamics,2002,31 (3):719-747.
    [83]吴波,李艺华.直接基于位移可靠度的抗震设计方法中目标位移代表值的确定[J].地震工程与工程振动,2002,22(6):44-51.
    [84]田野,梁兴文,瞿岳前.钢筋混凝土框架结构直接基于位移的抗震设计[J].世界地震工程,2005,21(2):64-69.
    [85]梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,38(9):53-60.
    [86]蒋欢军,李培振.钢筋混凝土框架结构的最大地震位移形状曲线[J].同济大学学报(自然科学版),2008,36(5):580-585.
    [87]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1):14-23.
    [88]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报,1994,27(5):1-10.
    [89]Suzuki Y, Minai R. Application of stochastic differential equations to seismic reliability analysis of hysteretic structures[J]. Probabilistic Engineering Mechanics,1988,3(1):43-52.
    [90]Kawano K, Venkataramana K. Dynamic response and reliability analysis of large offshore structures[J]. Computer Methods in Applied Mechanics and Engineering,1999,168(1-4):255-272.
    [91]Colangeloa F, Gianninib R, Pinto PE. Seismic reliability analysis of reinforced concrete structures with stochastic properties[J]. Structural Safety,1996,18(2-3:151-168.
    [92]Zhao YG, Ono T, Idota H. Response uncertainty and time-variant relia-bility analysis for hysteretic MDF structures[J]. Earthquake Engineering and Structural Dynamics,1999,28:1187-1213.
    [93]Chen JB, Li J. Dynamic response and reliability analysis of non-linear stochastic structures[J]. Probabilistic Engineering Mechanics,2005, 20(1):33-44.
    [94]Kiureghian AD. The geometry of random vibrations and solutions by FORM and SORM[J]. Probabilistic Engineering Mechanics,2000,15(1): 81-90.
    [95]Zhang J, Foschi RO. Performance-based design and seismic reliability analysis using designed experiments and neural networks. Probabilistic Engineering Mechanics,2004,19(3):259-267.
    [96]Chaudhuri A,Chakraborty S. Sensitivity evaluation in seismic reliability analysis of structures[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(1-2):59-68.
    [97]Hwang HHM, Low YK. Seismic reliability analysis of plane frame structures [J]. Probabilistic Engineering Mechanics,2003,4(2):74-84.
    [98]Huh J, Haldar A. Seismic reliability of non-linear frames with PR connections using systematic RSM[J]. Probabilistic Engineering Mechanics,2002,17(2):177-190.
    [99]Lin KC, Lin CCJ, Chen JY, et al. Seismic reliability of steel framed buildings[J]. Structural Safety,2009,32(3):174-182.
    [100]Guo AX, Xu YL, Wu B. Seismic reliability analysis of hysteretic structure with viscoelastic dampers[J]. Engineering Structures,2001, 24(3):373-383.
    [101]刘从容,童岳生,谢行皓.钢筋混凝土剪力墙结构抗震可靠度分析[J].西安建筑科技大学学报(自然科学版),1992,24(4):433-440.
    [102]高小旺,沈聚敏.“大震”作用下钢筋混凝土框架房屋变形能力的抗震可靠度分析[J].土木工程学报,1993,26(3):3-12.
    [103]马宏旺.钢筋混凝土框架结构抗震可靠度分析与设计研究[D].大连:大连理工大学,2001.
    [104]高小旺,孟俊义,何江等.钢筋混凝土框架房屋不同破坏状态的抗震可靠度分析[J].自然灾害学报,1995,4(S1):68-76.
    [105]李刚,程耿东.钢筋混凝土框架发生局部破坏后抗震可靠度分析[J].大连理工大学学报,2001,41(3):343-348.
    [106]刘昌军.考虑参数随机性的钢筋混凝土框架结构抗震可靠度分析[M].西安:西北工业大学,2003.
    [107]李建华,李杰.多点激励下结构抗震可靠度分析的反应谱方法[J].防灾减灾工程学报,2004,24(3):242-246.
    [108]王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系[J].清华大学学报(自然科学版),2009,49(12):1934-1938.
    [109]Olsson,A.K., and P-E.Austrell. A fitting procedure for viscoelastic elastoplastic material models[J]. CONSTITUTIVE MODELS FOR RUBBER 2001 (2):261-266.
    [110]MacRae G A, Kimura Y, Roeder C. Effect of column stiffness on braced frame seismic behavior[J]. Journal of Structural Engineering, ASCE, 130(3):381-391;
    [111]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [112]韩林海,陶忠,闫维波.圆钢管混凝土构件荷载-位移滞回性能分析[J].地震工程与工程振动,2001,21(1):64-73.
    [113]Freeman S A. Development and Use of Capacity Spectrum Method[C]. Proceedings of 6thUS Conference on Earthquake Engineering, Berkeley, Seattle, Washington,1998.
    [114]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89-97
    [115]]BracciJM, Kunnath SK, Reinborn AM. Seismic performance and retrofit evaluation for reinforced concrete structures[J]. J.Struct.Eng.,1997, ASCE,123(1):3-10
    [116]Gupta,B., and Kunnath, S.K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake.Spectra,2000,16(2):367-392
    [117]叶列平,陆新征,赵世春等.框架结构抗地震倒塌能力的研究[J].建筑结构学报,2009,30(6):67-76.
    [118]杨红.罕遇地震作用下剪切型结构响应的统计特征及可靠性分析[D].重庆:重庆建筑大学,1994
    [119]Choski N C, Lutes L D. Maximum response statistics for yielding oscillator[J]. Journal of Engineering Mechanics Division,ASCE,1976, 102(EM6):983-996
    [120]陈永祁.时程分析法中地震波的选择和可靠性分析[R].北京:中国建筑科学研究院报告.1985
    [121]杨溥.基于位移的结构地震反应分析方法研究[D].重庆:重庆建筑大学.1999
    [122]杨红.考虑结构局部反应特征的时程分析法输入地震波研究[J].土木工程学报,2007,40(11):29-35
    [123]Bertero V V. Strength and Deformation capacities of buildings under extreme environments[J]. Structural Engineering and Structural Mechanics, Pister KS(ed). Prentice-Hall:Englewood Cliffs, NJ,1977: 211-215
    [124]Fragiadakis M, Vamvatsikos D, Papadrakakis M. Evaluation of the influence of vertical irregularities on the seismic performance of a nine-storey steel frame[J]. Earthquake Engineering and Structural Dynamics,2006,35:1489-1509
    [125]Liao K W, Wen Y K, Foutch D A. Evaluation of 3D steel moment frames under earthquake excitations 1:modeling[J]. Journal of Structural Engineering,2007,133(3):462-470
    [126]W.J, van de Lindt, Liu H Y. Nonstructural element in performance-based seismic design of wood frame structures[J]. Journal of Structural Engineering,2007,133(3):432-439
    [127]Pasticier L, Amadio C, Fragiacomo M. Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 v.10 code[J]. Earthquake Engineering and Structural Dynamics.2008, (37):467-485
    [128]VamvatsikosD,CornellCA. Incremental Dynamic Analysis[J].Earthquake Engineering and Structural Dynamics,2002,31(3):491-514
    [129]A.M Fredudenthal. The Safety of Structures[J]. Transactions. ASCE. 1947.(112):125-159
    [130]C.A.Cornell. A Probability-Based Structural Code[J]. Journal of the American Concrete Institute.1969,66(12):974-985
    [131]N.C.Lind. Consistent Partial Safety Factors[J]. Journal of the Structural Division. ASCE.1971.97(ST6):1651-1699
    [132]A.M. Hasofer, N.C.Lind. Exact and Invariant Second-Moment Code Format[J]. Journal of the Engineering Mechanics Division, ASCE.1974. 100(EM1):111-121
    [133]R. Rackwitz. B. Fiess|er. Structural Reliability under Combined Random Load Sequences[J]. Computers and Structures.1978,9(5):489-494
    [134]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报.1984,5(3):1-10
    [135]贡金鑫.仲伟秋.赵国藩.工程结构可靠性基本理论的发展与应用[J].建筑结构学报.2002,23(4):2-9
    [136]王光远等.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999:109-221
    [137]Housner G. W. Characteristics of strong motion of earthquakes[J]. BSSA, 1947,37(1):19-31
    [138]Kanai K. Semi-empirical formula for the seismic characteristics of the ground motion [J]. Bulletin of the Earthquake Research Institute, University of Tokyo,1957,35(2):308-325
    [139]Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake [A].2nd WCEE[C],Tokyo, Japan,1960
    [140]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[A].中国科学院土木建筑研究所地震工程研究报告集第一集[C],北京:科学出版社,1962
    [141]Clough R. W., Penzien J. Dynamics of structures.2nd edition[M], New York, McGraw-Hill, Inc.,1993
    [142]林家浩,张亚辉.随机振动的虚拟激励法[M],北京:科学出版社.2004
    [143]李桂青,曹宏,李秋胜等.结构动力可靠性理论及其应用[M].北京:地震出版社.1993
    [144]王光远,朱靖华.地震作用下串、并联工程系统中结构失效相关的近似处理[J].地震工程与工程振动,1998,18(4):1-7.
    [145]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700