用户名: 密码: 验证码:
CFRP约束混凝土圆柱强度及变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(FRP)由于具有高比强度(强度与重量之比)和良好的耐久性等优势被广泛地应用于混凝土结构加固中,其中一个主要应用是对混凝土柱的加固补强。目前,大部分研究集中在较小尺寸混凝土圆柱(如(?)150×300mm)的轴压性能上,而且提出的模型也主要是建立在小尺寸柱试验数据基础上的,而实际工程中大尺寸混凝土柱的应用更为广泛,所以由小尺寸柱得到的结论及模型是否同样适用于大尺寸柱,即FRP约束混凝土柱的强度、极限应变和应力-应变关系等是否具有尺寸效应,是一个非常重要的问题。虽然有的学者对FRP约束混凝土进行了尺寸效应研究,但没有对强度比f'cc/fco'o应变比εc。/εco和归一化的应力-应变关系等做全面的讨论,或者只采用一种尺寸未约束混凝土柱的f'co和εco作为参考值来研究。本文采用相应尺寸未约束圆柱的f'co和ε∞作为参考值,对碳纤维增强复合材料(CFRP)约束混凝土圆柱的强度、极限应变和应力-应变关系的尺寸效应进行了全面的研究,详细讨论了fcc'/fco'、εcc/εco和归一化的应力-应变关系,简要分析了圆柱的体积应变和剪胀率,根据无尺寸效应的结论建立了FRP约束混凝土圆柱的应力-应变关系分析模型和设计模型。本文的主要研究工作如下:
     (1)对24个不同尺寸的混凝上圆柱(12个CFRP布约束柱,12个对比柱)进行了强度、极限应变和应力-应变关系的尺寸效应研究,圆柱包括(?)100×200mm、(?)200×400mm和(?)300x600mm三种尺寸,其中小、中等和大尺寸圆柱分别外包1、2和3层CFRP布,以保证每个圆柱的侧向约束力相等。试验结果表明,约束混凝土圆柱的强度比f'cc/f'co、应变比εcc/εco。和归一化的应力-应变关系没有尺寸效应,圆柱尺寸对体积应变和极限剪胀率也没有影响。
     (2)基于应力-应变关系与应力路径无关的假设,建立了应力-应变关系分析模型,其中包括目前预测精度最高的主动约束混凝土的理论强度模型和系数化简的素混凝土轴向应变-侧向应变关系(由Pantazopoulou等人提出,Lee等人改进),根据Lee等人的混凝土应力-应变曲线割线刚度与约束无关的结论,采用增量法计算得到FRP约束混凝土的轴向和侧向应力-应变关系。另外通过大量试验数据的统计,得出FRP布的应变有效系数kε=εj,u/εf,r=0.66,并将该结论作为FRP约束柱的极限状态,采用应力-应变分析模型计算418条应力-应变曲线的强度f'cc,最后拟合得到FRP约束混凝土圆柱的强度预测模型。
     (3)提出的应力-应变关系设计模型采用了抛物线加直线的两段式表达,模型的最大优势是对极限状态(f'cc和εcc)的预测,通过对418个FRP约束混凝土圆柱试验数据的回归得到强度模型,然后利用约束混凝土的极限泊松比v。来计算极限应变εcc,最后将强度模型和极限应变模型应用于应力-应变关系的预测。通过与其他设计模型在强度f'cc、极限应变εc。、应力-应变曲线第二段的斜率E2以及曲线下的面积A等几方面的对比后发现,本文设计模型具有较高的精度。
Fiber reinforced polymer (FRP) composites have been increasingly applied to strengthen concrete structures due to their high strength-to-weight ratio and high corrosion resistance. One important application of FRP is the rehabilitation and strengthening for the concrete columns. At present, most investigations focus on the axial behavior of small size concrete cylinders (e.g.(?)150×300mm) and many models are proposed on test data of such size cylinders. However, large size concrete columns are more popularly used in practical engineering. It is unclear whether the conclusions and models developed on small scale cylinders are appropriate for large scale columns. Therefore, size effect of FRP-confined concrete cylinders in axial compression is still an open issue. Although some investigators studied how cylinder size affects the compressive behavior, comprehensive analysis including strength gain fcc'/fco',ductility εcc/εco and normalized stress-strain relationship has not been conducted yet, or only test data of one size cylinder has been treated as the reference value in their studies. This paper aims to clarify the size effect of carbon fiber reinforced polymer (CFRP)-confined concrete cylinders in axial compression, including the influence of cylinder size on fcc'/fco',εcc/εco and normalized stress-strain relationship as well as volumetric strain and dilation rate. Subsequently, both an analysis-oriented and a design-oriented stress-strain model are proposed based on the conclusion of non-size effect for FRP-confined cylinders. The research results in this dissertation are as follows:
     (1) A total of12CFRP-confined cylinders and12unconfined cylinders were conducted in this experiment. All the cylinders have three sizes including (?)100×200mm,(?)200×400mm and (?)300×600mm. The small-, medium-and large-size cylinders are wrapped with1,2and3plies CFRP to give the same lateral confining stress for each specimen. The experimental results show that there is no size effect for strength gain fcc'/fco', ductility εcc/εco normalized stress-strain relationship as well as volumetric strain and ultimate dilation rate.
     (2) Based on the assumption of stress-strain relationship being independent on stress path, an analysis-oriented stress-strain model, containing a theoretical strength model for actively confined concrete with highest precision and a simplified axial strain-lateral strain relationship originally proposed by Pantazopoulou et al and later improved by Lee et al, is developed. According to the conclusion made by Lee and Hegemier that the secant stiffness of stress-strain curve is independent of lateral confinement, the axial and lateral stress-strain relationship of FRP-confined cylinders is obtained through incremental calculation. In addition, the strain efficiency factor kε=0.66is determined by the statistical analysis based on extensive test data. And a predicted strength model is developed through the regression of418calculating values of fcc' regarding kε0.66as the ultimate state of calculation.
     (3) The proposed design-oriented stress-strain model in this paper consists of a parabolic curve followed by a straight line. The superiority of the design model is the predicted precision of the ultimate state (i.e., fcc' and εcc). The empirical strength model is proposed by the regression of418test points of fcc' and the ultimate strain model is developed through the relationship between ultimate Poisson's ratio vu and ultimate strain scc of FRP-confined concrete. The developed design model and other design models are compared in the prediction of strength fcc', ultimate strain scc, the slope of the second portion of the stress-strain curve E2and the area below the stress-strain curve, which shows the high accuracy for the design model in this paper.
引文
[1]吴智深.FRP复合材料在基础工程设施的增强和加固方面的现状及发展[C].中国首届纤维增强复合材料(FRP)混凝土结构学术交流会,北京,2000:5-20.
    [2]叶烈平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36.
    [3]王永维.我国建筑鉴定与加固改造技术现状与展望[C].第五届全国建筑物鉴定与加固改造学术会议论文集,汕头,2000:1-6.
    [4]王济川.关于已建结构加固问题[C].第六届全国建筑物鉴定与加固改造学术会议论文集,长沙,2002:28-32.
    [5]王永维.当前建筑物鉴定与加固改造领域技术政策研究的动态[C].第七届全国建筑物鉴定与加固改造学术会议论文集,重庆,2004:1-8.
    [6]卜良桃.高性能复合砂浆钢筋网(HPF)加固混凝土结构新技术[M].中国建筑工业出版社,北京,2007.
    [7]李英民,刘立平.汶川地震建筑震害与思考[M].重庆大学出版社,重庆.2008.
    [8]Meier U, Deuring M, Meier H, et al. CFRP bonded sheets, Fiber-Reinforced-Plastic (FRP) reinforcement for concrete structures:Properties and Applications[M]. Elsevier Science Publishers, B.V., The Netherlands,1993.
    [9]Meier U. Strengthening of structures using carbon fiber/epoxy composites[J]. Constructions and Building Materials,1995,9(6):341-351.
    [10]Ballinger C. Maeda T, Hoshijima T. Strengthening of reinforced concrete chimneys, columns and beams with carbon fiber reinforced plastics[C]. Proceedings of the International Symposium on Fiber-Reinforced-Plastics Reinforcements for Concrete Structures, ACI SP-138,1993:243-248.
    [11]滕锦光,陈建飞.ST史密斯.等.FRP加固混凝土结构[M].中国建筑工业出版社,北京,2005.
    [12]Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites, Part B:Engineering,2005,36(6-7):504-512.
    [13]Triantafillou T C, Papanicolaou C G, Zissimopoulos P, et al. Concrete confinement with textile-reinforced mortar jackets [J] ACI Structural Journal,2006,103(1):28-37.
    [14]Bournas D, Lontou P V, Papanicolaou C G, et al. Textile-reinforced mortar versus fiber reinforced polymer confinement in reinforced concrete columns[J]. ACI Structural Journal,2007,103(1): 740-748.
    [15]Hauβler-Combe U. Hartig J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial loading[J]. Cement and Concrete Composites,2007,29(4):279-289.
    [16]Ludovico M D, Prota A. Manfredi G. Concrete confinement using innovative materials:basalt reinforced mortar(BRM)[C]. Proceedings of International Conference on Challenges for Civil Construction, Porto,2008:124-135.
    [17]Bournas D, Triantafillou T. Innovative seismic retrofitting of old-type RC columns through jacketing: textile-reinforced mortar (TRM) versus fiber-reinforced polymer (FRP) [C]. The Fourteenth World Conference on Earthquake Engineering, Beijing, China,2008:No.1,740-748.
    [18]吴刚,魏洋,吴智深.玄武岩纤维与碳纤维加固混凝土矩形柱抗震性能比较研究[J].工业建筑.2007,7(6):42-46.
    [19]邹鹏程,张云波,杨勇新.玄武岩纤维布约束钢筋混凝土柱的轴心受压试验研究[J].福建建筑,2009,(5):40-43.
    [20]陈筱妹,俞可权.玄武岩纤维加固混凝土短柱试验研究[J].低温建筑技术,2011,(11):34-36.
    [21]Tuladhar R, Utsunomiya T, Ueda T. New flexible system of transverse reinforcement for RC piers[J]. Advance in Structural Engineering,2003,6(3):216-230.
    [22]Jaqin H, Nakai H, Ueda T, et al. Seismic retrofitting of RC piers using continuous fiber sheet with large fracturing strain[J]. Journal of Structural Engineering (JSCE),2005,51A(March):893-902.
    [23]Ueda T, Sato H, Anggawidjaja D, et al. Seismic retrofit by continuous fiber sheet with large fracturing strain[C]. The Third International Conference on Composites in Construction, Lyon, France,2005: 11-13.
    [24]Anggawidjaja D, Ueda T, Dai J G, et al. Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain[J]. Cement and Concrete Research,2006,28(10): 914-927.
    [25]Ueda, T. Structural performance of members strengthened by FRP jacketing with high fracturing strain[C].Proceedings of second Asia-Pacific Conference on FRP in Structures (APFIS). Seoul,2009: 19-28.
    [26]Dai J G, Bai Y L, Teng J G. Behavior and modeling of concrete confined with FRP composites of large deformability[J]. Journal of Composites for Construction. ASCE,2011,15(6),963-973.
    [27]龙跃凌.戴建国.新型大断裂应变FRP约束混凝土圆柱的轴压性能[J].混凝土,2010(7):44-47.
    [28]ACI Committee 440. State-of-the-art-report on fiber reinforced plastic for concrete structures (ACI440-96). American Concrete Institute, Detroit, Michigan,1996.
    [29]Darby J J. Role of bonded fiber-reinforced composites in strengthening of structures, Strengthening of Reinforced Concrete Structures Using External-bonded FRP composites in Structural and civil engineering[R]. UK:1999.
    [30]Bonacci J F. Maalej M. Externally bonded FRP for service-life extension of RC infrastructure[J]. Journal of Infrastructure Systems,2000,6(1):41-51.
    [31]Seible F, Karbhari V M. Fiber reinforced composites-advanced materials for the renewal of civil infrastructures[J]. Applied Composite Materials,2000,7(2-3):95-124.
    [32]Varastehpour H. Hamelin P. Strengthening of concrete beams using fiber-reinforced plastics[J]. Materials and Structures,1997,30(3):160-166.
    [33]Saadatmanesh H, Malek A M. Design guidelines for flexural strengthening of RC beams with FRP plates[J]. Journal of Composites for Constructions, ASCE,1998,2(4):158-164.
    [34]Taljsten B. Strengthening of beams by plate bonding[J]. Journal of Materials in Civil Engineering, ASCE,1997,9(4):206-212.
    [35]Hanna S, Jones R. Composite wraps for ageing infrastructure:concrete columns[J]. Composite Structures 1997,38(1-4):57-64.
    [36]Balendran R V, Rana T M, Nadeem A. Strengthening of concrete structures with FRP sheets and plates[J]. Structural Survey,2001,19(4):185-192.
    [37]Rocca S, Galati N, Nanni A. Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross-sections[J]. Journal of Composites for Constructions, ASCE,2008, 12(1):80-92.
    [38]Ibell T, Darby A, Denton S. Research issues related to the appropriate use of FRP in concrete structures[J]. Construction and Building Materials,2009,23(4):1521-1528.
    [39]Gergely I, Pantelide C P, Nuismer R J, et al. Bridge pier retrofit using fiber-reinforced plastics composites [J]. Journal of Composites for Constructions, ASCE,1998,2(4):165-174.
    [40]Aref A, Alampalli S, He Y H. Performance of a fiber reinforced polymer web core skew bridge superstructure. Part I:field testing and finite element simulations[J]. Composite Structures,2005, 69(4):491-499.
    [41]Alagusundaramoorthy P, Harik I E, Choo C C. Structural behavior of FRP composite bridge deck panels[J]. Journal of Bridge Engineering, ASCE,2006,11(4):384-393.
    [42]Alnahhal W, Aref A. Structural performance of hybrid fiber reinforced polymer-concrete bridge superstructure systems[J]. Composite Structures,2008,84(4):319-336.
    [43]Ishibashi T, Tsukishima D. Seismic damage of and seismic rehabilitation techniques for railway RC structures[J]. Journal of Advanced Concrete Technology,2009,7(3):287-296.
    [44]Richart F E. Brandtzaeg A, Brown R L. A study of the failure of concrete under combined compressive stresses[R]. Bulletin No.185, Engineering Experimental Station. University of Illinois at Urbana-Champaign, Urbana, IL,1928.
    [45]Richart F E. Brandtzaeg A, Brown R L, The failure of plain and spirally reinforced concrete in compression[R]. Bulletin No.189, Engineering Experimental Station, University of Illinois at Urbana-Champaign, Urbana. IL,1929.
    [46]Kent D C, Park R. Flexural members with confined concrete[J]. Journal of Structural Engineering Division, ASCE,1971,97(7):1969-1990.
    [47]Sheikh S A. Uzumeri S M. Strength and ductility of tied concrete columns[J]. Journal of Structural Engineering Division, ASCE,1980,106(5):1079-1112.
    [48]Sheikh S A, Uzumeri S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Engineering Division, ASCE,1982,108(12):2703-2722.
    [49]Ahmad S H, Shah S P. Stress-strain curves of concrete confined by spiral reinforcement[J]. ACI Journal,1982,79(6):484-490.
    [50]Mander J B, Priestley M JN, Park R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering, ASCE,1988,114(8):1804-1826.
    [51]Mander JB, Priestley MN, Park R. Observed stress-strain behavior of confined concrete. Journal of Structural Engineering. ASCE,1988,114(8):1827-1849.
    [52]Saatcioglu M. Razvi S R. Strength and Ductility of Confined Concrete[J]. Journal of Structural Engineering, ASCE,1992,118(6):1590-1607.
    [53]Cusson D, Paultre P. Stress-strain model for confined high-strength concrete[J]. Journal of Structural Engineering, ASCE,1995,121(3):468-477.
    [54]Fardis M N, Khalili H H. Concrete encased in fibreglass-reinforced plastic[J]. ACI Journal,1981, 78(6):440-446.
    [55]Fardis M N, Khalili H H. FRP-encased concrete as a structural material[J]. Magazine of Concrete Research,1982,34(121):191-202.
    [56]Saadatmanesh H. Ehsani M R. Strength and ductility of concrete columns externally reinforced with fibre composite straps[J]. ACI Structural Journal,1994,91(4):434-447.
    [57]Nanni A, Bradford N M. FRP jacketed concrete under uniaxial compression[J]. Construction and Building Materials,1995,9(2):115-124.
    [58]Mirmiran A, Shahawy M. Behavior of concrete columns confined by fiber composite[J]. Journal of Structural Engineering, ASCE,1997,123(5):583-590.
    [59]Samaan M, Mirmiran A, Shahawy M. Model of concrete confined fiber composite[J]. Journal of Structural Engineering, ASCE,1998,124(9):1025-1031.
    [60]Saafi M, Toutanji H A, Li Z J. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Materials Journal,1999.96(4):500-510.
    [61]Karbhari V M, Gao Y Q. Composite Jacketed concrete under uniaxial compression—verification of simple design equations[J]. Journal of Materials in Civil Engineering. ASCE,1997,9(4):185-193.
    [62]Hoppel C P R, Bogetti T A. Jr. Gillespie J W. et al. Analysis of a concrete cylinder with a composite hoop wrap[C]. Proceedings of Material Engineering Conference. ASCE. New York,1995:191-198.
    [63]Timoshenko S P. Goodier J N. Theory of elasticity [M]. McGraw-Hill, New York,1970.
    [64]Mirmiran A, Shahawy M. New concrete-filled hollow FRP composite column[J]. Composites. Part B: Engineering,1996,27(3-4):263-268.
    [65]Shahawy M, Mirmiran A. Samaan M. Hybrid columns of FRP and concrete[C]. Proceedings of the Materials Engineering Conference, ASCE, New York,1996:73-82.
    [66]Shahawy M, Mirmiran A. Beitelman T. Structural repair and strengthening of damaged prestressed concrete bridges utilizing externally bonded carbon materials[C]. Proceedings of International SAMPE Symposium and Exhibition,1996,41(2):1311-1318.
    [67]Mirmiran and Shahawy. Dilation characteristics of confined concrete[J]. Mechanics of Cohesive-Frictional Materials,1997,2(3):237-249.
    [68]Mirmiran A, Shahawy M, Samaan M. et al. Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction, ASCE,1998,2(4):175-185.
    [69]Shahawy M. Mirmiran A, Beitelman T. Tests and modeling of carbon-wrapped concrete columns[J]. Composites, Part B:Engineering,2000,31(6-7):471-480.
    [70]Toutanji H A. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets[J]. ACI Materials Journal.1999,96(3):397-404.
    [71]Pico O. Confinement effectiveness of square FRP tubes in hybrid columns[R]. Research Report. University of Central Florida, Florida,1997.
    [72]Rochette P, Labossiere P. Axial testing of rectangular column models confined with composites[J]. Journal of Composites for Construction, ASCE,2000,4(3):129-136.
    [73]Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering, ASCE,2000,12(2):139-146.
    [74]Teng J G, Lam L. Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns[J]. Journal of Structural Engineering, ASCE,2002,128(12):1535-1543.
    [75]Lin C T, Li Y F. An effective peak stress formula for concrete confined with carbon fiber reinforced plastics[J]. Canadian Journal of Civil Engineering,2003,30(5):882-889.
    [76]Goodman R E. Introduction to rock mechanics (Second Edition) [M]. John Wiley and Sons Incorporation, New York,1989.
    [77]Lam L, Teng J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, ASCE,2004,8(6):539-548.
    [78]Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets. Part A:experimental study[J]. Construction and Building Materials,2005,19(3):223-232.
    [79]Ilki A, Kumbasar N, Koc V. Strength and deformability of low strength concrete confined by carbon fiber composite sheets[C]. Proceedings of ASCE Engineering Mechanics Conference, New York, 2002:118-123.
    [80]Ilki A. Kumbasar N. Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets[J]. Structural Engineering and Mechanics,2002,13(1):75-90.
    [81]Ilki A, Kumbasar N. Compressive behavior of carbon fiber composite jacketed concrete with circular and non-circular cross sections. Journal of Earthquake Engineering,2003,7(3):381-406.
    [82]Ilki A. Kumbasar N, Koc V. Low strength concrete members externally confined with FRP sheets[J]. Structural Engineering and Mechanics,2004,18(2):167-194.
    [83]Ilki A, Kumbasar N, Ozdemir P, et al. A trilinear stress-strain model for confined concrete[J]. Structural Engineering and Mechanics,2004,18(5):541-563.
    [84]Ilki A, Koc V. Peker O, et al. Strengthening of RC columns with inadequate transverse reinforcement[C]. Proceedings of Second International Conference on FRP Composites in Civil Engineering, Adelaide, Australia,2004:211-218.
    [85]Ilki A. FRP strengthening of RC columns shear, confinement and lap splices[R]. Fib bulletin, No.35: Retrofitting of concrete structures by externally bonded FRPs, Lausanne, Switzerland,2006:123-142.
    [86]Ilki A, Peker O, Karamuk E, et al. External confinement of low strength brittle reinforced concrete short columns[C]. Proceedings of ACI SP-238, International Symposium on Confined Concrete, Farmington Hills, Michigan,2006:363-380.
    [87]Ilki A, Peker O, Karamuk E, et al. FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns[J]. Journal of Materials in Civil Engineering, ASCE,2008,20(2): 169-188.
    [88]Almusallam T H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates[J]. Composites Part B:Engineering,2007,38 (5):629-639.
    [89]Almusallam T H, AlSayed S H. Stress-strain relationship of normal, high strength and light weight concrete [J]. Magazine of Concrete Research,1995,47(170):39-44.
    [90]Cui C, Sheikh S A. Behavior of normal- and high-strength concrete confined with fiber-reinforced polymers (FRP) [R]. Research Report No. CS-01-09, University of Toronto, Toronto,2009.
    [91](?). Benavior or normal ana hign strength concrete confined with fiber reinforced polymers (FRP)[D]. PhD Dissertation, University of Toronto, Canada,2009.
    [92]Cui C Y, Sheikh S A. Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers[J]. Journal of Composites for Construction, ASCE,2010,14(5):553-561.
    [93]Cui C Y, Sheikh S A. Analytical model for circular normal- and high-strength concrete columns confined with FRP[J]. Journal of Composites for Construction, ASCE,2010,14(5):562-572.
    [94]Cairns S W, Sheikh S A. Circular concrete columns externally reinforced with pre-fabricated carbon polymer shells[R]. Research Report, University of Toronto, Canada,2001.
    [95]Sheikh S A, Jaffry S A D, Cui C. Investigation of glass-fiber-reinforced polymer shells as formwork and reinforcement for concrete columns[J]. Canadian Journal of Civil Engineering,2007,34(3): 389-402.
    [96]欧阳煜.玻璃纤维(GFRP)片材加固混凝土框架结构的性能研究[D].杭州:浙江大学,2001.
    [97]潘景龙,王雨光,来文汇.混凝土柱截面形状对纤维包裹加固效果的影响[J].工业建筑,2001,31(6):17-19.
    [98]潘景龙,金熙男,王凤来.钢筋混凝土轴压短柱包裹纤维材料后的承载力性能研究[J].哈尔滨工业大学学报,2002,35(3):14-19.
    [99]Pan J L, Xu T, Hu J Z. Experimental investigation of load carrying capacity of the slender reinforced concrete columns wrapped with FRP[J]. Construction and Building Materials,2007,22(11): 1991-1996.
    [100]贾明英,程华,陈小兵等.不同FRP约束混凝土圆柱轴向受压性能试验研究[J].工业建筑,2002,32(5):65-68.
    [101]周长东.玻璃纤维聚合物加固混凝土柱的力学性能研究[D].大连:大连理工大学,2003.
    [102]周长东,黄承逵.玻璃纤维聚合物约束混凝土圆柱简化分析模型[J].大连理工大学学报,2004.44(1):96-103.
    103]高丹盈,李趁趁,朱海棠.碳纤维布增强钢筋混凝土轴向受压短柱受力性能对比研究[c].第三届全国FRP学术交流会论文集,2004:175-181.
    104]程亚鹏,邹超英.碳纤维条带加固混凝土短柱的试验研究[J].低温建筑技术,2005,(5):44-45.
    105]滕锦光,余涛,黄玉龙等.FRP管-混凝土-钢管组合柱力学性能的试验研究和理论分析[J].建筑钢结构进展,2006,8(5):1-7.
    106]邓宗才,阚德新,杜修力等.聚乙烯纤维布约束混凝土短柱轴压性能的试验[J].工业建筑,2007,37(10):69-72.
    107]潘毅,曹双寅,敬登虎等.负载下碳纤维布约束混凝土圆柱的轴压试验研究[J].工程抗震与加固改造,2008,30(2):68-72.
    108]敬登虎GFRP加固RC柱应变滞后分析[J].特种结构,2003,20(3):74-76.
    109] Wu H L, Wang Y F, Yu L, et al. Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets[J]. Journal of Composites for Construction, ASCE,2009,13(2),125-134.
    110] Demers M, Neale K W. Confinement of reinforced concrete columns with fiber-reinforced composite sheets-an experimental study[J]. Canadian Journal of Civil Engineering,1999,26(2):226-241.
    [111]Demers M, Neale K W. Strengthening of concrete columns with unidirectional composites sheets[C]. Proceedings of the Symposium on Developments in Short and Medium Span Bridges, Montreal, Quebec,1994:895-905.
    [112]Pessiki S, Harries K A, Kestner J T, et al. Axial behavior of reinforced concrete columns confined with FRP jackets[J]. Journal of Composites for Construction, ASCE,2001,5(4):237-245.
    [113]Matthys S, Taerwe L, Audenaert K. Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping[C]. Proceedings of the fourth international symposium on fiber reinforced polymer reinforcement for reinforced concrete structures, ACI SP-188, Michigan, USA, 1999:217-229.
    [114]Matthys S. Structural behaviour and design of concrete members strengthened with externally bonded FRP reinforcement[D]. PhD Dissertation, Ghent University, Belgium.2000.
    [115]Matthys S, Toutanji H, Audenaert K, et al. Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites [J]. ACI Structural Journal,2005,102(2):258-267.
    [116]Matthys S, Toutanji H, Taerwe L. Stress-strain behavior of large-scale circular columns confined with FRP composites[J]. Journal of Structural Engineering, ASCE,2006,132(1):123-133.
    [117]Fam A Z. Rizkalla S H. Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(3):280-289.
    [118]Fam A Z, Rizkalla S H. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(4):451-461.
    [119]Fam A Z, Rizkalla S H. Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications[J]. Construction and Building Materials.2003,17(6-7):507-516.
    [120]Rocca S, Galati N, Nanni A. Experimental evaluation of FRP strengthening of real size reinforced concrete columns[R]. Report No. UTC R142, University of Missouri-Rolla, Missouri,2005.
    [121]Rocca S. Experimental and analytical evaluation of FRP-confined large size reinforced concrete columns[D]. PhD Dissertation, University of Missouri, Rolla, USA,2007.
    [123]Lam L, Teng J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6-7):471-489.
    [124]Carey S A, Harries K A. Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets[J]. ACI Structural Journal,2005. 102(4):596-604.
    [125]Abdelrahman K, El-Hacha R. Behavior of large-scale concrete columns wrapped with CFRP and SFRP sheets[J]. Journal of Composites for Construction. ASCE,2012, DOI:10.1061/ CC.1943-5614.0000278, in press.
    [126]Theriault M, Neale KW, Claude S. Fiber-reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects[J]. Journal of Composites for Construction, ASCE,2004, 8(4):323-331.
    [127]Neville A M. Properties of concrete[M]. Longman Group Ltd, Essex, UK,1995.
    [128]Youssef M N. Stress-strain model for concrete confined by FRP composites[D]. PhD Dissertation, University of California, Irvine, California,2003.
    [129]Youssef M N, Feng Q, Mosallam A S. Stress-strain model for concrete confined by FRP composites[J]. Composites Part B:Engineering,2007,38(5-6):614-628.
    [130]Hoshikuma J, Kawashima K, Nagaya K, et al. Stress-strain model for confined reinforced concrete in bridge piers. Journal of Structural Engineering, ASCE,1997,123(5):624-633.
    [131]Lam L, Teng J G. A new stress-strain model for FRP-confined concrete[C]. Proceedings of International Conference on FRP Composites in Civil Engineering, Hong Kong,2001:283-292.
    [132]Yeh F Y, Chang K C. Confinement efficiency and size effect of FRP confined circular concrete columns[J]. Structural Engineering and Mechanics,2007,26(2):127-150.
    [133]Wang Y F, Wu H L. Size effect of concrete short columns confined with aramid FRP jackets[J]. Journal of Composites for Construction, ASCE,2011,15(4),535-544.
    [134]Montgomery D C. Design and analysis of experiments(Second Edition)[M]. Wiley, New York,1983.
    [135]Kim J K, Yi S T, Park C K, et al. Size effect on compressive strength of plain and spirally reinforced concrete cylinders[J]. ACI Structural Journal,1998,96(1):88-94.
    [136]Bazant Z P. Size effect in blunt fracture:Concrete, rock, metal[J]. Journal of Engineering Mechanics, ASCE,1984,110(4):518-535.
    [137]Elsanadedy H M, Al-Salloum Y A, Alsayed S H, et al. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns[J]. Construction and Building Materials,2012,29(4): 56-72.
    [138]Liang M, Wu Z M, Ueda T, et al. Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes[J]. Journal of Reinforced Plastics and Composites,2012,31(6):389-403.
    [139]Silva M A G, Rodrigues C C. Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP[J]. Journal of Materials in Civil Engineering, ASCE,2006,18(3): 334-342.
    [140]Popovics S. Numerical approach to the complete stress-strain relation for concrete[J]. Cement and Concrete Research,1973,3(5):583-99.
    [141]Kupfer H, Hilsdorf H K, Rusch H. Behavior of concrete under biaxial stresses[J]. ACI Journal,1969, 66(8):656-666.
    [142]Spoelstra M R, Monti G. FRP-confined concrete model[J]. Journal of Composites for Construction, ASCE,1999,3(3):143-150.
    [343]Pantazopoulou S J, Mills R H. Microstructural aspects of the mechanical response of plain concrete[J]. ACI Materials Journal,1995,92(6):605-616.
    [144]Gardner N J. Triaxial behaviour of concrete[J]. ACI Journal,1969,66(2):136-146.
    [145]Harries K A, Kharel G. Behavior and modeling of concrete subject to variable confining pressure[J]. ACI Materials Journal.2002,99(2):180-189.
    [146]Thorenfeldt E, Tomaszewicz A, Jensen J J. Mechanical Properties of High Strength Concrete and Application in Design[C]. Proceedings of the Symposium on Utilization of High Strength Concrete, Tapir, Trondheim, Norway,1987:149-159.
    [147]Collins M P, Porasz A. Shear Strength Design for High Strength Concrete[R]. CEB Bulletin d'Information, No.193,1989.
    [148]Samdani S, Sheikh S A. Analytical study of FRP-confined concrete columns[C]. Fourth International Conference on Concrete under Severe Conditions, CONSEC'04, Seoul, South Korea,2004:27-30.
    [149]Punshi V, Sheikh S A. Non-linear analysis of circular FRP-confined concrete columns using finite-element methods[R]. Research Report No. PS-01-03, University of Toronto, Toronto,2003.
    [150]Vecchio F J. Finite Element Modelling of Concrete Expansion and Confinement[J]. Journal of Structural Engineering, ASCE,1992,118(9):2390-2406.
    [151]Marques S P M, Marques D C S M, Silva J L, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction, ASCE,2004,8(4): 332-340.
    [152]Teng J G, Lam L. Behavior and modeling of fiber-reinforced polymer-confined concrete[J]. Journal of Structural Engineering, ASCE,2004,130(11):1713-1723.
    [153]Teng J G, Huang Y L, Lam L, et al. Theoretical model for fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, ASCE,2007,11(2):201-210.
    [154]Jiang T, Teng J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structure,2007,29(11):2968-2986.
    [155]Xiao Q G, Teng J G, Yu T. Behavior and modeling of confined high-strength concrete[J]. Journal of Composites for Construction, ASCE,2010,14(3):249-259.
    [156]Becque J, Patnaik A K, Rizkalla S H. Analytical models for concrete confined with FRP tubes[J]. Journal of Composites for Construction. ASCE,2003,7(1),31-38.
    [157]Gerstle, K. H. Simple formulation of biaxial concrete behavior[J]. ACI Journal,1981,78(1),62-68.
    [158]Gerstle. K. H. Simple formulation of triaxial concrete behavior[J]. ACI Journal,1981,78(5), 382-387.
    [159]Fujikake K. Mindess S. Xu H F. Analytical model for concrete confined with fiber reinforced polymer composite[J]. Journal of Composites for Constructions, ASCE,2004,8(4):341-351.
    [160]Fujikake K, Mori K, Uebayashi K. et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads, Structures under shock and impact VI [M]. WIT Press, Southampton, UK,2000.
    [161]Naganuma K. Orthotropic constitutive relationship for concrete considering nonlinear Poisson effect under triaxial stresses[J]. Journal of Structure and Construction Engineering in Architecture Institute of Japan,1996, (485):109-116.
    [162]Karabinis A I. Rousakis T C. Concrete confined by FRP materials:a plasticity approach [J]. Engineering Structure,2002,24(7):923-932.
    [163]Rousakis TC. Mechanical behaviour of concrete confined by composite materials[D]. PhD Dissertation. Democritus University of Thrace. Xanthi, Greece,2005.
    [164]Rousakis T C, Karabinis A I, Kiousis P D. FRP-confined concrete members:Axial compression experiments and plasticity modeling[J]. Engineering Structure,2007,29(7):1343-1353.
    [165]Rousakis T C, Karabinis A I. Kiousis P D. et al. Analytical modelling of plastic behaviour of uniformly FRP confined concrete members[J]. Composites, Part B:Engineering,2008,39(7-8): 1104-1113.
    [166]Saenz N, Pantelides C P. Strain-based confinement model for FRP-confined concrete[J]. Journal of Structural Engineering, ASCE,2007,133(6):825-833.
    [167]Saenz N. Durability and design of fiber reinforced polymer composites for concrete confinement[D]. PhD Dissertation, University of Utah, Salt Lake City, Utah,2004.
    [168]Lee C S, Hegemier G A. Model of FRP-confined concrete cylinders in axial compression[R]. Report No. SSRP-04/05, UCSD, La Jolla, California,2004.
    [169]Lee C S. Modeling of FRP-jacketed RC columns subjected to combined axial and lateral loads[D]. PhD Dissertation, University of California, San Diego, California,2006.
    [170]Lee C S, Hegemier G A. Model of FRP-confined concrete cylinders in axial compression[J]. Journal of Composites for Construction, ASCE,2009,13(5):442-454.
    [171]Attard M M, Setunge S. Stress-strain relationship of confined and unconfined concrete[J]. ACI Materials Journal,1996,93(5):432-442.
    [172]陶忠,高献,于清,等.FRP约束混凝土的应力-应变关系[J].工程力学,2005,22(4):187-195.
    [173]Imran I, Pantazopoulou S J. Experimental study of plain concrete under triaxial stress[J]. ACI Structural Journal,1996,93(6):589-601.
    [174]鲁国昌.FRP管约束混凝土轴压性能研究[D].北京:清华大学,2005.
    [175]鲁国昌,叶烈平,杨千才,等.FRP管约束混凝土的轴压应力-应变关系研究[J].工程力学,2006,23(9):98-103.
    [176]Hill R.The mathematical theory of plasticity[M]. Oxford University Press, London,1950.
    [177]Newman K, Newman J B. Failure theories and design criteria for plain concrete. Structures, Solid Mechanics and Engineering Design[C]. Proceedings of the Southampton Engineering Materials Conference, Wiley-Interscience, UK,1971:963-995.
    [178]Richard R M, Abbott B J. Versatile elastic-plastic stress-strain fonnulafJ]. Journal of Engineering Mechanics, ASCE,1975,101(4):511-515.
    [179]Campione G, Miraglia N. Strength and strain capacities of concrete compression members reinforced with FRP[J]. Cement and Concrete Composites,2003,25(1):31-41.
    [180]肖岩,吴徽,陈宝春.碳纤维套箍约束混凝土的应力-应变关系[J].工程力学,2002,19(2):154-159.
    [181]于清.轴心受压FRP约束混凝土的应力-应变关系研究[J].工业建筑,2001,31(4):5-8.
    [182]Hosotani M, Kawashima K. A stress-strain model for concrete cylinders confined by both carbon fiber sheets and tie reinforcement[J]. Journal of Concrete Engineering, JSCE,1999,620(43):25-42.
    [183]金熙男,潘景龙,刘广义,等.增强纤维约束混凝土轴压应力-应变关系试验研究[J].建筑结构学报,2003,24(4):47-53.
    [184]Miyauchi K, Inoue S, Kuroda T, et al. Strengthening effects of concrete columns with carbon fiber sheet[J]. Transactions of Japan Concrete Institute,1999,21:143-150.
    [185]Lillistone D, Jolly C K. An innovative form of reinforcement for concrete columns using advanced composites[J]. The Structural Engineer,2000,78(23-24):20-28.
    [186]Li Y, Lin C, Sung Y. A constitute model for concrete confined with carbon fibre reinforced plastics[J]. Mechanics of Materials,2003,35(6):603-619.
    [187]Harajli M H. Axial stress-strain relationship for FRP confined circular and rectangular concrete columns[J]. Cement and Concrete Composites,2006,28(10):938-948.
    [188]Wei Y Y, Wu Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392.
    [189]Teng J G, Jiang T, Lam L, et al. Refinement of a design-oriented stress-strain model for FRP-confiend concrete[J]. Journal of Composites for Construction, ASCE,2009,13(4),269-278.
    [190]刘明学,钱稼茹.FRP约束圆柱混凝土受压应力-应变关系模型[J].土木工程学报,2006,39(11):1-6.
    [191]Fahmy M F M, Wu Z S. Evaluation and proposing models of circular concrete columns confined with different FRP composites[J]. Composites Part B:Engineering,2010,41 (3):199-213.
    [192]Wu G, Lu Z T, Wu Z S. Stress-strain relationship for FRP-confined concrete cylinders. Proceedings of the 6th international symposium on FRP reinforcement for concrete structures, Singapore,2003: 552-560.
    [193]吴刚,吕志涛.FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J].建筑结构学报,2003,24(5):1-9.
    [194]吴刚,吴智深,吕志涛.FRP约束混凝土圆柱有软化段时的应力-应变关系研究[J].土木工程学报,2006,39(11):7-14.
    [195]敬登虎.纤维增强复合材料约束下的圆形混凝土柱应力-应变全曲线简化模型[J].建筑科学,2005,21(2):8-11.
    [196]黄龙男,张东兴,王荣国,等.玻璃钢管柱轴心受压本构关系研究[J].武汉理工大学学报,2002,24(7):31-34.
    [197]黄龙男,张东兴,李地红,等.轴向受压CFRP管混凝土柱的膨胀模型及应力-应变关系[J].复合材料学报,2006,23(1):112-116.
    [198]Zhou Y W, Wu Y F. General model for constitutive relationships of concrete and its composites structures[J]. Composite Structures,2012,94(2):580-592.
    [199]Mirmiran A, Zagers K, Yuan W Q. Nonlinear finite element modeling of concrete confined by fiber composites[J]. Finite Elements in Analysis and Design,2000,35(1):79-96.
    [200]Kwon M, Spacone E. Three-dimensional finite element analyses of reinforced concrete columns[J]. Computers and Structures,2002,80(2):199-212.
    [201]Montoya E. Behavior and analysis of confined concrete[D], PhD Dissertation. University of Toronto, Canada,2003.
    [202]Montoya E. Vecchio F J. Sheikh S A. Numerical evaluation of the behaviour of steel-and FRP-confined concrete columns using compression field modeling[J]. Engineering Structures,2004, 26(11):1535-1545.
    [203]Montoya E. Vecchio F J. Sheikh S A. Compression field modeling of confined concrete:constitutive models[J]. Journal of Materials in Civil Engineering, ASCE,2006,18(4):510-517.
    [204]Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete solids subjected to shear. ACI Journal,1986,83(2):219-231.
    [205]Vecchio F J. Finite element modeling of concrete expansion and confinement. Journal of Structural Engineering, ASCE,1992,118(9):2390-2406.
    [206]Montoya E, Vecchio F J, Sheikh S A. Compression field modeling of confined concrete. Structural and Engineering Mechanics,2001,12(3):231-248.
    [207]Hoshikuma J, Kazuhiko K, Kazuhiko N, et al. A model for confinement effect on stress-strain relation of reinforced concrete columns for seismic design[C]. Proceedings of 11th World Conference on Earthquake Engineering, London,1996:88-98.
    [208]Jiang J F, Wu Y F. Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns[J]. International Journal of Solids and Structures,2012,49(3-4): 445-456.
    [209]陆新征,冯鹏,叶列平.FRP布约束混凝土方柱轴心受压性能的有限元分析[J].土木工程学报,2003,36(2):46-51.
    [210]刘浩,赵颖华CFRP增强钢筋混凝土柱承载能力的有限元分析[J].沈阳建筑工程学院学报(自然科学版),2002,18(3):161-163.
    [211]黄艳,亓路宽.FRP布约束混凝土圆柱轴心受压性能非线性有限元分析[J].中国铁道科学,2008,29(1):46-50.
    [222]梁猛,董伟,易富民,吴智敏CFRP约束混凝土圆柱轴心受压力学性能分析[J].土木建筑与环境工程,2010,32(6):36-41.
    [223]代兵,侯景军.外包纤维布加固混凝土轴心受压柱力学性能分析[J].工业建筑,2006,36(S):1028-1031.
    [224]Eid R, Dancygier A N. Confinement effectiveness in circular concrete columns[J]. Engineering Structcture,2006,28(13):1885-1896.
    [225]Eid R, Paultre P. Plasticity-based model for circular concrete columns confined with fibre-composite sheets[J]. Engineering Structcture,2007,29(12):3301-3311.
    [226]Eid R, Dancygier A N, Paultre P. Elastoplastic Confinement Model for Circular Concrete Columns[J]. Journal of Structural Engineering. ASCE.2007,133(12):1821-1831.
    [227]周志军,郭光玲.纤维布包裹钢筋混凝土轴心受压柱非线性有限元数值模拟[J].四川建筑科学研究,2006,32(4):55-57.
    [228]郭光玲.不同纤维布约束钢筋混凝土柱的加固效果分析[J].昆明理工大学学报(理工版).2007.32(6):34-37.
    [229]Comber M, Phillippi D. Lee C S. et al. Uniaxial compression tests on full-scale CFRP-confined columns:Report of testing results[R]. Report Prepared for Structural Engineering Department. UCSD, La Jolla, California,2008.
    [230]Owen L M. Stress-strain behavior of concrete confined by carbon fiber jacketing[D]. MS thesis. University of Washington, Seattle, USA,1998.
    [231]中华人民共和国国家标准.结构加固修复用碳纤维片材(GB/T 21490-2008)[S].北京:中国标准出版社,2002.
    [232]碳纤维片材加固混凝土结构技术规程(CECS}46:2003)[S].北京:中国计划出版社.2003.
    [233]Martinez S, Nilson A H, Slate F O. Spirally Reinforced High-Strength Concrete Columns[C]. ACI Journal, Proceedings 81(5),1984:431-442.
    [234]Fafitis A, Shah S P. Lateral Reinforcement for High-Strength Concrete Columns[C]. High-Strength Concrete, ACI SP-87,1985:213-232.
    [235]Setunge S, Attard M M, Darvall P L. Ultimate strength of confined very high-strength concrete[J]. ACI Structural Journal,1993,90(6):632-641.
    [236]Xie J, Elwi A E, MacGregor J G (1995). Mechanical properties of three high-strength concretes containing silica fume[J]. ACI Materials Journal,1995,92(2); 135-143.
    [237]Ansari F, Li Q B. High-strength concrete subjected to triaxial compression." ACI Materials Journal, 1998,95(6):747-755.
    [238]Li, B, Park R, Tanaka H. Stress-Strain Behavior of High Strength Concrete Confined by Ultra-High-and Normal-Strength Transverse Reinforcements[J]. ACI Structural Journal,2001,98(3):395-406.
    [239]Legeron F, Paultre P. Uniaxial Confinement for Normal-and High-Strength Concrete Columns[J]. Journal of Structural Engineering, ASCE,2003,129(2):241-252.
    [240]Girgin Z C, Anoglu N, Anoglu E. Evaluation of strength criteria for very-high-strength concretes under triaxial compression[J]. ACI Structural Journal,2007,104(3):278-284.
    [241]Girgin, Z. C. Modified failure criterion to predict ultimate strength of circular columns confined by different materials[J]. ACI Structural Journal,2009,106(6):800-809.
    [242]Karam G and Tabbara M. Hoek-Brown strength criterion for actively confined concrete. Journal of Materials in Civil Engineering, ASCE,2009; 21(3):110-118.
    [243]Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of Geotechnical Engineering Division,1980,106(GT9):1013-1035.
    [244]Hoek E, Brown E T. Underground excavations in rock, published for the Institution of Mining and Metallurgy[M]. E&FN Sponsor, London,1982.
    [245]Smith S S, William K J, Gerstle K H, et al. Concrete over the top, or:Is there life after peak?[J]. ACI Materials Journal,1989,86(5):491-497.
    [246]Bellotti R, Rossi P. Cylinder tests:experimental technique and results[J]. Materials and Structures, 1991,24(1); 45-51.
    [247]Candappa D C, Sanjayan J G. Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J]. Journal of Materials in Civil Engineering, ASCE,2001,13(3):209-215.
    [248]Sfer D, Carol I, Gettu, R, et al. Study of the behavior of concrete under triaxial compression [J]. Journal of the Engineering Mechanics, ASCE,2002,128(2):156-163.
    [249]Menetrey P, William K J. Triaxial failure criterion for concrete and its generalization [J]. ACI Structural Journal,1995,92(3):311-318.
    [250]Wu Y F, Zhou Y W. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP[J]. Journal of Composites for Construction, ASCE.2010, 14(2):175-184.
    [251]Anoglu N, Girgin Z C, Anoglu E. Evaluation of the Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and its Application in Strength Criterion[J]. ACI Materials Journal,2006,103(1):18-24.
    [252]Papanikolaou V K, Kappos A J. Confinement-sensitive plasticity constitutive model for concrete in triaxial compression[J]. International Journal of Solids and Structures,2007,44(21):7021-7048.
    [253]Hegemier G A, Read H E. On deformation and failure of brittle solids:Some outstanding issues[J]. Mechanics of Materials,1985,4(3-4):215-259.
    [254]Dahl K. A failure criterion for normal and high strength concrete[R]. Project 5, Report No.5-6. American Concrete Institute, Detroit,1992.
    [255]Pantazopoulou S J. Role of expansion on mechanical behavior of concrete[J]. Journal of Structural Engineering, ASCE,1995,121(12):1795-1805.
    [256]ACI Committee 318. Building code requirements for structural concrete and Commentary (ACI 318-95 and ACI 318R-95 (Fifth Printing)). American Concrete Institution, Farmington Hills, Michigan,1999.
    [257]Mastrapa J C. The effect of construction bond on confinement with FRP composites[D]. MS thesis, University of Central Florida, Orlando, USA,1997.
    [258]Harries K A. Carey S A. Shape and "gap" effects on the behavior of variably confined concrete[J]. Cement and Concrete Research,2003,33(6):881-890.
    [259]Realfonzo R, Napoli A. Concrete confined by FRP systems:confinement efficiency and design strength models[J]. Composites Part B:Engineering,2011,42(4):736-755.
    [260]Wu Y F, Wang L M. Unified strength model for square and circular concrete columns confined by external jacket[J]. Journal of Structural Engineering. ASCE,2009,135(3):253-261.
    [261]Rousakis T C, Karabinis A I. Substandard reinforced concrete members subjected to compression: FRP confining effects[J]. Material and Structures.2008,41(9):1595-1611.
    [262]Miyauchi K, Nishbayashi S. Inoue S. Estimation of strengthening effects with carbon fiber sheet for concrete column. Proceedings of International Symposium of FRPRCS-3. Sapporo. Japan,1997: 217-224.
    [263]Chang S Y. Li Y F, Loh C H. Experimental study of seismic behaviors of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns. Journal of Bridge Engineering. ASCE,2004.9(4):391-402.
    [264]Bisby L A, Dent A J S. Green M F. Comparison of confinement models for fiber-reinforced polymer-wrapped concrete[J]. ACI Structural Journal,2005,102(1):62-72.
    [265]Howie I, Karbhari V M. Effect of materials architecture on strengthening efficiency of composite wraps for deteriorating columns in the North-East[C]. Proceedings of Third Conference on Materials Engineering, San Diego, USA.1994:199-206.
    [266]Watanable K, Nakamura H, Honda T, et al. Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression[C].Proceedings of Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures. Sapporo, Japan,1997:233-240.
    [267]Kshirsagar S, Lopez-Anido R A, Gupta R K. Environmental aging of fiber-reinforced polymer-wrapped concrete cylinders[J]. ACI Materials Journal.2000.97(6):703-712.
    [268]Zhang S, Ye L. Mai Y W. A study on polymer composites strengthening systems for concrete columns[J]. Applied Composite Materials,2000,7(2-3):125-138.
    [269]Lam L, Teng J G. Cheung C H. et al. FRP-confined concrete under axial cyclic compression[J]. Cement and Concrete Composites,2006,28(10):949-958.
    [270]Guralnick S A and Gunawam L. Strengthening of reinforced concrete bridge columns with FRP wrap[J]. Practice Periodical on Structural Design and Construction, ASCE,2006,11(4):218-228.
    [271]Lorenzis L D, Tepfers R. Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites[J]. Journal of Composites for Construction, ASCE,2003,7(3): 219-237.
    [272]Wu G, Lu Z T, Wu Z S. Strength and ductility of concrete cylinders confined with FRP composites[J]. Construction and Building Materials,2006,20(3):134-148.
    [273]Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets. Part B:modeling[J]. Construction and Building Materials,2006,20(5):338-347.
    [274]滕素珍.数理统计(第三版)[M].大连理工大学出版社,大连,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700