用户名: 密码: 验证码:
柔性空间可展开天线的结构与控制集成设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对空间可展开天线多种因素对展开过程的平稳、准确性影响,本文进行了系统而深入的研究。主要工作如下:
     1.应用瑞利-里兹法于柔性构件建模,并从柔性多体系统动力学的角度出发,推导了单元的动能、势能、应变能以及相应的一致质量阵、刚度阵和阻尼阵的表达式,基于拉格朗日第二方程建立了可展开天线系统的展开过程动力学模型。进行了动力响应分析,给出了可展开天线在展开过程中的响应曲线,通过与多刚体动力学模型的仿真试验对比,明确了天线展开过程中的动力学特性及非线性因素对展开过程的影响机理,为展开过程控制系统设计提供了依据。
     2.利用Bezier曲线合成驱动索的输入轨迹,通过天线运动学关系式,导出了天线展开过程的运动输出轨迹。研究了通过改变Bezier曲线控制点位置得到不同展开轨迹的可行性,继而通过设置合理的目标函数和约束条件,得到天线最优展开轨迹,既可保证天线角加速度的连续性,又可降低其峰值。最后,研究了展开过程中间匀速段不等式的约束条件,通过数值仿真,得知展开过程保持中间匀速运动会导致天线所受冲击过大,而展开过程应是一个无中间匀速状态的先加速后减速过程,对工程实际有一定指导意义。
     3.针对柔性因素带来的展开过程振动问题,提出了一种基于滤波的解耦控制方法。首先,将机构转化为多个瞬时结构进行研究,通过考察瞬时结构基频随展开角度的变化规律,确定了“机构基频”关键位置选取的准则。其次,应用低通滤波器将天线运动反馈分解为纯刚体运动和柔性振动两部分。然后,研究了滤波器截止频率的确定准则,针对不同反馈信号的刚、柔控制器的设计准则,以及两组控制器参数之间的耦合关系及选取准则。
     4.探索了天线结构与展开轨迹、天线结构与控制器设计、展开轨迹与控制器设计之间的相互关系,提出了可展开天线结构、展开轨迹及控制系统的集成设计模型。以天线杆件横截面积、Bezier曲线控制点参数及控制器增益参数同时作为设计变量,以减小天线质量、天线在展开过程中所受冲击和展开过程误差累积为目标函数,在满足固有频率、强度、控制系统‘稳准快’等约束条件下,得到最优的综合系统设计方案。
     5.设计制作了2m口径的周边桁架索网可展开天线实物模型,进行了模态、形面精度以及展开过程等试验研究。通过试验结果与仿真结果进行比较,验证了本文中结构及展开过程设计方法的合理性与正确性。同时,通过对展开过程中索网形态的测量,分析了索网张力对于天线展开过程的影响规律,提出了对该天线模型的修正方法。
In view of the multi-nonlinear-factor influence to the smoothness and veracity ofdeployment for deployable space antennas, several key technological problems weredealt with in depth. The main works can be described as follows.
     1. The deformable bodies are discretized with a hypothesized displacement fieldstructured by the Rayleigh-Ritz method. The kinetic energy, geopotential energy,elasticity potential energy and the corresponding mass matrix, stiffness matrix anddamping matrix are deduced, and then the second type of Lagrange equation is used toestablish the flexible multi-body dynamic model. Via the dynamic analysis, the statevariable responding curves of the deployable antenna can be achieved. The dynamiccharacteristic and the nonlinear influence mechanism of the deployment are obtained,thus providing the foundation for control system design in latter sections.
     2. Bezier curves are used to synthesize the input trajectory of the driving cable.Therefore, the corresponding deployment output trajectory can be deduced from theKinetics functions of deployable antennas. The feasibility to obtain differentdeployment trajectories by altering the Bezier control points is investigated. And thenvia setting up reasonable objective function and constraint conditions, the optimaldeployment trajectory can be achieved, which can not only ensure the continuity butalso reduce the peak value of the deployment angular acceleration. Then, the inequalityconstraint, describing the constant deployment mid-period, is discussed. With numericalsimulations and comparisons, it is found that the constant deployment mid-period willlead to large impact on antennas. Therefore, the deployment should be anaccelerated-decelerated curve without constant mid-period, which will give guidance forpractical applications.
     3. A decoupling control method is presented for the controlled deployment offlexible deployable space antennas. In order to define the concept of the ‘mechanismeigenfrequency’, mechanism is transformed to several instantaneous structures. Viafinding the variational rules of instantaneous structure eigenfrequency with the changeof the deployment angle, the guideline for ‘critical position’, where the ‘mechanismeigenfrequency’is obtained, is proposed. A low-pass filter is used to decouple themovement feedback signal into two separate parts: the rigid movement and the vibrationcaused by flex factors. The cut-off frequency of the low-pass filter is discussed. Therigid and flex controllers are designed according to the characteristics of the decoupledfeedback respectively. And then the coupling relationship of the gain parameters between the two controllers is discussed and a guideline for the proper parameterselection is proposed based on an energy correlation analysis.
     4. The coupled relationship of the antenna structure, deployment trajectory, andcontrol system is discussed, and then the integrated design model is proposed. Amulti-objective function is set to simultaneously minimize the antenna mass, the impacton antenna, and the error accumulation for control system. The link cross-section areasof the antenna, the Bezier control points, and the controller gain parameters are selectedas the design variables. And with the eigenfrequency, stiffness, stability, rapidity andaccuracy constraints, the optimal integrated system design is achieved.
     5. A2-meter-diameter model for Astromesh cable-net deployable antenna isdesigned and built. Experimental investigation is carried out, such as structural modalanalysis, reflector surface precision, and deployment test. Based on the comparing withthe simulation and test results, the rationality of the structure and deployment analysismethod in this paper is validated. Meanwhile, based on the measurements of thecable-state in the deployment, the influence of the cable tension to the deployment isdiscussed, and then the revised deployment dynamic model is proposed.
引文
[1] Takano T. Large deployable antennas concepts and realization[C].IEEE Antennas andPropagation Society International Symposium, Orlando, FL, USA, Jul.11-16,1999
    [2] Freeland RE. Survey of deployment antennas concepts[R], NASA Langley ResearchCenter Large SpaceAntenna Systems Technol. Part.1,1983.
    [3] Misawa M. Stiffness design of deployable satellite antennas in deployed configuration[J].Journal Spacecraft and Rockets,1998,35(3):380-386.
    [4] Williams FW, Banerjee JR and Harris SR, et al. Refined design of self-expanding stayedcolumn for use in space[J]. Computers&Structures,1983,16(1-4):353-360.
    [5] Gregory LD and Rebekah LT. Mechanical development of antenna systems[M/OL].
    [2010-6-3]. http://descanso.jpl.nasa.gov/Monograph/series8/Descanso8_08.pdf
    [6] Soykasap O, Watt AM, and Pellegrino S. New deployable reflector concept[C]. The45thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,Palm Spring, CA, Apr.19-22,2004.AIAA-2004-1574.
    [7] Barer H, Datashvili L and Gogava Z, et al. Building blocks of large deployable precisionmembrance reflectors[C]. The42ndAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference and Exhibit, Seattle, WA, USA, Apr.16-19,2001.AIAA-2001-1478.
    [8] Mikulas J, Collins TJ and Hedgepeth JM. Preliminary design considerations for10-40meter-diameter precision truss reflectors[J]. Journal of Spacecraft and Rockets,1991,28(4):439-447.
    [9] Miyasaki A, Homma M and Tsujigate A, et al. Design and ground verification of largedeployable reflector[C]. The42ndAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference and Exhibit, Seattle, WA, USA, Apr.16-19,2001.AIAA-2001-1480.
    [10] Natori MC, Takano T and Noda T, et al. Ground adjustment procedure of a deployablehigh accuracy mesh antenna for space VLBI mission[C]. The39thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferenceand Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, Long Beach, CA, USA,Apr.20-23,1998.AIAA-98-1923.
    [11] Rogers CA, Stutzman WL and Campbell TG, et al. Technology assessment anddevelopment of large deployable antennas[J]. Journal of Aerospace Engineering,1993,6(1):34-55.
    [12]寇艳玲译.日本卫星通信天线的现状和发展动向[J].空间电子技术,1992,(2):51-54.
    [13] Natori MC, Hirabayashi H and Okuizumi N, et al. A structures concept of high precisionmesh antenna for space VLBI observation[C]. The43rdAIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics and Materials Conference, Denver, Colorado, USA,Apr.22-25,2002.AIAA-2002-1359.
    [14]陆佑方.柔性多体系统动力学[R].北京:高等教育出版社.1996.
    [15]维基百科[M/OL]. http://en.wikipedia.org/wiki/Galileo_(spacecraft)
    [16] F. Escrig, Expandable space structures[J]. International Journal of Space Structures,1985,1(2):79-91.
    [17] Guest SD and Pelegrino S. A new concept for solid surface deployable antennas[J]. ActaAstronautica,1996,38(2):103-113.
    [18]刘荣强,田大可,邓宗全.空间可展开天线结构的研究现状与展望[J].机械设计,2010,27(9):1-21.
    [19]李团结,马小飞.大型空间可展开天线技术[J].空间电子技术,2012,3:35-43.
    [20] Im E, Thomson M and Fang H. Prospects of large deployable reflector antennas for a newgeneration of geostationary Doppler weather radar satellites [C]. AIAA SPACE2007Conference&Exposition, Long Beach, California, USA, Sept.18-20,2007.AIAA-2007-9917.
    [21] Lichod Z. Inflatable deployed membrane waveguide array antenna for space[C/OL].Collection of Technical Papers AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference,2003,(3):2262-2268.[2010-6-3]http://lgarde.com/papers/2003-1649.pdf
    [22]关富玲,李刚,夏劲松.充气可展空间结构[C].卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,西安,2003年9月.
    [23]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[D].西安电子科技大学博士学位论文,2005.
    [24] Huang J. The development of inflatable array antennas [J]. IEEE Antennas andPropagation Magazine,2001,43(4):44-50.
    [25] Huang J, Reria LM and Kim A. An inflatable L-band microstrip SAR array[C]. IEEEAntennas and Propagation Society International Symposium,1998,4:2100-2103.
    [26] Cassapakis CG, Love AW and Palisoc AL. Inflate space antennas: a brief overview[C].Proc.1998IEEE Aerospace conference, Snowmass, CO, USA, March21-28,1998.
    [27]王援朝.充气天线结构技术概述[J].电讯技术,2003,43(2):6-11.
    [28] Love A W. Some highlights in reflector antenna development[J]. Radio Science,1976,11:671-684.
    [29] http://www.govcomm.harris.com/solutions/marketindex/product.asp?source=alpha&product_id=240
    [30] Miura K, Miyazaki Y. Concept of the tension truss antenna[J]. AIAA Journal,1990,28(6):1098-1104.
    [31] Mikulas MM, Collins T J and Hedgepeth J M. Preliminary design approach for large highprecision segmented reflectors[J]. NASA Technical Memorandum102605,1990:1-51.
    [32] Semler De, Tulintseff A, Sorrell R, et al.2010Design, Integration and Deployment of theTerreStar18-Meter Reflector[C].28th AIAA International Communications SatelliteSystems Conference,2010, California.
    [33] Akira M, Kyoji S, Motofumi U, et al. In-orbit deployment characteristics of largedeployable antenna reflector onboard Engineering Test Satellite VIII[J]. Acta Astronautica,2009,65:1306-1316.
    [34] http://space.skyrocket.de/doc_sdat/skyterra-1.htm
    [35] Meguro A, Harada S, Watanabe M. Key technologies for high-accuracy large meshantenna reflectors. Acta Astronautica.2003,53(11):899-908.
    [36]邱扬,叶尚辉,刘明治.考虑铰链柔性和摩擦的弹性机构动力分析[J].电子机械工程,1992,5:11-17.
    [37]刘明治,王玉虎,鲍新平.变结构体动力分析与控制[J].机械科学与技术,2002,21(11):23-24.
    [38]冯力,叶尚辉,刘明治.多柔体系统动力学符号演算的研究[J].数学研究与评论,2000,20(1):143-148.
    [39]覃正,叶尚辉,刘明治.柔性多体系统动力学研究及存在的问题[J].力学进展,1994,24(2):248-256.
    [40]覃正,叶尚辉,刘明治.柔性多体系统动力学研究动态[J].力学与实践,1994,5:14-19.
    [41]邱扬,刘明治.大型星载可展开天线的展开动力学问题[J].中国空间科学技术,1992,1:1-7.
    [42]王娟,刘明治.大型空间可展开天线动力学建模及仿真[J].系统仿真学报,2009,21(6):1730-1733.
    [43]王娟,刘明治,赵月静.大型空间可展开天线展开过程组合控制研究[J].中国机械工程,2009,20(6):728-732.
    [44]刘明治,李卫东,郑飞.副肋式网状的反射面形状精度调整[J].西安电子科技大学学报,1998,25(4):506-509.
    [45] Li TJ, Wang Y. Performance relationships between ground model and space prototype ofdeployable space antennas [J]. Acta Astronautica,2009,65(9-10):1383-1392.
    [46] Li TJ, Wang Y. Deployment dynamic analysis of deployable antennas considering thermaleffect[J].Aerospace Science and Technology,2009,13(4-5):210-215.
    [47] Li TJ, Su JG. Electrical properties analysis of wire mesh for mesh reflectors[J]. ActaAstronautica,2011,69:109-117.
    [48] Li TJ, Su J G, Cao Y Y. Dynamic characteristics analysis of deployable space structuresconsidering joint clearance[J]. Acta Astronautica,2011,68:974-983.
    [49] Li TJ. Deployment analysis and control of deployable space antenna[J]. Aerospace Scienceand Technology,2012,18(1):42-47.
    [50] Du JL, Bao H, Yang DW, et al. Initial equilibrium configuration determination and shapeadjustment of cable network structures[J]. Mechanics Based Design of Structures andMachines,2012,40(3):277-291.
    [51] Zhang Y Q, Duan B Y, Li T J. A controlled deployment method for deployable flexiblespace antennas[J]. Acta Aerospace,2012,81(1):19-29.
    [52]董志强,段宝岩.星载天线缠绕肋条的力学特性研究[J].西安电子科技大学学报,2001,28(6):755-758.
    [53]张鹏,金光,石广丰等.空间薄膜反射镜的研究发展现状[J].中国光学与应用光学,2009,2(2):91-101.
    [54] Soh M, Lee JH and Youn SK. An Inflatable Circular Membrane Mirror for SpaceTelescopes[C]. SPIE,5638,262-271.
    [55] Geoff P, Anderson, Randall J. Large Aperture Holograghically Corrected Membranetelescope[J]. Opt. Eng,2002,141:1603-1607.
    [56] Palisoc L. Large Telescope Using a Holograghically-corrected Membrane Mirror-finalReport to the NASA Institute for Advanced Concepts[R]. L’Garde, Inc. November2000.
    [57] Errico S, Angle R, Stamper B, et al. Stretched Membrane with Electrostatic Curvature(SMEC) Mirrors: A New Technology for Large Lightweight Space Telescopes[C]. SPIE,2002,4849,356-364.
    [58] Angle R, Burge J, Hege K, et al. Stretched Membrane with Electrostatic Curvature (SMEC)Mirrors: A New Technology for Ultra-lightweight Space Telescopes[C]. SPIE,2000,4013,699-705.
    [59] Burley GS, Stilburm JR and Walker GA. Membrane Mirror and Bias Electronics[J].Applied Optics,1998,37(21):4649-4655.
    [60] Shabana AA. Flexible multibody dynamics: Review of past and recent developments[J].Multibody Syst. Dyn.19971(2):189–222.
    [61] Bremer H. On the dynamics of elastic multibody systems[J]. Appl. Mech. Rev.1999,52(9):275–303.
    [62] Wasfy TM and Noor AK. Computational strategies for flexible multibody systems[J].Appl Mech Rev.2003,56(6):553–613.
    [63] Huston RL. Multibody dynamics: Modeling and analysis methods[J]. Appl. Mech. Rev.1991,44(3):109–117.
    [64] Huston RL. Computer methods in flexible multibody dynamics[J]. Int. J. Numer. MethodsEng.1991,32:1657–1668.
    [65] Huston RL. Multibody dynamics since1990[J]. Appl. Mech. Rev.1996,49(10):35–40.
    [66] Schiehlen W. Multibody system dynamics: Roots and perspectives[J]. Multibody Syst.Dyn.1997,1:149–188.
    [67] Gaultier PE and Cleghorn WL Modeling flexible manipulator dynamics: A literaturesurvey[C]. Proc of1st Natl App Mech and Robotics Conf, Paper No89AMR-2C-3,Cincinnati OH,1989.
    [68] Erdman AG, Sandor GN, and Oakberg RG. A general method for kineto-elastodynamicanalysis of mechanisms[J]. ASME J. Eng. Ind.1972,94:1193–1205.
    [69] Lowen GG and Jandrasits WG. Survey of investigations into the dynamics behavior ofmechanisms links with distributed mass and elasticity[J]. Mech. Mach. Theory.1972,7:3–17.
    [70] Jandrasits WG and Lowen GG. The elastic-dynamic behavior of a counter-weighted rockerlink with an overhanging endmass in a four-bar linkage, Part I: Theory; Part II:Application and experiment[J]. ASME J. Mech. Des.1979,101(1):77–98.
    [71] Lowen GG and Chassapis C. The elastic behavior of linkages: An update[J]. Mech. Mach.Theory.1986,21(1):33–42.
    [72] Thompson BS and Sung CK. A survey of finite element techniques for mechanismdesign[J]. Mech. Mach. Theory.1986,21:351–359.
    [73] Modi VJ. Attitude dynamics of satellites with flexible appendages: A brief review[J]. J.Spacecr. Rockets.1974,11:743–751.
    [74] Huston RL. Multibody Dynamics[R]. Butterworth-Heinemann, USA.1990.
    [75] Schiehlen W. Technische Dynamik[R]. Stuttgart, Teubner.1986.
    [76] Amirouche FML. Computational Methods in Flexible Multibody Dynamics[R]. PrenticeHall, Englewood Cliffs, NJ.1992.
    [77] Schiehlen W. Advanced Multibody Systems Dynamics: Simulation and Software Tools[R].Kluwer Academic Publishing, Dordrecht.1993.
    [78] Pereira MF and Ambrosio JAC. Computational Dynamics in Multibody Systems[R].Kluwer Academic Publishers.1995.
    [79] Xie M. Flexible Multibody System Dynamics: Theory and Applications[R]. Taylor andFrancis, Washington.1994.
    [80] Shabana AA. Dynamics of Multibody Systems,2nd Edition[R]. Cambridge Univ Press.1998.
    [81] Schwertassek R and Wallrapp O. Dynamik Flexibler Mehrkvrpersysteme[R].Braunschweig, Vieweg.1999.
    [82] Geradin M and Cardona A. Flexible Multibody Dynamics: A Finite Element Approach[R].John Wiley&Sons.2001.
    [83] Shabana AA and Pascal M. Symposium on multibody dynamics and vibration[C]. ASME18th Biennial Conf on Mech Vib and Noise.2001.
    [84] Schiehlen W. Multibody Systems Handbook[R]. Springer-Verlag. New York.1990.
    [85] Book WJ. Controlled motion in an elastic world[J]. ASME J. Dyn. Syst., Meas., Control.1993,115:252–261.
    [86] Bernard DE and Man GK. Proc of3rd Annual Conf on Aerospace Comput Control[C],JPL, Pasedena, CA, Publication.1989:89–45.
    [87] Rao SS, Pan TS, and Venkayya VB. Modeling, control and design of flexible structures: Asurvey[J]. Appl. Mech. Rev.1990,43(5):99–117.
    [88] Yang B and Mote CD. On time delay in noncolocated control of flexible mechanicalsystems[J]. ASME J. Dyn. Syst., Meas., Control.1992,114(3):409–415.
    [89] Park JH and Asada H. Dynamic analysis of noncollocated flexible arms and design oftorque transmission mechanisms[J]. ASME J. Dyn. Syst., Meas., Control.1994,116:201–207.
    [90] Rai S and Asada H. Integrated structure/control design of high speed flexible robots basedon time optimal control[J], ASME J. Dyn.Syst., Meas., Control.1995:117(4):503–512.
    [91] Ledesma R and Bayo E. A non-recursive Lagrangian solution of the non-causal inversedynamics of flexible multi-body systems: The planar case[J]. Int. J. Numer. Methods Eng.1993.36(16):2725–2741.
    [92] Ledesma R and Bayo E. A Lagrangian approach to the noncausal inverse dynamics offlexible multibody systems: The threedimensional Case[J]. Int. J. Numer. Methods Eng.1994,37(19):3343–3361.
    [93] Kokkinis T and Sahrajan M. Inverse dynamics of a flexible robot arm by optimalcontrol[J]. ASME J. Mech. Des.1993,115:289–293.
    [94] Chen DC, Shabana AA, and Rismantab-Sany J. Generalized constraint and joint reactionforces in the inverse dynamics of spatial flexible mechanical systems[J]. ASME J. Mech.Des.1994,116(3):777–784.
    [95] Rubinstein D, Galili N, and Libai A. Direct and inverse dynamics of a very flexiblebeam[J]. Comput. Methods Appl. Mech. Eng.1996,131(3/4):241–262.
    [96] Book WJ, Maizza-Neto O, and Whitney DE. Feedback control of two beam, two jointsystems with distributed flexibility[J]. ASME J. Dyn. Syst., Meas., Control.1975,97(4):424–431.
    [97] Berbyuk VE and Demidyuk MV. Controlled motion of an elastic manipulator withdistributed parameters[J]. Mech. Solids.1984,19(2):57–66.
    [98] Aoustin Y and Formalsky A. On the synthesis of a nominal trajectory for control law of aone-link flexible arm[J]. Int. J. Robot. Res.1997,16(1):36–46.
    [99] Mordfin TG and Tadikonda SSK. Modeling controlled articulated flexible systems, Part I:Theory, Part II: Numerical investigation[C]. Paper No DETC2001/VIB-21344,21345, Procof ASME2001DETC, Pittsburgh PA,2001.
    [100] Mimmi G and Pennacchi P. Pre-shaping motion input for a rotating flexible link[J]. Int. J.Solids Struct.2001,38:2009–2023.
    [101] Book WJ. Analysis of massless elastic chains with servo controlled joints[J]. ASME J.Dyn. Syst., Meas., Control.1979,101:187–192.
    [102] Pfeiffer F. A feedforward decoupling concept for the control of elastic robots[J]. J. Rob.Syst.1989,6(4):407–416.
    [103] Ghazavi A and Gordaninejad F. A comparison between the control of a flexible robot armconstructed from advanced composite materials versus aluminum[J]. Comput. Struct.1995,54(4):621–632.
    [104] Cannon RH and Schmitz E. Initial experiments on the endpoint control of a flexibleone-link robot[J]. Int. J. Robot. Res.1984,3(3):62–75.
    [105] Goldenberg AA and Rakhsha F. Feedforward control of a single-link flexible robot[J].Mech. Mach. Theory.1986,21(4):325–335.
    [106] Chiu HT and Cetinkunt S. Trainable neural network for mechanically flexible systemsbased on nonlinear filtering[J]. J. Guid. Control Dyn.1995,18(3):503–507.
    [107] Milford RI and Asokanthan SF. Experimental on-Line frequency domain identificationand adaptive control of a flexible slewing beam[J]. ASME J. Dyn. Syst., Meas., Control.1996,118:59–65.
    [108] Chalhoub NG and Ulsoy AG. Dynamic simulation of lead screw driven flexible robot armand controller[J]. ASME J. Dyn. Syst., Meas., Control.1986,108(2):119–126.
    [109] Chalhoub NG and Ulsoy AG. Control of a flexible robot arm: experiment and theoreticalresults[J]. ASME J. Dyn. Syst., Meas., Control.1987,109(4):299–309.
    [110] Jonker JB. A finite element dynamic analysis of flexible manipulators[J]. Int. J. Robot. Res.1990,9(4):59–74.
    [111] Ghanekar M, Wang DWL, and Heppler GR. Scaling laws for linear controllers of flexiblelink manipulators characterized by nondimensional groups[J]. IEEE Trans. Rob. Autom.1997,13(1):117–127.
    [112] Banerjee AK and Singhose WE. Command shaping in tracking control of a two-linkflexible robot[J]. J. Guid. Control Dyn.1998,21(6):1012–1015.
    [113] Xu WL, Yang TW, and Tso SK. Dynamic control of a flexible macro-micro manipulatorbased on rigid dynamics with flexible state sensing[J]. Mech. Mach. Theory.2000,35(1):41–53.
    [114] Yang JH, Lian FL, and Fu LC. Nonlinear adaptive control for flexible-link manipulators[J].IEEE Trans. Rob. Autom.1997,13(1):140–147.
    [115] Kwon DS and Book WJ. A time-domain inverse dynamic tracking control of a single-linkflexible manipulator[J]. ASME J. Dyn. Syst., Meas., Control.1994,116:193–200.
    [116] Yigit AS. On the stability of PD control for a two-link rigid-flexible manipulator[J].ASME J. Dyn. Syst., Meas., Control.1994,116:208–215.
    [117] Gordaninejad F and Vaidyaraman S. Active and passive control of a revolute-prismatic,flexible, composite-materials robot arm[J]. Comput. Struct.1994,53(4):865–875.
    [118] Meirovitch L and Lim S. Maneuvering and control of flexible space robots[J]. J. Guid.Control Dyn.1994,17(3):520–528.
    [119] Zuo K, Drapeau V, and Wang D. Closed loop shaped-input strategies for flexible robots[J].Int. J. Robot. Res.1995,14(5):510–529.
    [120] Ider SK. Open-loop flexibility control in multibody systems dynamics[J]. Mech. Mach.Theory.1995,30(6):861–870.
    [121] Hu FL and Ulsoy AG. Force and motion control of a constrained flexible robot arm[J].ASME J. Dyn. Syst., Meas., Control.1994,116:336–343.
    [122] Yim W and Singh SN. Inverse force and motion control of constrained elastic robots[J].ASME J. Dyn. Syst., Meas., Control.1995,117(3):374–383.
    [123] Feliu V, Rattan KS, and Brown HB Jr. Modeling and control of single-link flexible armswith lumped masses[J]. ASME J. Dyn. Syst., Meas., Control.1992,114:59–69.
    [124] Jiang L, Chernuka MW, and Pegg NG. Numerical simulation of spatial mechanisms andmanipulators with flexible links[J]. Finite Elem. Anal. Design.1994,18(1/3):121–128.
    [125] Schafer BE and Holzach H. Experimental research on flexible beam modal control[J]. J ofGuidance.1985,8(5):597–604.
    [126] Yen GG. Optimal tracking control in flexible pointing structures[C]. Proc of IEEE IntConf on Syst, Man and Cybernetics.1995,5:4440–4445.
    [127] Yen GG. Distributive vibration control in flexible multibody dynamics[J]. Comput. Struct.1996,61(5):957–965.
    [128] Banerjee AK. Dynamics and control of the WISP shuttleantennae system[J]. J. Astronaut.Sci.1993,41:73–90.
    [129] Krishma R and Bainum PM. Dynamics and control of orbiting flexible structures exposedto solar radiation[J]. J of Guidance.1985,8(5):591–596.
    [130] Fisher S. Application of actuators to control beam flexure in a large space structure[J]. J.Guid. Control Dyn.1989,12(6):874–879.
    [131] Li Z and Bainum PM. Momentum exchange: feedback control of flexible spacecraftmaneuvers and vibration[J]. J. Guid. Control Dyn.1992,15(6):1354–1360.
    [132] Su TJ, Babuska V, and Craig Jr RR. Substructure-based controller design method forflexible structures[J]. J. Guid. Control Dyn.1995,18(5):1053–1061.
    [133] Kelkar AG and Joshi SM. Global stabilization of flexible multibody spacecraft usingquaternion-based nonlinear law[J]. J. Guid. Control Dyn.1996,19(5):1186–1188.
    [134] Dignath F and Schiehlen W. Control of the vibrations of a tethered satellite system[J]. J.Appl. Math. Mech.2000,64(5):715–722.
    [135] Ho JYL and Herber DR. Development of dynamics and control simulation of large flexiblespace systems[J]. J. Guid. Control Dyn.1985,8(3):374–383.
    [136] Bennett WH, LaVigna C, Kwatny HG, and Blankenship G. Nonlinear and adaptive controlof flexible space structures[J]. ASME J. Dyn. Syst., Meas., Control.1993,115(1):86–94.
    [137] Mosier G, Femiano M, Kong H, Bely P, Burg R, Redding D, Kissil A, Rakoczy J, andCraig L. An integrated modeling environment for systems-level performance analysis ofthe next generation space telescope[J]. Space Telescopes and Instruments V, SPIE3356.1999.
    [138] Nagata T, Modi VJ, and Matsuo H. Dynamics and control of flexible multibody systems,Part I: General formulation with an order N forward dynamics, Part II: Simulation codeand parametric studies with nonlinear control[J]. Acta Astronaut.2001,49(11):581–610.
    [139] Wasfy TM and Noor AK. Multibody dynamic simulation of the next generation spacetelescope using finite elements and fuzzy sets[J]. Comput Methods in Appl Mech and Eng.2000,190(5–7):803–824.
    [140] Castelazo IA and Lee H. Nonlinear compensation for flexible manipulators[J]. ASME J.Dyn. Syst., Meas., Control.1990,112:62–68.
    [141] Kubica E and Wang D. A fuzzy control strategy for a flexible single link robot[C]. Proc of1993IEEE Int Conf on Robotics and Automation1.1993:236–241.
    [142] Zeinoum I and Khorrami F. Fuzzy based adaptive control for flexible-link manipulatorsactuated by piezoceramics[C]. Proc of IEEE Int Conf on Robotics and Automation.1994,1:643–648.
    [143] Liao WH, Chou JH, and Horng IR. Robust vibration control of flexible linkagemechanisms using piezoelectric films[J]. Smart Mater. Struct.1997,6:457–463.
    [144] Chedmail P, Aoustin Y, and Chevallereau Ch. Modelling and control of flexible robots[J].Int. J. Numer. Methods Eng.1991,32(8):1595–1619.
    [145] Chang LW. Dynamics and control of vertical-plane motion for an electrohydraulicallyactuated single-flexible link arm[J]. ASME J. Dyn. Syst., Meas., Control.1992,114:89–95.
    [146] Gofron M and Shabana AA. Control structure interaction in the nonlinear analysis offlexible mechanical systems[J]. Nonlinear Dyn.1993,4:183–206.
    [147] Tu Q, Rastegar J, and Singh JR. Trajectory synthesis and inverse dynamics modelformulation and control of tip motion of a high performance flexible positioning system[J].Mech. Mach. Theory.1994,29(7):929–968.
    [148] Meirovitch L and Chen Y. Trajectory and control optimization for flexible space robots[J].J. Guid. Control Dyn.1995,18(3):493–502.
    [149] Bayo E. A finite-element approach to control the end-point motion of a single-link flexiblerobot[J]. J. Rob. Syst.1987,4(1):63–75.
    [150] Bayo E. Timoshenko versus Bernoulli-Euler beam theories for the inverse dynamics offlexible robots[J]. Int. J. Robot Autom.1989,4(1):53–70.
    [151] Bayo E, Papadopoulos P, Stubbe J, and Serna MA. Inverse dynamics and kinematics ofmulti-link elastic robots: An iterative frequency domain approach[J]. Int. J. Robot. Res.1989,8(6):49–62.
    [152] Bayo E, Movaghar R, and Medus M. Inverse dynamics of a single-link flexible robot:analytical and experimental results[J]. IEEE Trans. Rob. Autom.1988,3:150–157.
    [153] Bayo E and Moulin H. An efficient computation of the inverse dynamics of flexiblemanipulators in the time domain[C]. IEEE Robotics and Automation Conf.1989:710–715.
    [154] De Luca A, Lucibello P, and Ulivi G. Inversion techniques for trajectory control offlexible robot arms[J]. J. Rob. Syst.1989,6(4):325–344.
    [155] Williams DW and Turcic DA. An inverse kinematic analysis procedure for flexibleopen-loop mechanisms[J]. Mech. Mach. Theory.1992,27(6):701–714.
    [156] Gofron M and Shabana AA. Effect of the deformation in the inertia forces on the inversedynamics of planar flexible mechanical systems[J]. Nonlinear Dyn.1994,6:1–20.
    [157] Xia JZ and Menq CH. Real time estimation of elastic deformation for end-point control offlexible two-link manipulators[J]. ASME J. Dyn. Syst., Meas., Control.1993,115:385–393.
    [158] Lammerts IMM, Veldpaus FE, and Kok JJ. Adaptive computed reference computedtorques control of flexible robots[J]. ASME J. Dyn. Syst., Meas., Control.1995,117(1):31–36.
    [159] Eisler GR, Robinett RD, Segalman DJ, and Feddema JD. Approximate optimal trajectoriesfor flexible-link manipulator slewing using recursive quadratic programming[J]. ASME J.Dyn. Syst., Meas., Control.1993,115:405–410.
    [160] Meirovitch L and Kwak MK. Dynamics and control of spacecraft with retargeting flexibleantennas[J]. J. Guid. Control Dyn.1990,13(2):241–248.
    [161] Liao CY and Sung CK. An elastodynamic analysis and control of flexible linkages usingpiezoceramic sensors and actuators[J]. ASME J. Mech. Des.1993,115:658–665.
    [162] Sasiadek JZ and Srinvasan R. Dynamic modeling and adaptive control of a Single-linkflexible manipulator[J]. J. Guid. Control Dyn.1989,12:838–844.
    [163] Yuan BS, Book WJ, and Siciliano B. Direct adaptive control of a one-link flexible armwith tracking[J]. J. Rob. Syst.1989,6(6):663–680.
    [164] Chen JS and Menq CH. Modeling and adaptive control of a flexible one-linkmanipulator[J]. Robotica.1990,8:339–345.
    [165] Yang JH, Liu FC, and Fu LC. Nonlinear control of flexible link manipulators[C]. ProcIEEE Int Conf on Robotics and Automation.1994,1:327–332.
    [166] Maund M, Helferty J, Boussalis J, and Wang S. Direct adaptive control of flexible spacestructures using neural networks[C]. Proc of Int Joint Conf on Neural Networks.1992,3:844–849.
    [167] Book WJ. Modeling, design and control of flexible manipulators arms[D]. PhD Thesis,MIT, Dept of Mechanical Engineering.1979.
    [168] Book WJ. Characterization of strength and stiffness constraints on manipulator control[C].Proc of Symp on Theory of Robots and Manipulators, New York, Elsevier/North-Holland.1976:28–37.
    [169]段宝岩.柔性天线结构分析、优化与精密控制[M].北京:科学出版社,2005.
    [170] Zhang DJ, Liu CQ, and Huston RL. On the dynamics of an arbitrary flexible body withlarge overall motion: an integrated approach[J]. Mech. Struct. Mach.1995,23(3):419–438.
    [171] Spanos J and Laskin RA. Geometric nonlinear effects in simple rotating systems[C]. Procof Workshop on Multibody Simulation, JPL, Pasadena CA, JPL D-5190.1988,1:191–218.
    [172] Mayo J, Dominguez J, and Shabana AA. Geometrically nonlinear formulations of beamsin flexible multibody dynamics[J]. ASME J. Vibr. Acoust.1995,117(4):501–509.
    [173] Mordfin TG and Tadikonda SSK. Modeling controlled articulated flexible systems, Part I:Theory, Part II: Numerical investigation[C]. Paper No DETC2001/VIB-21344,21345, Procof ASME2001DETC, Pittsburgh PA,2001.
    [174] Brusher GA, Kabamba PT, Ulsoy AG. Coupling between the modeling and controllerdesign problems, Prat II: design[J]. ASME J. Dynamic System, Measurement and Control.1997,119(2):278-283.
    [175] Youcef-Toumi K. Modeling, design and control integration: a necessary step inmechatronics[J]. IEEE/ASME Transaction on Mechatronics.1996,1(1):29-38.
    [176] Onoda J, and Haftka RT. A approach to structure/control simultaneous optimization forlarge flexible spacecraft[J]. AIAAJournal.1987,25:1133-1138
    [177] RAO SS. Combined structural and control optimization of flexible structures[J].Engineering Optimization.1988,13:1-16.
    [178] Yamakawa H. A unified method for combined structural and control optimization ofnonlinear mechanical and structural systems[J]. Int. J. Computer Aided Optimum Designof Structures.1989:287-298
    [179] Iwadare M, Kajiwara I, Tsuchiya R, Horie M. Integrated actuator/control design of smartpantogragh mechanism for vibration suppression[C]. Proceedings of the2004IEEEInternational Conference on Control Applications.2004:1717-1722
    [180] Reyer JA, Fathy H, Comparison of combined embodiment desine of control optimizationstrategies using optimility conditions[C]. ASME Design Engineering TechnicalConferences, PaperDAC-21119, Pittsburgh, Pennsylvania.2001
    [181] Reyer JA, Papalambros PY. Combined optimal design and control with application to anelectric DC motor[C]. Transactions of the ASME, Int. J. Mechanical design.2002,124(6):183-191
    [182] Zhang WJ, Li Q, Guo LS. Integrated design of mechanical structure and control algorithmfor a progranmmable four-bar linkage[J]. IEEE/ASME Transactions on mechatronics.1999,4(4):354-362
    [183] Wu FX, Zhang WJ, Li Q, Ouyang PR. Integrated design and PD control of high-speedclosed-loop mechanisms[J]. Journal of Dynamic Systems, Measurement, and Control,2002,124:522-528
    [184] Ouyang PR, Li Q, Zhang WJ. Integrated design of robotic mechanisms for force balancingand trajectory tracking[J]. Mechatronics.2003,13:887-905.
    [185] Fu K, Mills JK. A convex approach solving simultaneous mechanical structure and controlsystem design problems with multiple closed-loop performance specifications[J]. Journalof Dynamic Systems, Measurement and Control, Transactions of the ASME.2005,127(3):57-68.
    [186] Zhu DL, Jiang T, Wei JH, Wang AL, Wang SG. Integrated optimal model of structure andcontrol of the single arm manipulator[J]. Journal of Beijing Institute of Technology.2006,15(9):278-282.
    [187] Yan HS, Yan GJ. Integrated control and mechanism design for the variable input-speedservo four-bar linkages[J]. Mechatronics,2009,19(3):274-285.
    [188]李素兰.一种雷达天线伺服系统结构与控制的集成设计研究[J].机械工程学报.2010,46(19):140-146.
    [189]戚锋,空间可展开天线的多柔体动力学建模与分析[D].西安电子科技大学硕士论文.1994.
    [190]冯达武,赵人杰,空间大型网状展开天线展开机构的研究[J].中国空间科学技术,1997(2):64-69.
    [191]罗国华.大型可展开卫星天线展开过程仿真及最佳展开规律和最佳展开方式研究[D].西北工业大学硕士论文.2004
    [192]胡国伟.可展开天线展开动力学分析与仿真研究[D].西安电子科技大学硕士论文.2010.
    [193]王尧.大型可展开天线相似性及拓扑综合研究[D].西安电子科技大学硕士论文.2009.
    [194]王峰.空间可展结构展开过程动力学分析[D].西安电子科技大学硕士论文.2008.
    [195]赵孟良,关富玲.考虑摩擦的周边桁架式可展开天线展开动力学分析[J].空间科学学报.2006,26(3):220-226.
    [196]赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报.2005,39(11):1669-1674.
    [197]李团结,张琰,李涛.周边桁架可展天线展开过程动力学分析及控制[J].航空学报.2009,30(3):444-449.
    [198] Shintate K, Terada K, Usui M. Large Deployable Reflector(LDR)[J]. Journal of theNational Institute of Information and Communications Technology.2003,50:33-39.
    [199] Tsunoda H, Hariu K, Kawakami Y. Structural design and deployment test methods for alarge deployable mesh reflector[J].AIAA-97-1148:2963-2971.
    [200]李春贵,王三民,袁茹.基于神经网络的空间可展开天线展开过程智能控制研究[J].机床与液压.2006,(12):161-164.
    [201]谷文韬,王三民,徐家栋.径射状空间可展天线展开过程的智能控制研究[J].机械科学与技术.2006,25(11):1380-1383.
    [202]刘明治等.空间大型可展开天线动力学分析及控制研究[R].西安电子科技大学科研成果申报论文.1997.
    [203]刘春霞.空间大型可展开天线的控制研究[D].西安电子科技大学硕士论文.1999.
    [204]李春贵.环形可展开天线展开动力学分析及智能控制研究[D].西北工业大学硕士论文.2006.
    [205]李团结,张琰,段宝岩.周边桁架可展天线展开过程运动分析及控制[J].西安电子科技大学学报.2007,34(6):916-921.
    [206]袁茹.环形可展开卫星天线的固有特性分析与结构优化设计[D].西北工业大学硕士论文.2004.
    [207]尤国强.周边桁架可展开天线的结构优化设计[D].西安电子科技大学硕士论文.2005.
    [208]李斌.网状反射面可展开天线的结构优化设计研究[D].西安电子科技大学硕士论文.2010.
    [209] Thomson W. The Astromesh deployable reflector[J]. IEEE Antennas and PropagationSociety,1999,3:1516-1519.
    [210]狄杰建,段宝岩,杨东武.索网式星载展开天线纵向调整索数及其初始张力的优化[J].机械工程学报,2005,41(11):154-157.
    [211]杨东武,保宏.非对称索网抛物面天线力平衡特性及预拉力设计[J].机械工程学报,2009,45(8):308-312.
    [212]张琰.周边桁架可展开天线展开过程分析与仿真[D].西安电子科技大学硕士论文.2008.
    [213]李团结,张琰,段宝岩.周边桁架可展开天线展开过程运动分析及控制[J].西安电子科技大学学报(自然科学版).2007,34(6):916-921.
    [214] Yan HS, Hsu MH, Fong MK, Hsieh WH. A Kinematic approach for eliminating thediscontinuity of motion characteristics of cam-follower systems[J]. J Appl Mech Robot1994:1(2):1-6.
    [215] Yan HS, Tsai MC, Hsu MH. AVariable-speed method for improving motion characteristicsof cam-follower systems[J]. ASME Trans J Mech Design1996:118(1):250-8.
    [216] Yan HS, Fong MK. An approach for reducing the peak acceleration of cam-followersystems using a B-spline representation[J]. J Chin Soc Mech Eng1994:15:48-55.
    [217] Yan HS, Tsai MC, Hsu MH. An experimental study of the effects of cam speed oncam-follower systems[J]. Mech Mach Theory1996:31(4):397-412.
    [218]罗钟铉,孟兆良,刘成明.计算几何-曲面表示论及应用[M].北京:科学出版社,2010.
    [219]王仁宏,李崇君.计算几何教程[M].北京:科学出版社,2008.
    [220] Yan HS, Chen WR. On the output motion characteristics of variable input speed servocontrolled slider-crank mechanisms[J]. Mech Mach Theory2000:35(4):541-561.
    [221]李团结,文群燕,蒋而进.伺服输入曲柄滑块机构的控制模型[J].西安电子科技大学学报.2002,29(3):415-418.
    [222] Pai MC, Sinha A. Asymptotic stability for coupled model sliding mode control of vibrationin a flexible structure[J]. Shock and Vibration,2009,16(3):319-324.
    [223] Wang D, Huang JL, Lan WY, LI Xiaoqiang. Neural network-based robust adaptive controlof nonlinear systems with unmodeled dynamics[J]. Mathematics and Computers inSimulation,2009,79(5):1745-1753.
    [224] Cheong J, Lee S. Linear PID composite controller and its tuning for flexible link robots[J].Journal of Vibration and Control,2008,14(3):291-318.
    [225] Wang XS, Hong H, Su CY. Adaptive control of flexible beam with unknown dead-zone inthe driving motor[J]. Chinese Journal of Mechanical Engineering,2004,17(3):327-331.
    [226] Luo L, Wang SG, Cai JG. On the dynamic modeling and control of2-DOF planar parallelmechanism with flexible links[J]. Chinese Journal of Mechanical Engineering,2005,18(1):112-117.
    [227]李善姬.柔性机械臂的一种组合控制[J].电机与控制学报,2005,9(3):226-228.
    [228]王光庆,郭吉丰.空间柔性臂的解耦动力学模型及其控制[J].宇航学报,2004,25(5):580-582.
    [229]戈新生,崔玮,赵秋玲.刚柔性耦合机械臂轨迹跟踪与振动抑制[J].工程力学,2005,22(6):188-191.
    [230] Hwang YL.Dynamic recursive decoupling method for closed-loop flexible mechanicalsystems[J]. International Journal of Non-Linear Mechanics,2006,41:1181–1190.
    [231] Liang J, Madan MG, Peter NN. Modeling and Control of Flexible Space Strutures UsingNetural Networks[J]. Neural Networks Applications,1996:173-180.
    [232] Yesildirek A, Vandegrift MW, and Lewis FL. A Neural Network Controller forFlexible-Link Robots[J]. IEEE International Symposium on Intelligent Control.1994,8:16-18.
    [233] Lin LC and Yih TW. Rigid Model-Based Neural Network Control of Flexible-LinkManipulators[J]. IEEE Tran. On Robotics andAutomation.1996,12(4):595-602.
    [234] Miklosovic R and Gao ZQ. A dynamic decoupling method for controlling highperformance turbofan engines[C]. Copyright2005IFAC.
    [235]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [236] Yu Y Q, Qiu Y F, Zhang Y. New investigation on critical running speeds of a high-speedelastic space mechanism[J]. Mech.Mach.Theory,1992,27:391~402
    [237]张策,陈树勋.论弹性连杆机构的低阶谐振现象[J].机械工程学报,1986,22(1):81-92
    [238] Midha A, et al. The Elastic Slider-Grank Mechanism: A study of theconfiguration-dependent modal properties[J]. ASME. Flexible Mechanism Dynamics andAnalysis,1992.
    [239]余跃庆.弹性连杆机构参量振动频率特性分析[J].机械工程学报,1996,32(2):47-52.
    [240]贾少澎,冯元生,任和.平面四杆机构典型尺寸型弹性动力分析[J].机械科学与技术,1998,17(2):275-278.
    [241] Stamp F R, Bagei. Dynamic of planar, elastic High Speed Mechanisms Considering ThreeDimensional Offset Geometry Analytical and Experimental Investigations[J]. Journal ofMechanisms, Transmissions, and Automation in Design,1983,105(3):498-510.
    [242]孟宪举,张策.弹性曲柄摇杆机构的基频特性分析[J].机械设计,2001,1:16-19.
    [243]李团结,周懋花,段宝岩.可展天线的柔性索网结构找形分析方法[J].宇航学报.2008,29(3):794-798.
    [244]杜敬利,保宏,崔传贞.索网结构初始平衡状态的优化设计[J].华南理工大学学报,2011,39(6):142-147.
    [245]杜敬利,保宏,段宝岩.索网主动反射面初始平衡状态的确定[J].固体力学学报,2009,30(3):286-291.
    [246]杜敬利,段宝岩,保宏,訾斌.基于最小二乘方法的索网反射面形状精度调整[J].工程力学,2008,25(1):203-208.
    [247]杨东武,尤国强,保宏.抛物面索网天线的最佳型面设计方法[J].机械工程学报,2011,47(19):123-128.
    [248]尤国强,杨东武,张杰.以减轻重量为目标的索网桁架式可展开太空天线结构的优化设计[J].高技术通讯,2009,19(7):745-748.
    [249]杨东武,仇原鹰,段宝岩.预应力索网天线结构优化设计[J].应用力学学报,2008,25(4):617-621.
    [250]杨东武,仇原鹰,段宝岩.索网式天线结构预拉力优化的新方法[J].西安电子科技大学学报,2008,35(2):319-323.
    [251] Cao H J, Zong Y L, Ma Y J, Duan B Y. Pretension and Size Optimization of DeployableFrame-Cable Antennas[C].Forth International Conference on Multidisciplinary DesignOptimization andApplications, Xi’an China, Nov.5-9,2012.
    [252]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安电子科技大学博士论文.2004.
    [253]朱灯林,姜涛,王安麟等.柔性机械手结构/控制融合设计[J].机器人.2005,27(1):73-77.
    [254] H.Asada, J.H.Park, SRai. A Control-Configured Flexible Arm:integrated Structure/ControlDesign. Proceeding of the l999IEEE, International Conference on Robotics andAutomation, California,1999:2356-2362.
    [255]肖志权,崔玲丽.基于遗传算法的柔性机械臂的同时优化设计[J].机器人.2004,26(2):170-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700