用户名: 密码: 验证码:
水工准大体积混凝土分布式光纤温度监测与智能反馈研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在很长一段时期内,工程界认为水工准大体积混凝土结构外表面面积大,内侧面往往与围岩接触,散热条件好,不需要特殊的温控措施。然而,研究表明,相比于水工大体积混凝土,水工准大体积混凝土往往具有半熟龄期小、绝热温升高、温升温降速率快、自生体积收缩量大等材料特性和厚宽比小、散热面大、受约束强等结构特性;大量工程资料显示,水工准大体积混凝土这些材料和结构特性更容易使其产生温度应力致裂现象。针对该问题,本文在前人研究的基础上,从理论和现场试验出发,对水工准大体积混凝土的温度监测、自生体积变形监测、热力学参数智能反演以及温控措施优选等方面进行了相对深入的研究,并结合具体工程,提出“现场监测-反馈分析-真实性态分析-温控措施调控”这一思想来降低水工准大体积混凝土的开裂风险。具体研究内容如下:
     (1)分布式光纤温度监测在水工准大体积混凝土施工期温度监测中的应用
     通过工程实践研究,探索出一整套适合准大体积混凝土浇筑现场环境的光纤铺设工艺,保证了光纤的成活率和监测数据的精度,为水工准大体积混凝土的温度监测提供新的可靠的方式。基于丰富的分布式光纤温度监测信息,从最高温度、水平向温度梯度、竖直向温度梯度、降温速率等方面对内含冷却水管的水工准大体积混凝土时空温度分布进行分析。
     (2)考虑温度时程的混凝土自生体积变形计算模型和自生体积变形统计模型
     基于水泥基材料水化动力学方程和成熟度理论,在充分考虑温度时程和早龄期混凝土热膨胀系数变化的基础上,提出建立考虑混凝土温度时程影响的早龄期混凝土自生体积变形计算模型和统计模型,并分别结合具体工程,进行混凝土早龄期的自生体积变形试验研究。
     (3)准大体积混凝土热力学参数智能反演
     引入基于均匀设计的遗传算法-神经网络人工智能方法,对水工准大体积混凝土多个热力学参数进行智能反演,编制了智能反演程序,并基于实际准大体积混凝土分布式光纤温度监测数据,对该准大体积混凝土多个热力学参数进行反演分析。
     (4)准大体积混凝土水管冷却影响因素
     结合分布式光纤温度监测数据,采用水管冷却精密有限元程序对实际水工准大体积混凝土工程施工期温度场和应力场进行仿真计算分析,并对准大体积混凝土冷却水管铺设位置、通水起始时刻、通水流量等影响冷却水管冷却效果的主要因素进行对比分析,阐述了通水起始时刻、通水水温、浇筑温度之间的联系和矛盾,分别从高温季节和低温季节两种情况,提出实际准大体积混凝土施工过程中,应结合关键部位的监测结果,采用多样化的通水冷却方案来充分发挥“削峰”作用的同时也避免管壁周围混凝土产生“冷击”现象,为今后类似准大体积混凝土工程的水管冷却方案的制定提供重要参考依据。
     (5)准大体积混凝土温控措施智能优选
     针对准大体积混凝土温控措施之间彼此联系而又相互制约的复杂关系,提出采用基于均匀设计的遗传算法-神经网络人工智能方法,并编制了智能优选程序,对水工准大体积混凝土复杂的多因素温控参数体系进行智能优选,克服了单因素温控措施敏感性分析工作量大的问题。结合具体工程,采用此智能优选方法,以安全系数为准则函数,获得各安全系数条件下的优选温控措施方案。
For a long time, a common view is that no special temperature control measures are needed for quasi-mass concrete structures since their surface area is large, and they are always contacted with wall rock, which is a good heat elimination condition. Nevertheless, compared to the hydraulic mass concrete, the quasi-mass concrete have the followed characteristics:short semi-mature age, high adiabatic temperature, rapid temperature change, large amount of autogenous shrinkage, small thickness-width ratio, large heat elimination area, intensive restraint. Numerous studies have shown that, these characteristics are more likely to lead to cracks due to excess temperature stress. In this thesis, based on the previous studies, combining with actual projects, temperature monitoring, autogenous deformation monitoring, intelligent inversion analysis method for thermodynamic parameters and intelligent optimization for temperature control measures are deeply studied from theoretical and experimental aspects, and the pattern of "field monitoring-feedback analysis-real behavior analysis-temperature measures control" is proposed to reduce crack risk for hydraulic quasi-mass concrete. The main contains are as follows:
     (1) The application of temperature monitoring by distributed optical fiber for hydraulic quasi-mass concrete during the construction period
     Combining with actual projects, a series of laying process for distributed optical fiber that is suitable for the quasi-mass concrete's casting environment was explored to guarantee the survival rate and the data's accuracy, which will provide a new reliable way for concrete's temperature monitoring. Based on abundant temperature data, the temperature field distribution was analysed for hydraulic quasi-mass concrete maintaining cooling pipe from the perspective of maximum temperature, the vertical and horizontal temperature gradient, the rate of cooling and so on.
     (2) Calculation model and statistical model of autogenous deformation for hydraulic quasi-mass concrete considering temperature histories.
     Based on hydration equation of cement-based material and maturity theory, a calculation model and a statistical model of autogenous deformation for hydraulic mass concrete are proposed fully considering the influences of temperature on the thermal dilation coefficient(TDC) and the autogenous deformation at early age.
     (3) Intelligent inversion analysis method for thermodynamic parameters of quasi-mass concrete
     The genetic algorithm-neural network artificial intelligence method is adopted for intelligent inversion analysis for thermodynamic parameters of quasi-mass concrete. Combining with distributed optical fiber temperature monitoring data of specific engineering, the intelligent inversion program is worked out to optimize the multiple thermodynamic parameters.
     (4) Pipe cooling influence factors of quasi-mass concrete
     Combining with the distributed optical fiber temperature monitoring data, temperature and stress field simulation under an actual quasi-mass concrete project during the construction are carried out by using the cooling pipe precision finite element program. Through comparative analysis of the laying position of cooling pipe, the initiatial time of pipe cooling and the flow of cooling water, this thesis notes that there are both relating and conflicting relationship among the initiatial time of pipe cooling, the temperature of cooling water and concreting temperature of quasi-mass concrete. Then, from two aspects of high-temperature reason and high-temperature reason, this thesis puts forward that it is reasonable to reduce the maximum temperature and avoid the phenomenon of rapid temperature drop by using the diversified water cooling measures during the construction combining with the monitoring data of key parts. It could provide important reference for the similar pipe cooling project.
     (5) Intelligent optimization for temperature control measures of quasi-mass concrete
     Regarding the both relating and conflicting relationship among the temperature control measures of quasi-mass concrete, the genetic algorithm-neural network artificial intelligence method based on uniform design was proposed and the intelligent optimization program was worked out to optimize the multi-factor of temperature control measures. It can overcome the large amount of workload of single factor sensitivity analysis of temperature control measures. Combining with specific engineering, using this intelligent optimization method, the corresponding temperature control measures are selected by the criterion function based on the different security coefficient.
引文
[1]侯建功译美国内务部垦务局编.混凝土坝的冷却[M].北京:水利电力出版社,1958.
    [2]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [3]中华人民共和国国家发展与改革委员会.水工隧洞设计规范(DL/T5195-2004)[S].2004.
    [4]段亚辉,方朝阳,樊启祥,等.三峡永久船闸输水洞衬砌混凝土施工期温度现场试验研究[J].岩石力学与工程学报.2006(1):128-135.
    [5]张志诚,林义兴,徐云峰,等.三峡地下电站引水洞衬砌混凝土裂缝成因分析[J].人民长江.2006(2):9-10.
    [6]施召云,武晓杰,宁谦.溪洛渡水电站导流洞衬砌混凝土裂缝处理技术[J].施工技术.2009,38(12):37-39,60.
    [7]徐福卫,田斌.高拱坝裂缝成因分析[J].湖北水力发电.2005(2):14-17.
    [8]戴会超,王建.国内外水利水电工程混凝土裂缝及其防治技术研究[M].黄河水利出版社,2005.
    [9]L Wilson E. The determination of temperatures within mass concrete structures(SESM Report No.68-17). Structures and Materials Research[R]. Berkeley:Department of Civil Engineering University of California, 1968.
    [10]侯朝胜,赵代深.混凝土坝温控三维仿真敏感分析及其凝聚方程[J].天津大学学报.2001(5):605-610.
    [11]周华,傅少君,王国进,等.小湾拱坝施工期温度场动态跟踪仿真[J].武汉大学学报(工学版).2009(1):77-81.
    [12]夏雨,张仲卿,赵小莲,等.大体积混凝土施工期温度场的随机有限元分析[J].人民黄河.2008(5):91-93.
    [13]韩晓凤,张伟.考虑封拱灌浆过程的高拱坝施工期仿真分析[J].水力发电.2005(8):38-41.
    [14]W Chen. Concrete tunnel lining fire resistance and protection[C].2006.
    [15]A Schrefler B. Concrete at high temperature with application to tunnel fire[J].Computational Mechanics. 2002(29):43-51.
    [16]P Bamonte. A study on the mechanical properties of self-compacting concrete at high temperature and after cooling[J].Materials and Structures.2012(45):1375-1387.
    [17]Takayama, Hirofumi, Nonomura, et al. Study on cracks control of tunnel lining concrete at an early age[Z]. Metropolises:2007.
    [18]SALET, TAM, E Schlangen. EARLY-AGE CRACK CONTROL IN TUNNELS [J]. Thomas Telford Limited.1997:331-341.
    [19]廖波.小浪底泄洪工程高标号混凝土裂缝产生的原因及防治[J].水利学报.2001(7):47-50.
    [20]段云岭,周睿.小浪底工程泄洪洞衬砌施工期温变效应的仿真分析[J].水力发电学报.2005(5):49-54.
    [21]张志诚,陈绪春,林义兴,等.三峡工程右岸地下电站引水洞衬砌混凝土施工全过程监测及仿真分析[J].大坝与安全.2005(4):44-46.
    [22]方朝阳,段亚辉.三峡永久船闸输水洞衬砌施工期温度与应力监测成果分析[J].武汉大学学报(工学版).2003(5):30-34.
    [23]赵路,冯艳,段亚辉,等.三板溪泄洪洞衬砌混凝土裂缝发生与发展过程[J].水力发电.2011(9):35-38.
    [24]刘亚军,段亚辉,郭杰,等.导流隧洞衬砌混凝土温度应力围岩变形模量敏感性分析[J].水电能源科学.2007,25(5):77-80.
    [25]武汉大学水资源与水电工程科学国家重点实验室.溪洛渡水电站泄洪洞衬砌混凝土温控复核与模拟技术研究[R].,2011.
    [26]三峡大学.基于分布式光纤传感技术的溪洛渡大坝混凝土现场系列温度监测试验[R].,2013.
    [27]梁甘.天生桥二级电站引水洞混凝土裂缝分析及处理[J].人民长江.2005,36(5):7-8.
    [28]刘有志.水工混凝土温控和湿控防裂方法研究[D].河海大学,2006.
    [29]马跃峰.基于水化度的混凝土温度与应力研究[D].河海大学,2006.
    [30]朱岳明,徐之青,曹为民,等.墩墙混凝土结构水管冷却分析[J].工程力学.2004,21(5):183-187,182.
    [31]李才,朴灿日.丰满大坝溢流坝段闸墩加固技术[J].水利水电技术.2000,31(10):45-47.
    [32]宋恩来.冰压力对太平哨大坝闸门和闸墩的影响与破坏[J].大坝与安全.2003(3):31-33.
    [33]E Davis H. Autogenous volume change of concrete[R].,1940.
    [34]黄利频,刘海峰.高性能混凝土的自收缩及测试方法探讨[J].青海大学学报(自然科学版).2007(2):52-56.
    [35]E Tazawa. Autogenous shrinkage of concrete[R]. London:Taylor&Francis Books Ltd,1999.
    [36]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [37]田倩,孙伟,缪昌文,等.高性能混凝士自收缩测试方法探讨[J].建筑材料学报.2005(1):82-89.
    [38]E Tazawa, S Miyazawa. Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste[J]. Cement and Concrete Research.1995,25(2):281-287.
    [39]安明哲,覃维祖,朱金铨.高强混凝土的自收缩试验研究[J].山东建材学院学报.1998:141-145.
    [40]巴恒静,高小建,杨英姿.高性能混凝土早期自收缩测试方法研究[J].工业建筑.2003(8):1-4.
    [41]李鹏辉,刘光廷,高虎,等.自生体积变形试验方法研究及应用[J].清华大学学报(自然科学版).2001(11):114-117.
    [42]王国杰,郑建岚.混凝土结构早龄期应力相关应变现场监测与分析[J].工程力学.2009,26(09):61-73.
    [43]C Hua, P Acker, A Ehrlacher. Analysis and model autogenous shrinkage of hardening cement paste[J]. Cement and Concrete Research.1995,25(7):1457-1468.
    [44]M Jensen O. Thermodynamic limitation of self-desiccation[J]. Cement and Concrete Research.1995,25(1): 157-164.
    [45]V Breugel K. Numerical modeling of volume changes at early ages-potential,pitfalls and challenges[J]. Materials and Structures.2001,34(5):293-301.
    [46]P Bentz D., A Snyder K., E Stutzman P. Microstructural modeling of self-desiccation during hydration[J]. 1997(3):132-140.
    [47]L Roy R., F DeLarrard, G. Pons. The after code type model for creep and shrinkage of high performance concrete[C]. Paris:pressesdel,Ecole National edes pontset chausees,1996.
    [48]KIM Jin-Keun, Lee HIL-Sung. Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement and Concrete Research.1999,29(12):1921-1927.
    [49]许华胜,蒋正武.高性能混凝土中自身相对湿度变化与自收缩的研究[J].重庆建筑大学学报.2004(2):121-125.
    [50]李家和,欧进萍,孙文博.掺合料对高性能混凝土早期自收缩的影响[J].混凝土.2002(5):9-10.
    [51]祝昌暾,陈敏,杨杨,等.高强混凝土的收缩和早期徐变特性[J].混凝土与水泥制品.2005(2):1-4.
    [52]张雄,韩继红,李悦.掺复合矿物外加剂混凝土的收缩性能研究[J].建筑材料学报.2003(2):204-207.
    [53]Persson Bertil. Eight-year exploration on shrinkage in high-performance concrete[J]. Cement and Concrete Research.2002,32(1):1229-1237.
    [54]Jensen Ole Mejlhede, Hansen Per Freiesleben. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste[J]. Cement and Concrete Research.1999,29(4):567-575.
    [55]Loukili Ahmed, Chopin David, Khelidj Abdelhafid, et al. A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history [J]. Cement and Concrete Research.2000,30(6):915-922.
    [56]Turcry Philippe, Loukili Ahmed, Barcelo Laurent, et al. Can the maturity concept be used toseparate the autogenous shrinkage and thermal deformation of a cement paste at early age?[J]. Cement and Concrete Research.2002,32(9):1443-1450.
    [57]Zhu Bofang, Xu Ping. Thermal stress and temperature control of roller-compaeted concrete gravity dams[J]. Dam Engineering.1995(3199-220.):199-220.
    [58]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [59]朱伯芳.RCC坝仿真计算非均匀单元的初始条件[J].水力发电学报.2000(1):81-85.
    [60]朱伯芳,许平.碾压混凝土重力坝的温度应力与温度控制[J].水利水电技术.1996(9):18-25.
    [61]朱伯芳.论混凝土坝的水管冷却[J].水利学报.2010(5):505-513.
    [62]刘晓青,李同春,韩勃.模拟混凝土水管冷却效应的直接算法[J].水利学报.2009(7):892-896.
    [63]麦家煊.水管冷却理论解与有限元结合的计算方法[J].水力发电学报.1998(4):32-42.
    [64]刘宁,刘光廷.水管冷却效应的有限元子结构模拟技术[J].水利学报.1997(12):44-50.
    [65]解宏伟.混凝土坝冷却水管冷却效果仿真计算研究[D].西安理工大学,2005.
    [66]刘勇军.水工混凝土温度与防裂技术研究[D].河海大学,2002.
    [67]朱岳明,徐之青,贺金仁,等.混凝土水管冷却温度场的计算方法[J].长江科学院院报.2003(2):19-22.
    [68]朱岳明,贺金仁,肖志乔,等.混凝土水管冷却试验与计算及应用研究[J].河海大学学报(自然科学版).2003(6):626-630.
    [69]林志祥.混凝土大坝温度应力数值仿真分析关键技术研究[D].河海大学,2005.
    [70]A Stucky, H Derron M. Problems chermiques poses par la construction des barrages-reservoirs[M]. Lausanne:Sciences&Technique,1957.
    [71]陈秋华,邵敬东,赵永刚.RCC高拱坝埋设冷却水管技术研究[J].水电站设计.2001(3):12-14.
    [72]黎汝潮.三峡工程塑料冷却水管现场试验与研究[J].中国三峡建设.2000(5):20-23.
    [73]王金国.二滩水电站建设中一些重大技术问题的决策及效应[J].水力发电.2000(9):35-37.
    [74]丁长青.高强度聚乙烯管在大朝山碾压混凝土围堰中的应用[J].水力发电.2000(3):26-27.
    [75]傅友堂.天生桥一级水电站导流洞堵头混凝土施工[J].人民长江.1999(5):35-37.
    [76]丁宝瑛.大体积混凝土与冷却水管间水管温差的确定[J].水利水电技术.1997(3):12-16.
    [77]朱岳明,贺金仁,肖志乔,等.混凝土水管冷却试验与计算及应用研究[J].河海大学学报(自然科学版).2003(6):626-630.
    [78]朱伯芳,蔡建波.混凝土坝水管冷却效果的有限元分析[J].水利学报.1985(4):27-36.
    [79]黄耀英,周宜红,周建兵.水管冷却热传导计算模型能量分析[J].水利水运工程学报.2012(1):78-82.
    [80]黄耀英,周宜红.两种不同水管冷却热传导计算模型相关性探讨[J].长江科学院院报.2009(6):56-59.
    [81]三峡大学.基于应变传感技术的溪洛渡大坝关键部位应力应变监测试验[R].,2013.
    [82]林峰,段亚辉.溪洛渡水电站无压泄洪洞衬砌混凝土秋季施工温控方案优选[J].中国农村水利水电.2012(7):132-136.
    [83]郭杰,段亚辉.溪洛渡水电站导流洞不同厚度衬砌混凝土通水冷却效果研究[J].中国农村水利水电.2008(12):119-122.
    [84]刘有志,朱岳明,张国新.基于现场实验的墩墙混凝土真实温度应力性态及开裂机理分析[J].水力发电学报.2008(5):47-52.
    [85]王振红,朱岳明,于书萍.倒丁字型混凝土结构施工期温控与防裂研究[J].水利学报.2007(S1):200-204.
    [86]吉顺文,朱岳明,蒋一鸣.平原地区水工混凝土裂缝成因与防裂研究[J].三峡大学学报(自然科学版).2009(4):37-39.
    [87]马跃峰,朱岳明,曹为民,等.闸墩内部水管冷却和表面保温措施的抗裂作用研究[J].水利学报.2006(8):963-968.
    [88]李守巨,刘迎曦,周承芳,等.岩土渗流问题反分析的非线性最小二乘法[J].中国有色金属学报.1998(S2):726-729.
    [89]苏向震,何江达,罗渝.最小二乘法在位移反分析中的应用[J].西部探矿工程.2007,19(1):145-147.
    [90]李就好.单纯形法与边界元相结合的岩体计算反分析方法[J].农业工程学报.1998,14(4):78-81.
    [91]肖铭钊,周承豪,程芸,等.有限元与改进单纯形法联合编程技术在位移反分析中的应用[J].岩土力 学.2011,32(3):899-904.
    [92]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报.2003,22(2):197-202.
    [93]陈刚,张林,陈健康,等.复合形法在拱坝结构可靠度分析中的应用[J].水利学报.2003(2):98-101,106.
    [94]李亮,迟世春,林皋.改进复合形法及其在边坡稳定分析中的应用[J].哈尔滨工业大学学报.2005,37(10):1429-1432.
    [95]屠文东.基于改进鲍威尔法的6/4极双凸极永磁电机的优化设计[J].中国高新技术企业.2010(24):1-2.
    [96]万耀青.最优化计算方法常用程序汇编[M].北京:工人出版社,1983:220-222.
    [97]刘世君,徐卫亚,王红春.不确定性岩石力学参数的区间反分析[J].岩石力学与工程学报.2004,23(6):885-888.
    [98]黄耀英,吴中如,王德信,等.区间参数优化反分析在水利工程中的应用[J].水利水运工程学报.2007(3):1-5.
    [99]赵玉清,余志军.加速全局优化-鲍威尔法和模拟退火法的组合[J].电子学报.1998,26(9):75-77.
    [100]陈樊建,朱岳明.遗传算法在拱坝热学参数反演分析中的应用[J].华北水利水电学院学报.2007(02):33-35.
    [101]黄达海,刘广义,刘光廷.大体积混凝土热学参数反分析新方法[J].计算力学学报.2003,20(5):574-578.
    [102]李守巨,刘迎曦.基于模糊理论的混凝土热力学参数识别方法[J].岩土力学.2004,25(4):570-573.
    [103]黎军,朱岳明,何光宇.混凝土温度特性参数反分析及其应用[J].红水河.2003(02):33-36.
    [104]朱岳明,谢先坤,等.确定混凝土温度特性多参数的试验与反演分析[J].岩土工程学报.2002,24(2):175-177.
    [105]李洋波,马雪峰,黄达海.基于仿真分析的混凝土坝热学参数反演方法[J].水电能源科学.2009,27(5):111-113.
    [106]江凯,周建兵,黄耀英,等.基于光纤测温的大体积混凝土导温系数反演分栅[J].中国农村水利水电.2012(3):91-93.
    [107]江凯,黄耀英,周宜红,等.基于光纤测温的大体积混凝土热学参数反演分析[J].人民长江.2012, 43(2):50-53,69.
    [108]张清,宋家蓉.利用神经元网络预测岩石或岩石工程的力学性态[J].岩石力学与工程学报.1992(01):35-43.
    [109]李端有,李迪,马水山.三峡永久船闸开挖边坡岩体力学参数反分析[J].长江科学院院报.1998(02):11-14.
    [110]冯夏庭.岩石力学的智能化研究思路[J].岩石力学与工程学报.1993,4(4):5-10.
    [111]冯夏庭,张治强.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报.1999,18(5):529-533.
    [112]冯夏庭,张治强.三峡永久船闸高边坡开挖变形智能预测[J].辽宁工程技术大学学报:自然科学版.1999,18(5):463-465.
    [113]冯夏庭,冯夏庭,贾民泰.岩石力学问题的神经网络建模[J].岩石力学与工程学报.2000,19(S):1030-1033.
    [114]冯夏庭,丁恩保.智能化的边坡稳定性分析方法[J].东北大学学报:自然科学版.1995,16(5):453-457.
    [115]冯夏庭,林韵梅.基于神经网络的巷道支护决策[J].煤炭学报.1995,20(1):34-38.
    [116]陈炳瑞,冯夏庭,丁秀丽,等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报.2005,24(4):553-558.
    [117]冯夏庭,周辉,李邵军,等.岩石力学与工程综合集成智能反馈分析方法及应用[J].岩石力学与工程学报.2007,26(9):1737-1744.
    [118]王成山,韩敏,史志伟.RCC坝热学参数人工神经网络反馈分析[J].大连理工大学学报.2004,44(3):437-441.
    [119]张宇鑫,宋玉普,王登刚.基于遗传算法的混凝土三维非稳态温度场反分析[J].计算力学学报.2004(3):338-342.
    [120]王振红,朱岳明,陈樊建,等.基于遗传算法的混凝土热学参数反分析及其应用[J].湖南科技大学学报(自然科学版).2007(2):57-61.
    [121]王振红,朱岳明,李飞.基于遗传算法的混凝土热学参数反分析与反馈研究[J].武汉理工大学学报:交通科学与工程版.2008,32(4):599-602.
    [122]陈向阳,朱岳明,王振红.基于实数编码的加速遗传算法在混凝土温度场反分析中的应用[J].三峡大学学报:自然科学版.2008,30(5):4-7.
    [123]张建华,陈尧隆,李佳明,等.基于并行粒子群算法的混凝土坝热学参数反分析[J].水资源与水工程学报.2010,21(1):97-100.
    [124]于猛,陈尧隆,梁娟.基于BP神经网络的碾压混凝土坝温度场反分析[J].电网与水力发电进展.2008(5):59-62.
    [125]张晓飞,李守义,陈尧隆,等.改进的BP神经网络在碾压混凝土坝温度场反分析中的应用[J].西安理工大学学报.2009(1):95-99.
    [126]李端有,甘孝清,周武.基于均匀设计及遗传神经网络的大坝力学参数反分析方法[J].岩土工程学报.2007,29(1):125-130.
    [127]张君,侯东伟,高原.混凝土自收缩与干燥收缩的统一内因[J].清华大学学报(自然科学版).2010(9):1321-1324.
    [128]储海宁.混凝土坝内部观测技术[M].北京:水利电力出版社,1989.
    [129]吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
    [130]唐腾飞,黄耀英,周宜红,等.基于混凝土无应力计测值统计模型反演热膨胀系数[J].水力发电.2012(10):33-35.
    [131]Holt Erika E. Early age autogenous shrinkage of concrete[D]. University of Washington, 2001.
    [132]Turcry Philippe, Loukili Ahmed, Barcelo Laurent. Can the maturity concept be used toseparate the autogenous shrinkage and thermal deformation of a cement paste at early age?[J]. Cement and Concrete Research.2002,32(9):1443-1450.
    [133]张在宣,王剑锋,刘红林,等.30 km远程分布光纤拉曼温度传感器系统的实验研究[J].中国激光.2004,31(5):613-616.
    [134]李洋波,黄达海,欧阳建树.混凝土光纤测温与常规测温对比试验研究[J].水力发电.2010,36(3):91-92,96.
    [135]司政,李守义,陈尧隆,等.泄洪洞混凝土衬砌温变效应及温控防裂措施研究[J].西北农林科技大学学报(自然科学版).2011(3):211-218.
    [136]Pane Ivindra, Hansen Will. Concrete Hydration and Mechanical Properties under Nonisothermal Conditions[J]. ACI Material Journey.2002,99(6):534-542.
    [137]阎培渝,郑峰.水泥基材料的水化动力学模型[J].硅酸盐学报.2006,34(5):555-559.
    [138]吕坚,叶列平,王宗纲.基于龄期度法对早龄期混凝土结构温度应力的分析[J].工程力学.2006,23(S1):140-144.
    [139]AGA Saul. Principles underlying the steam curing of concrete at atmospheric pressure[J]. Magazine of Concrete Research.1951,2(6):127-140.
    [140]JD McIntosh. The effects of low-temperature curing on the compressive strength of concretefC]. Copenhagen:Danish Institute for Building Research,1956.
    [141]KM Alexander, JH Taplin. Concrete strength, cement hydration and the maturity rule[J]. Aust J Appl Sci. 1962(13):277-284.
    [142]JM Plowman. Maturity and the strength of concrete[J]. Magazine of Concrete Research.1956,8(22): 13-22.
    [143]FK Chin. Relation between strength and maturity of concrete[J]. ACI J.1956,63(3):196-215.
    [144]E Rastrup. Heat of Hydration[J]. Magazine of Concrete Research.1954,6(17):127-140.
    [145]P Freiesleben Hansen, J Pedersen. Maturity computer for controlled curing and hardening of concrete strength[J]. J Nordia Concrete Federation.1977,1(19):21-25.
    [146]张君,祁锟,侯东伟.基于绝热温升试验的早龄期混凝土温度场的计算[J].工程力学.2009(8):155-160.
    [147]B Choubane, M Tia. Analysis and verification of thermal gradient effects on concrete pavement [J]. Journal of Transportation Engineering.1995,121(1):75-81.
    [148]Kim Jin Keun, Han Sang Hun, Lee Kwang Myong. Estimation of compressive strength by a new apparent activation energy function[J]. Cement and Concrete Research.2001,31:217-225.
    [149]N J Carino, R C Tank. Maturity functions for concretes made with various cements and admixtures[J]. ACI Mater J.1992,89(2):188-196.
    [150]Lachemi M., Hossain K. M. A., Anagnostopoulos C. Application of maturity method to slipforming operations:Performance validation[J]. Cement&Concrete Composites.2007,29(4):290-299.
    [151]Viviani M., Glisic B., Smith. I. F. C. Separation of thermal and autogenous deformation at varying temperatures using optical fiber sensors[J]. Cement&Concrete Composites.2007,29(6):435-447.
    [152]朱伯芳,张超然.高拱坝结构安全关键技术研究[M].北京:中国水利水电出版社,2010.
    [153]朱伯芳.混凝土热学力学性能随龄期变化的组合指数公式[J].水利学报.2011,42(01):1-7.
    [154]王振红,张国新,刘毅,等.混凝土水管冷却试验与温控参数的反分析[J].四川大学学报(工程科学版).2011(3):56-60.
    [155]张宇鑫.大体积混凝土温度应力仿真分析与反分析[D].大连理工大学,2002.
    [156]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展.1998(4):488-498.
    [157]陈守开,丁兵勇.倒虹吸地涵混凝土结构施工期温控敏感性分析[J].农业工程学报.2011,27(5):7-12.
    [158]陈守开,吉顺文.泵送混凝土结构施工期温控防裂研究[J].水力发电.201 1,37(2):29-33.
    [159]王振红,张国新,于书萍,等.水工薄壁混凝土结构温控参数的敏感性分析[J].武汉理工大学学报(交通科学与工程版).2010,34(2):280-284.
    [160]刘有志,朱岳明,张国新.基于现场实验的墩墙混凝土真实温度应力性态及开裂机理分析[J].水力发电学报.2008(5):47-52.
    [161]武汉大学水资源与水电工程科学国家重点实验室.溪洛渡水电站泄洪洞龙落尾段衬砌混凝土温控研究[R].2012.
    [162]朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望[J].水利学报.2006(12):1424-1432.
    [163]朱伯芳.论混凝土坝抗裂安全系数[J].水利水电技术.2005,36(7):33-37.
    [164]中华人民共和国水利部.混凝土重力坝设计规范(SL319-2005)[S].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700