用户名: 密码: 验证码:
e-航海中的动态信息服务若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航海是人类经济和社会活动的重要内容。科学技术的进步不断推动航海方式的变革。在信息时代,航行操作越来越多地应用自动化系统。多种系统需要有效整合才能够更好地发挥综合效能,多方参与的系统运行环境需要统一技术和管理标准才能够高效运转,于是,e-航海应运而生。e-航海不是一个或几个信息系统的组合,也不是航海的一种手段或状态,而是在信息时代产生和发展的一个多方参与、多系统联合运行的航海“生态环境”。e-航海的发展与繁荣需要有关国际组织及各成员国共同努力,制定并推行相关标准,推进e-航海技术进步,引导e-航海向着“海洋更清洁,航行更安全”的方向发展。
     动态信息服务系统是以航海安全保障信息的分类、采集、管理、服务为主要内容的信息系统,是e-航海的重要组成部分。主要包括动态变化的基础地理信息、水文气象信息、水上交通环境信息、船舶动态信息等。
     本文围绕e-航海动态信息服务过程中的几个关键的技术问题进行了研究。提出了以参考椭球面为水陆一体化垂直基准面解决海洋测绘垂直基准面不连续问题和建立陆地和海洋统一高程模型的思想。提出了采用CGCS2000地心坐标系,通过高精度卫星定位系统直接进行无验潮(水位观测)测量,并将潮汐/水位观测或模型推算相结合,为不同船载终端用户提供水下地形的快速更新、实时水深信息、智能岸基导航等个性化服务的方法;对e-航海空间信息的特征进行了分析,提出了兼顾海图、陆图分幅,以及实时动态服务需求的多级网格模型和自由网格快速索引方法;研究了利用海量多波束数据进行海图数据快速更新的方法,以及船舶航行环境信息采集与服务方法;提出了动态信息服务系统的基本架构和建设方法,就多源信息融合技术与e-航海环境下的信息共享方法进行了讨论,对e-航海动态信息服务未来技术发展方向进行了展望。
     论文的主要贡献有:
     1.对沿海不同地区深度基准面、内河航行基准面都呈不连续的阶梯状变化,以及陆地、海上垂直基准不统一的问题进行了讨论。分析了无缝垂直基准测试和计算、区域潮汐模型推算、无验潮测量的技术方法的应用,提出了以参考椭球面作为水陆一体化垂直基准的参考面,利用高精度GNSS测量方法直接测量水底高程的方法;进一步研究了海面地形的测量方法以及基于余水位进行潮位推算的方法。该部分成果为高精度、高效率获取水深测量数据,以及为船舶用户提供实时动态水深服务奠定了坚实的基础。
     2.针对e-航海空间信息中海图和江图分幅及主要图形要素的特点,提出了兼顾陆图和海图特征及标准化分幅方案的多级网络模型,既能够满足纸质海图、电子海图生产与应用的需要,还能够进一步扩展,应用于e-航海空间信息服务中的信息管理和快速检索;提出了基于IHOS-100模型标准和支持快速网络化信息服务需求的e-航海基础空间数据库模型。通过对NetCDF模型的灵活应用,能够对多模多时态信息进行快速检索、发布。
     3.研究了海量AIS数据预处理和快速服务的方法,提出基于多线程池和冗余过滤技术进行数据接收、预处理、分发服务的解决方案;针对多波束海量数据的特征,研究了海量水深数据径向网格管理、智能水深压缩、等深线自动生成等技术方法,探索了电子海图快速个性化服务的方法。
     4.提出了基于云架构的e-航海动态信息服务系统模型,介绍了部分应用系统相关技术的实现方法,分析讨论了多源信息融合技术与e-航海环境中的信息共享方法。
     5.对e-航海未来的发展进行了预测和设想,提出了e-航海应用技术发展需要重点解决的技术问题。
Navigation is one of the most important economic and social activities. The progress of science and technology is constantly changing the way of sailing.
     In the information age, navigation increasingly uses automated system. Various automation systems need to integrate effectively to gain a better performance. Multi-party system operating environment requires unified technical and management standards to make sure its efficient functioning. The e-Navigation is not a combination of several information systems, neither a conception nor status of sailing, but an environment of multi systems for increased safety and security in commercial shipping through better organization of data on ships and on shore, and better data exchange and communication between the two. The future of e-Navigation needs all the efforts of international organizations and member States to work out and implement relevant standards, and to promote the technological progress toward the 'cleaner ocean, safer navigation'way.
     Dynamic information service is an important content of e-Navigation, including dynamic changes of basic geographic information, hydrological and meteorological information, water transportation environment, ship dynamic information. It is an information system based on maritime security information collection, management and services as the main contents.
     This paper focuses on e-Navigation dynamic information services, especially on several key technical issues. The research presents the Surface of Reference Ellipsoid as the integration of land and water vertical datum to establish a unified terrestrial and marine vertical datum. Non-tide (water level observation) sounding will be performed associated with high-precision GNSS measurement under the unified vertical datum. By combining tide (water level) observation and model projection, terminal personalized services such as underwater topography quick update, real-time depth information service or intelligent shore-based navigation can be easily offered.
     The paper analyzed the characteristics of e-Navigation spatial information, and proposed a fast indexing method for multi-level grid and free grid, which works well with the both nautical chart subdivision and real-time dynamic service. The research examines the multi-beam bathymetric data selection method in nautical chart quick update process and the navigational environment information collection and service method. The paper develops a dynamic information service system architecture and construction method, followed by its information sharing method in multi-source information fusion technology and e-Navigation environment. At the end, the article gives a future direction about where e-Navigation technology is going.
     Specific studies:
     1. This article showed that the depth datum and the inland navigation datum show discontinuous step-like changes among regions and the discussion of non-uniform feature between land vertical datum and sea vertical datum. The research tests the seamless vertical datum, the regional tidal model and non-tide sounding method. Then the article proposed an amphibious integrated vertical datum reference surface based on the Surface of Reference Ellipsoid and the direct underwater elevation measurement using GNSS measurement method. The paper gives a further illustration on sea surface topography measurement method and water level based tidal calculation method.
     2. Through the research of nautical chart and inland river chart framing principle and the graphical elements'characters, this article proposed a multi-level grid model, which is compatible with both standardized framing program and other chart program features. This model meets the demand for chart (paper chart and electronic chart) producing and application and can be used in e-Navigation spatial information services for information management and rapid searching. What's more, the research also builds an e-Navigation fundamental spatial database model, which could support the IHO S-100model standard and the fast network demand for information services. Using the flexible NetCDF model in applications, the system is ready to search and release multi-mode and multiple spatial dynamic information services.
     3. The research studied the AIS data pre-processing method and the rapid distribution method. Based on multi-thread pool and intelligent agent, the research then gave a solution for receiving data, pre-processing and distributing massive data. According to the characters of multi-beam bathymetric data, the bathymetric data radial grid management, the intelligent bathymetric data compression method and the isobaths automatic generation technology are researched in this paper. All of these are parts of the personalized electronic nautical chart service research.
     4. The article introduced a cloud-based dynamic information service system model and all applications built on this system. It also discusses multi-source information fusion technology and information sharing method in e-Navigation environment.
     7. The article gives some suggestion to the e-Navigation future and to some specific technique that should be paid significant Attention.
引文
[1]冯兴耿.航海技术发展的若干哲学思索[J].自然辩证法研究,1992,8(11):54-58.
    [2]国际海事组织(IMO)网站:http://www.imo.org.
    [3]国际航标协会(IALA)网站:http://www.iala-aism.org.
    [4]IALA. e-NAV-2-input-06 (2007,03).Australia e-NAV workshop.
    [5]Andy Norris. e-NAV-11-input-11-4 (2012,03). e-Navigation-avision and its practical implementation?.
    [6]IALA.e-NAV-11-output-19 (2012,03).INF paper to NAV 58 e-Navigation implementation plan.
    [7]IALA. e-NAV-12-input-18 (2012,06). Developing the AIS and VDE Plan for e-Navigation.
    [8]IALA.e-NAV-12-input-20 (2012,06).Functional Requirements For Shipboard Technical Architecture As Seen From Ashore_V1-01.
    [9]IALA. e-NAV-12-input-66 (2012,06).e-Navigation Test-Beds.
    [10]IALA. e-NAV-12-input-69 (2012,06), e-Navigation Portrayal and User Needs-ICS.
    [11]IALA. e-NAV-13-input-25 (2012,12). Draft Document The Structure Of Maritime Service Portfolios(MSP)
    [12]IALA. e-NAV-13-input-28 (2012,12). Reliability of AIS data.
    [13]IALA. e-NAV-13-input-45 (2012,12). Software Quality Assurance for onshore systems France.
    [14]IALA. Recommendation e-NAV140 On The e-Navigation Architecture-the initial Shore-based Perspective.
    [15]IALA Recommendation R-129 On GNSS Vulnerability and Mitigation Measures.
    [16]IALA Recommendation R-135 Future of DGNSS.
    [17]鲍建波.“e-航海(e-Navigation)”概念的发展[J].中国海事,2007,16(11):48-51.
    [18]Ruth ADAMS. The Development of a Vertical Reference Surface and Model for Hydrography-a Gudie [R]. Munich, Germany:Shaping the Change XXIII International FIG Conference. October 08-13,2006.
    [19]Ahmed EL-RABBANY. Development of a Seamless Vertical Reference System:Challenges and Opportunities [R]. Paris, France:FIG Working Week 2003. April 13-17,2003.
    [20]Ruth Adams. Seamless Data and Vertical Datums Reconciling Chart Datum with a Global Reference Frame [J].The Hydrographic Journal, 2004,113(7):9-14.
    [21]Ruth Adams. A Vertical Reference Surface for Hydrography Status Report 2005 [R]. Cairo Egypt:FIG Working Week,2005. Surface [J]. THE JOURANL OF NAVIGATION,2006,59(2):213-220.
    [22]Marc Veronneau, Robert Duval, Jianliang Huang. A Gravimetric Geoid Model as A Vertical Datum in Canada [J]. Geomatcia,2006,60(2): 165-172.
    [23]Bruce Parker, Dennis Milbert, Kurt Hess etc.. NATIONAL VDATUM—THE IMPLEMENTATION OF A NATIONAL VERTICAL DATUM TRANSFORMATION DATABASE [A]. In:Oceans 2003 MTS/IEEE Conference [C],2003.
    [24]Stephen White. Utilization of LIDAR and NOAA's Vertical Datum Transformation Tool(VDatum) for Shoreline Delineation [A]. In: MTS/IEEE Oceans 2007 Conference [C],2007.
    [25]Monica Cisternelli, Stephen Gill. Implementation of TCARI into NOS Hydrographic Survey Operations [J]. NOAA/NOS Center for Operational Oceanographic Products and Services.
    [26]孙翠羽.海洋无缝垂直基准面建立方法研究[D].青岛:山东科技大学,2011.
    [27]孙翠羽,周兴华.国外无缝垂直基准面的研究进展[A].见:2009全国测绘科技信息交流会暨首届测绘博客征文颁奖论文集[C],2009.
    [28]梁振英.大地水准面的严密定义和我国高程基准的选择[J].测绘通报,1985,31(2):39.
    [29]暴景阳,章传银.关于海洋垂直基准的讨论[J].测绘通报,2001,47(6):10-11.
    [30]陈艳华,周兴华,孙翠羽等.我国海域无缝垂直基准面的选择[J].海岸工程,2010,29(2):43-48.
    [31]翟国军,黄谟涛,暴景阳.海洋测绘基准的需求及现状[J].海洋测绘,2003,23(4):54-58.
    [32]殷晓冬,田光耀.21世纪我国面临的测绘基准面问题[J].测绘工程,2000(2):26-31.
    [33]暴景阳.海洋测绘垂直基准综论[J].海洋测绘,2009,29(2):70-73.
    [34]赵建虎,张红梅,John E Hughes Clarke.局部无缝垂直参考基准面的建立方法研究[J].武汉大学学报:信息科学版,2006,31(5):448-450.
    [35]孙学华,周兴华,孙啸.海陆垂直基准统一的研究进展[J].海岸工程,2011, 30(2):75-80.
    [36]IHO.S-57:IHO Transfer Standard for Digital Hydrographic Data. http://www.iho.int.
    [37]IHO.S-100:S-100-Universal Hydrographic Data Model. http://www.iho.int.
    [38]赵丽宁,李一凡,赵德鹏.数字海洋空间数据库的构建[J].大连海事大学学报:自然科学版.2002,28(1):34-37.
    [39]张安民.“数字海事”空间数据库模型及信息集成[J].航测技术,2005(3).
    [40]刘金,李昊倩,朱吉才等.海洋信息组织与存储模型研究及其在“数字海洋”中的应用[J].海洋通报:英文版,2011,30(1):73-80.
    [41]陈俊勇.对我国建立现代大地坐标系统和高程系统的建议[J].测绘通报,2002,48(8):1-5.
    [42]陈俊勇.中国现代大地基准——中国大地坐标系统2000(CGCS 2000)及其框架[J].测绘学报,2008,37(3):269-271.
    [43]陈俊勇.与动态地球和信息时代相应的中国现代大地基准[J].大地测量与地球动力学,2008,37(4):1-6.
    [44]陈俊勇,李健成,晁定波等.我国海域大地水准而的计算及其与大陆大地水准面拼接的研究和实施[J].地球物理学报,2003,46(1):31-35.
    [45]海道测量规范(GB 12327-1998)[S].北京:中国标准出版社,1999.
    [46]IHO. INT 1 Symbols, Abbreviations, Terms used on Charts.http:// www.Iho-ohi.net/iho_pubs/restricted/INT1_EN_Ed7_2011.pdf
    [47]柯灏.海洋无缝乖直基准构建理论和方法研究[D].武汉:武汉大学,2012.
    [48]黄永军.浅析RTK技术在无验潮模式下进行水深测量的应用[A].见:中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2006.
    [49]欧阳永忠,陆秀平,孙纪章等.GPS测高技术在无验潮水深测量中的应用[J].海洋测绘,2005,25(1):7-9.
    [50]刘东全,董江.GPS在航潮位测量中的关键技术研究[A].见:中国航海学会航标专业委员会测绘学组.中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2008.
    [51]叶引,唐力放.应用长江口区域GPS成果实现免验潮水深测量[J].全球定位系统,2005,30(3):10-14.
    [52]张劲松.采用 RTK无验潮技术结合分带改正来进行相对水深图的制作[A].见:中国航海学会航标专业委员会测绘学组.中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2008.
    [53]卢军民,安延云,张东明等.无验潮测深技术中影响水深测量精度的几个 问题探讨[J].水运工程,2010,35(5):47-51.
    [54]颜惠庆,张俊.GPS-RTK无验潮水深测量技术在长江口航道治理工程中的应用[J].水运工程,2002,26(10):79-80.
    [55]吴晖.RTK GPS技术中在水下地形测量中的基本应用[A].见:中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2008.
    [56]桑金.基于GPS技术的水深归算法[J].测绘通报,1999,45(8):23-25.
    [57]孙洪志,董江.利用GPS差分和非差分技术进行潮位测量的方法研究[A].见:中国航海学会航标专业委员会测绘学组.中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2008.
    [58]北斗地基增强系统示范项目建成达到国际先进水平.http://www.gov.c n/jrzg/2013-03/22/content_2360284. htm
    [59]张安民,刘雷,董玉磊.渤海海域GPS-PPK验潮可行性试验技术报告.2012.
    [60]George L Mellor. USERS GUIDE for A THREE-DIMENSIONAL, PRIMITIVE EQUATION, NUMERICAL OCEAN MODEL.http://www.aos.princeton.edu/ WWPUBLIC/htdocs. pom/FTPbackup/usersguide0604. pdf.2004
    [61]许军,暴景阳,刘雁春等.基于POM模式与blending同化法建立中国近海潮汐模型[J].海洋测绘,2008,28(6):15-17.
    [62]吴中鼎.海上搜救辅助系统研究[D].青岛:中国海洋大学,2003.
    [63]申家双.海岸带等水位线信息提取与垂直基准转换技术研究[D].郑州:解放军信息工程大学,2011.
    [64]张安民.“数字海事”空间数据库模型及信息集成.航测技术.2005(3):7-12.
    [65]Robert Ward. IHO S-100-The New Hydrographic Geospatial Standard for Marine Data and Information. Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference.2008.
    [66]陈长林,翟京生,陆毅.IHO海洋测绘地理空间数据新标准分析与思考[J].测绘科学技术学报,2011(4):300-303.
    [67]Oracle(?) Spatial, User's Guide and Reference, Release 9.2,2002
    [68]A General Overview of CARIS HPD, CARIS,2005.
    [69]HPD Source Editor 2.7 Reference Guide, Service Pack 2, CARIS,2009
    [70]王厚祥,李进杰.海图制图综合[M].北京:测绘出版社,1999.
    [71]国家基本比例尺地形图分幅和编号(GB/T 13989-2012)[S].北京:中国标准出版社,2012.
    [72]陶志刚,赵敬道,谭建成.地理空间索引技术研究[J].测绘学院学报,2002,19(1):73-75.
    [73]孟妮娜,周校东.固定格网划分的空间索引的实现技术[J].北京测绘,2003,1:7-11.
    [74]闫超德,赵学胜.GIS空间索引方法述评[J].地理与地理信息科学,2004,20(4):23-26
    [75]Oracle(?) Spatial, User's Guide and Reference, Release 9.2,2002
    [76]Guttman. R-trees--A Dynamic Index Structure For Spatial Searching [J].Proceedings of ACM SIGMOD International Conference on Management of Data,1984,8:47-57
    [77]贾俊涛,孟婵媛,宋海英等.基于NetCDF的海底地形网格数据模型创建与调度[J].海洋测绘,2007,27(5):22-25.
    [78]中国新闻网.中国内河航行船舶将全部配备自动识别系统设备http://www.chinanews.com/gn/2012/02-15/3672086.shtml
    [79]IEC. Digital interfaces for navigational equipment within a ship. International Electrotechnical Commission(IEC61162),2000.
    [80]ITU. Technical characteristics for a universal shipborne automatic identification system using time division multiple access in the VHF maritime mobile band. International Telecommunication Union(ITU-R M.1371).1998.
    [81]Li, Z. L., Zhu, Q., Digital Elevation Model, Wuhan University Press, 2000.
    [82]眭海刚,王娟,张安民等.基于三维GIS的数字航道若干关键技术研究[J].武汉大学学报:信息科学版,2006,31(8):713-715.
    [83]Obaas, S. R., Automated Sounding Selection, The International Hydrographic Review,Monaco,1975, LII(2).
    [84]眭海刚,张光华,卢之杰等.海量多波束水深数据快速处理及质量检查方法[J].人民长长江,2008,54(6):18-20.
    [85]csdn. IT产业第三次变革:云计算已上路.http://www. csdn. net/articl e/2002-04-09/5263.
    [86]维基.云计算http://zh.wikipedia.org/zh-cn/云计算#.E9.83.A8.E7.BD. B2. E6. A8. A1.E5.9E.8B
    [87]Mads Bentzen. Efficient, Safe and Sustainable Traffic at Sea-e-Navigation enhanced INS (ee-INS) User guide. EfficienSea.2012 (06).
    [88]张立华,贾帅东,元建胜等.一种基于不确定度的水深控浅方法[J].测绘学报,2012,41(2):184-190.
    [89]孟令奎,史文中,张鹏林等.网络地理信息系统原理与技术(第二版)[M].北京:科学出版社,2010.
    [90]宋关福,钟耳顺,刘纪远等.多源空间数据无缝集成研究[J].地理科学进展,2000,19(2):110-115.
    [91]苏莉.基于三维GIS的多源数据集成技术[J].软件导刊,2009,8(1):170-171.
    [92]牛红光,陆毅,于金星等.多源空间数据集成技术研究与实现[A].见:第二十一届海洋测绘综合性学术研讨会论文集[C],2009.
    [93]韩立新.浅论地理信息系统多源空间数据无缝集成技术[J].昭乌达蒙族师专学报(汉文哲学社会科学版),2003,20(6):69-70.
    [94]眭海刚,张光华,卢之杰等.海量多波束水深数据快速处理及质量检查方法[J].人民长江,2008,54(6):18-20.
    [95]徐绍铨,张华海,杨志强等.GPS测量原理及其应用[M].武汉:武汉大学出版社,2003.
    [96]柯宝贵,章传银,张利明.利用卫星测高与卫星重力数据进行中国近海上层地转流速度分析[J].测绘通报,2012,58(02):4-6.
    [97]高伟,晏磊,林沂等.GPS大地高转换为正常高的新方法[J].应用基础与工程科学学报,2008,16(4):518-524.
    [98]刘雁春,梁开龙.论海洋界面测量学的建立[J].地球科学进展,1995,10(6):542-545.
    [99]樊月波.联合卫星测高数据确定大地水准面的应用和研究[D].郑州:中国人民解放军信息工程大学,2002.
    [100]李毓麟.空间技术与海洋动态大地测量基准[J].测绘科技动态,1998,23(4):5-9.
    [101]梁开龙,黄文骞,管征.海洋测绘现代新技术发展综述[A].见:纪念中国测绘学会成立四十周年论文集[C],1999.
    [102]孙学华,周兴华,孙啸.海陆垂直基准统一的研究进展[J].海岸工程,2011,30(2):75-80.
    [103]翟国君,黄谟涛,暴景阳.海洋测绘对测绘基准的需求及现状[J].海洋测绘,2003,23(4):54-59.
    [104]赵建虎,张红梅,John E Hughes Clarke局部无缝垂直参考基准面的建 立方法研究[J].武汉大学学报:信息科学版,2006,31(5).
    [105]申家双,翟京生,翟国君等.海岸带地形图及其测量方法研究[J].测绘通报,2007,53(8):29-32.
    [106]欧阳永忠,黄谟涛,翟国君等.基于高精度GPS测高的海洋深度测量技术[A].中国科协2004年学术年会14分会场海洋开发与可持续发展论文汇编[C],2004.
    [107]许家琨.沿岸当地平均海面的高程求取与应用[J].海洋测绘,2002,22(5):16-19.
    [108]暴景阳.海洋测绘垂直基准综论[J].海洋测绘,2009,29(2):70-73.
    [109]王双喜,许家坤,缪世伟.海洋测绘中无缝深度基准的构建[J].海洋测绘,2010,30(5):14-16.
    [110]唐宇,陈荦,何凯涛等.空间信息栅格SIG框架体系与关键技术研究[J].遥感学报,2004,8(5):425-433.
    [111]李德仁,龚健雅,李京伟等.中国空间数据基础设施建设(续完)[J].测绘通报,2002,48(12):1-4.
    [112]樊妙,眭海刚,金继业.传统海图和电子海图一体化数据模型的构建与应用研究[J].海洋测绘,2007,27(3):59-62.
    [113]陈长林,翟京生,陆毅.IHO海洋测绘地理空间数据新标准分析与思考[J].测绘科学技术学报,2011(4):300-303.
    [114]胡星等.AIS数据挖掘系统研究报告[D].大连:天津海事局-大连海事大学,2013.
    [115]McCarthy D D, Petit G.IERS Conventions (2003).IERS Conventions C entre, BKG, Frankfurt, Germay.2004.
    [116]DONG D, T YUNCK M, HEFLIN. Origin of the International Terrestr ial Reference Frame.2003(B4).
    [117]Blewitt G. Self-consistency in reference frames, geocenter defi nition, and surface loading of the solid Earth.2003 (B2).
    [118]ALTAMIMI Z, X COLLILIEUX, C BOUCHER. Preliminary Analysis in view of the ITRF2005, IAG/IAPSO/IABO Joint Assembly.2006.
    [119]ALTAMIMI Z, C BOUCHER, PWILLIS. Terrestrial reference frame requ irements within GGOS perspective.2005 (4/5).
    [120]ALTAMIMI Z, PSILLARD, C BOUCHER. The impact of a no-net-rotatio n condition on ITRF2000.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700