用户名: 密码: 验证码:
光传飞行控制系统实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于电传操纵,光传操纵具有抗电磁干扰、传输容量大和体积小重量轻等优点,是未来飞行控制技术发展的趋势和研究热点。本文以舰载机起降光传飞行控制地面半物理仿真验证平台建设为引导,对光传飞行控制计算机系统、信号光传/能量电传作动器系统、光传现代飞行控制律以及光传余度实现等关键技术进行了设计开发与仿真验证,研究成果对光传飞行控制系统的设计与工程实现具有重要的理论意义和工程实用价值。
     本文的核心研究成果主要体现在以下五个方面。
     首先,根据光传飞行控制系统工程化实现的需求,提出了一种舰载机光传飞行控制地面半物理验证系统的结构和实现方案,并对其中的主要组成部件的功能、实现方案进行了分析与设计,由于该地面半物理验证系统具有多功能、模块化和开放性等特点,因此对相关领域的研究具有重要的工程应用价值。
     其次,针对光传飞行控制计算机系统工程实现的需要,提出了一种模块化、开放性光传飞行控制计算机系统的实现方案,并重点研制了光传飞行控制计算机输入/输出底板、MIL-STD-1773光总线等核心硬件,建立了相应的开发样机。性能测试表明,该光传飞行控制计算机系统具有重量轻、体积小、数据传输速率高、可靠性好、结构简单易于实现等特点,可直接移植应用于我国新一代的军民用飞机的光传飞行控制系统中。
     第三,针对光输入作动器系统的实际需求,提出了一种信号光传,能量电传的作动器系统实现方案,研究并开发了其中的关键功能模块、直流伺服电动机数学模型以及双回路PI控制律等,建立了相应的开发样机。动静态性能测试表明,该作动系统具有体积小、重量轻、输出扭矩大、动态响应快、控制精度高、抗干扰能力强等优点,具有重要的工程应用价值。
     第四,针对舰载机光传飞行控制系统实现的要求,在建立和分析某型舰载机非线性气动力学的基础上,开发了一种基于模糊参数自适应的显模型跟踪控制系统,阐述了其控制机理,给出了设计方法,并最终建立了舰载机目视引导的光传验证系统。仿真验证表明,该光传着舰系统具有优良的自适应性和动态特性,具有工程应用前景。
     第五,为了提高光传飞行控制系统的可靠性和容错能力,给出了一种基于光交叉通道数据链路的三余度光传飞行控制系统结构,在此基础上提出了一种具有故障容错能力的光交叉通道数据链路,建立了马尔可夫可靠性数学模型,建立了相应的开发样机。仿真验证表明,该数据链路具有多故障工作能力,且结构简单、易于维护和工作稳定。最后建立的三余度光传综合火力/飞行控制三维可视化仿真平台,为我国光传飞控余度技术的验证与开发提供了通用平台。
Compare to the fly-by-wire system, the fly-by-light system has an ability of anti-electromagneticinterference, large transmission capacity, small volume and light weight. So it is the futuredevelopment trend and research focus in the field of flight control system. In this paper, a carriertakeoff and landing hardware-in-loop simulation platform is developed to verify the fly-by-lightsystem. The key technique of the fly-by-light, such as flight control computer, fly-by-light/power-by-wire actuator, modern flight control law, and redundancy technology with fault diagnosis, isdesigned and verified. The research achievement of this paper has a very important application valuefor the realization of fly-by-light system.
     The core research achievements of this thesis summarized as follows:
     Firstly, the solutions of development and verification platform for the fly-by-light system areproposed based on carrier takeoff and landing system, to meet the requirement of realization of thefly-by-light system. And the function and Implementation technology of the main components isanalysed and designed. This platform with features of multiple functions, modular and opening is veryuseful for the research in related fields.
     Secondly, in order to meet the requirement of the fly-by-light computer system, the overallstructure of a modular, opening fly-by-light system is proposed for realization. Then the signal input/output processing backboard and high-speed MIL-STD-1773data bus backboard are developed. Thetest results of the principle prototype show that the fly-by-light control computer has characteristicssuch as light weight, small volume, high data transmission rate, good reliability, simple structure andeasy realization, so it can be directly apllied to the engineering of the next generation military andcivil aircrafts.
     Thirdly, a fly-by-light/power-by-wire actuator is established according to the actual situation, andthe key hardwares, mathmatical model of the DC motor and the PI control law with double loops isdeveloped. The dynamic and static characters of the actuator show that it has advantages of lightweight, small volume, Large output torque, fast dynamic response, high control precision and stronganti-interference ability, and is very suitable for engineering application.
     Fourthly, In order to adapt to the requirement of the fly-by-light system of carrier based aircraft, anadaptive control law based on fuzzy parameters tuning and model following is designed after thenonlinear aerodynamic model of the F/A-18aircraft is established and analysed. And the controlprinciple and design method are given. Then the visial landing verification system based on fly-by-light is established. The test results of this system show that it has good dynamic and staticprecision, real-time and adaptivity verified by the visial landing control system.
     Finally, a basic structure of triple redundancy flight control system is gived to improve thereliability and fault tolerace. An optical cross-channel data link with fault-tolerant capability isproposed, and the principle prototype is established. Then the reliability model of the opticalcross-channel data link is analyzed and simulated, and the simulation results show that it has multiplefault working ability, and has the advantages of simple structure, easy maintenance and good workingstability. The3D visualization platform for triple redundancy integrated flight/fire control system isestablished, and provided a general technique development platform for the fly-by-light system.
引文
[1]杨一栋,刘晓里.光传飞行控制.北京:国防工业出版社,2006.
    [2]钱坤,董新民.电传到光传的发展趋势.电光与控制,2001,2001(3):60~64.
    [3]李玉飞,苏媛.光传飞行控制系统研究.航空科学技术,2009,2009(5):7~11.
    [4]李坤,王少萍.光传操纵系统的发展趋势.北京航空航天大学学报,2003,29(12):1068~1072.
    [5] D. Varshneya. Fly-by-light status: issues and options. SPIE,1994, Vol.2072:33~37.
    [6] John R. Todd. Direct optical control: a lightweight backup consideration. NAECON1992, Proceedings ofIEEE,1992:456~463.
    [7] Rob James. Fly-by-light for the Skyship600. SPIE,1989, Vol.1120:217~223.
    [8] John R. Todd, John A. Hay, Dana S. Noble. Flexible architectures: a key to low cost fly-by-light.13thDASC,Proceedings of AIAA/IEEE,1994:599~604.
    [9] John R. Todd, John A. Hay, Michael E. Brennan. Integrating fly-by-light systems.11thDASC, Proceedings ofIEEE/AIAA,1992:411~416.
    [10] John R.Todd, John C. Pilatos. Dual use fly-by-light: development for transport aircraft. SPIE,1995, Vol.2467:58~63.
    [11] John R. Todd. Fly-by-light flight control system development for transport aircraft. SPIE,1996,Vol.2840:71~76.
    [12] John R. Todd, Larry J. Yount. Development of fly-by-light systems for commercial aircraft. SPIE,1990, Vol.1369:72~78.
    [13] Brian D. Morrison, Michael N. Robillard. Design and certification of low-cost distributed control-by-lightaircraft control systems for part25aircraft. SPIE,1996, Vol.2840:168~175.
    [14] James M. Urnes, Sr. Eugene B. Lerman, Barry G. Streeter. Cost efficient integrated tests of fly-by-light flightcontrol systems. SPIE,1996, Vol.2840:89~95.
    [15] J. R. Todd. Critical digital systems: a fly-by-light consideration.10thDASC, Proceedings of IEEE/AIAA,1991:471~476.
    [16] Jack Corrigan, Brad Shaw, Jack Jones. Demonstration results of fly-by-light flight control system architecturesfor tactical military aircraft. SPIE,1996, Vol.2840:77~88.
    [17] K. A. LaBel. A spacecraft fiber optic data system-radiation effects. RADECS1991, Proceedings of IEEE,1992:412~415.
    [18]杨一栋.直升机飞行控制(第2版).北京:国防工业出版社,2011.
    [19] John R. Todd. Development of fly-by-light systems. SPIE,1989, Vol.1173:139~146.
    [20] Joel L. Terry. Jr., Joseph D. Dickinson, and Major Gary D. Jerauld. The Advanced Digital-Optical ControlSystem (ADOCS) user demonstration program. USAAVSCOM TM-89-D-2,1989.
    [21] Mark Miller, William Spillman, Development of an optical fiber engine sensor suite, SPIE,1996, Vol.2840:114~117.
    [22] G. L. Poppel, W. M. Glasheen, J. C. Russell. Fiber Optic Control System Integration(Final Report). NASACR-179568,1987.
    [23] Samuel I. Green. FLASH fiber optic data bus lessons learned. SPIE,1996, Vol.2840:133~136.
    [24] Don Halski. FLASH fly-by-light flight control demonstration results overview. SPIE,1996, Vol.2840:59~70.
    [25] Patricia Wiener. The FLASH program cable plant. SPIE,1995, Vol.2467:118~129.
    [26] Carlos A. Bedoya. Fly-by-light advanced systems hardware (FLASH) program. SPIE,1995, Vol.2467:2~13.
    [27] Kent Stange. Honeywell FLASH fiber optic motherboard evaluations. SPIE,1996, Vol.2840:23~30.
    [28] Ken O’Rourke, Eric Peterson, Larry Yount. Honeywell optical investigations on FLASH program. SPIE,1995,Vol.2467:171~179.
    [29] Ken O’Rourke, Eric Peterson. Optical demonstration on Honeywell FLASH program. SPIE,1996,Vol.2840:104~111.
    [30] Samuel I. Green. Selection of a fiber optic data bus for the FLASH program. SPIE,1995, Vol.2467:160~170.
    [31] Ni Yu-De, Li Zheng, Zhang Jian-Guo. A high performance fiber optic data bus based on MIL-STD-1773.11thDASC, Proceedings of IEEE/AIAA,1992:400~406.
    [32] Jae H. Kim, Rodney K. Bonebright, Jeffrey P. Harrang, et. Burst-mode bit-error-rate characterization ofdual-rate MIL-STD-1773transceiver. IEEE Photonics Technology Letters,1997,9(2):238~240.
    [33] Kenneth A. LaBel, Paul W. Marshall, Cheryl J. Marshall, et. Comparison of MIL-STD-1773fiber optic databus terminals: single event proton test irradiation, in-flight space performance, and prediction techniques.IEEE Transactions on Nuclear Science,1998,45(3):1633~1639.
    [34] Jian-Guo Zhang. Design issues for MIL-STD-1773optical fiber avionics data buses. IEEE AES SystemsMagazine,1998,13(10):25~32.
    [35] Jian-Guo Zhang. Design of new optical fiber transceivers for a MIL-STD-1773data bus. NAECON1992,Proceedings of IEEE,1992:1186~1192.
    [36] Rodney K. Bonebright, Jae H. Kim, Rodney A. Hughes, etc. Development of dual-rate MIL-STD-1773A databus transceiver. SPIE,1996, Vol.2811:142~153.
    [37] D. Thelen, S. Rankin, P. W. Marshall, etc. Dual-rate MIL-STD-1773fiber optic transceiver for satelliteapplications. SPIE,1994, Vol.2215:101~112.
    [38] Eddie Zavala. Fiber Optic Experience with the Smart Actuation System on the F-18Systems Research Aircraft.NASA/TM-97-206223,1997.
    [39] Carl Harrington. High performance optical input servo-valve. SPIE,1995, Vol.2467:195~04.
    [40] P. Bhadri, D. Aukumaran, K. Ye, etc. Design of a smart optically controlled high power switch for fly-by-lightapplication. MWSCAS2001, proceedings of IEEE,2001:401~404.
    [41] Tom Sadeghi, Arthur Lyons. Fault tolerant EHA architectures. IEEE AES Systems Magazine,1992,7(3):32~42.
    [42] Sonny H. S. Chee, Kexing Liu, and Raymond M. Measures. Optical actuators for fly-by-light applications.SPIE,1992, Vol.1799:187~193.
    [43] John R. Todd, John A. Hay, Tri Dinh. Integrating fly-by-light/power-by-wire flight control systems ontransport aircraft.12thDASC, Proceedings of IEEE,1993:457~462.
    [44] John R. Todd. A review of the fly-by-light optical aileron trim flight demonstration system.17thDASC,Proceedings of IEEE,1998:D33-1~D33-3.
    [45] Gregory J. Sellers. Fiber optic connectors and splices for aircraft applications. SPIE,1996, Vol.2840:31~42.
    [46] Christopher A. Roe. High density18channel fiber optic avionics connector. SPIE,1995, Vol.2467:99~106.
    [47] Gregory J. Sellers, Richard F. Roth. Multi-fiber optic connectors for aircraft applications. SPIE,1995,Vol.2467:87~98.
    [48] A. G. Lubowe, T. P. Million, E. Sayegh, etc. Multi-fiber optical connectors for avionics. SPIE,1996,Vol.2840:14~22.
    [49] Thomas L. Weaver, John K. Murdock, and James R. Ide. Tactical aircraft optical cable plant program plan.SPIE,1995, Vol.2467:66~77.
    [50] Thomas L. Weaver, John K. Murdock. The aircraft optical cable plant program plan: the approach for thephysical layer for fly-by-light control networks. SPIE,1995, Vol.2467:46~57.
    [51] Thomas L. Weaver. The aircraft optical cable plant: the physical layer for fly-by-light control networks. SPIE,1996, Vol.2840:2~13.
    [52] Mark Miller. Air data transducer with optical communications and an optical temperature sensor. SPIE,1996,Vol.2840:142~146.
    [53] Kevin C. Scholten. Fiber optic gyro inertial measurement unit with dual rate1773interface. SPIE,1995,Vol.2467:205~215
    [54] Klaus Fritsch, Glenn Beheim, Jorge Sotomayor. Digital angular position sensor using wavelength divisionmultiplexing. SPIE,1989, Vol.1169:453~460.
    [55] Kevin C. Scholten. Fiber optic gyro inertial measurement unit for fly-by-light advanced systems hardware.SPIE,1994, Vol.2292:264~271.
    [56] Nicholas J. kormanik. Integration and test of a fiber optic gyro AHRS into a fly-by-light aircraft configuration.SPIE,1996, Vol.2840:118~132.
    [57] R. D. LaClair, W. B. Spillman Jr., W. W. Kuhns, etc. Long stroke optical fiber linear position sensor for theFLASH program. SPIE,1996, Vol.2840:137~141.
    [58] M. S. Miller, R. W. Phillips, S. D. Hahn, etc. Time rate of decay optical fiber total air temperature sensor andoptically interfaced air data system for fly-by-light applications. SPIE,1995, Vol.2467:182~186.
    [59] W. B. Spillman Jr., R. D. LaClair, R. E. Rudd, etc. Wavelength encoding long stroke fiber optic linear positionsensor for actuator control applications. SPIE,1995, Vol.2467:187~194.
    [60] Jian-Guo Zhang. Design of highly reliable military avionics fiber-optic data bus. SPIE,1993,Vol.2023:293~305.
    [61]彭刚锋,高速光纤数据总线技术研究[硕士学位论文],西安:西北工业大学,2001.
    [62] Jean-Jacques Mayoux. STANAG3910: the data bus of the next generation European fighters. NAECON1993,Proceedings of IEEE,1993:152~156.
    [63] Jian-Guo Zhang, Zheng Li, Yu-De Ni. High-reliability optical fiber local area networks for aircraftapplications. NAECON1993, Proceedings of IEEE,1993:1116-1122.
    [64] Zhou Qiang, Luo Zhiqiang, Li Qiao, Xiong Huagang. An optimal bandwidth allocation scheme and real-timeperformance analysis for LTPB network. NAECON2000, Proceedings of IEEE,2000:180~186.
    [65] Schur K.A. A comparison of the SAE linear token passing bus and the fiber distributed data interface protocols.13thDASC, Proceedings of AIAA/IEEE,1994:23~29.
    [66] Oliver Keith Hall, Paul D. Stigall. Distributed flight control system using fiber distributed datainterface(FDDI). IEEE AES Magazine,1992,7(6):21-33
    [67] Derek E. Anderson, Mark W. Beranek.777optical LAN Technology Review. Proceedings of48thElectronicComponents and Technology Conference,1998:386~390.
    [68] Gerry Amles, Dick Kotallk. More electric aircraft need for a high-speed optical data bus. SPIE,1995,Vol.2467:227~229.
    [69] Brian D. Morrison, Michael N. Robillard. A multi-transmitter, bi-directional fiber optic bus designed for use incritical aircraft applications. SPIE,1996, Vol.2840:176~188.
    [70] Yang-Han Lee. Feasibility study of airplane fiber optical communication network. IEEE Transaction onConsumer Electronics,1999,45(4):1159~1168
    [71] Grevstad K. Turner L. Need for a general specification for vehicle management systems.11thDASC,Proceedings of IEEE/AIAA,1992:7~12.
    [72] AGARD. Integrated vehicle management systems. North Atlantic Treaty Organization REPORT343,1996.
    [73] A. hayre, T. Dull, F. Meyn. The ATF YF-23vehicle management system.1992Aerospace Design Conference,AIAA92-1076,1992.
    [74]江帆,鞠建波,邓小涛.综合航空电子系统新技术研究.现代电子技术,2003,2003(20):32~34.
    [75]祁晓野,付永领,王占林,王益群.机载作动系统的控制信号光传方案.北京航空航天大学学报,2000,26(2):160~163.
    [76]米宁,周海涛,朱纪洪.基于光纤通道的光传飞行控制系统通信方案.清华大学学报,2005,45(7):969~972.
    [77]刘鑫,陆文娟.光纤通道在航空电子环境的应用及关键技术研究.光通信技术,2006,2006(6):55~58.
    [78]田一松.光传飞行系统用光输入伺服阀方案研究[硕士学位论文].西安:西北工业大学,2003.
    [79] Donald J. Halski, Bradley L. Kessler, Robert E. Mattes, etc. The fly-by-light aircraft closed loop flight testprogram. SPIE,1995, Vol.2467:232~245.
    [80] Jack Corrigan, Jack Jones, Brad Shaw. Fly-by-light flight control system architectures for tactical militaryaircraft. SPIE,1995, Vol.2467:132~141.
    [81] Donald L. Martin, Louie Turmer III. Role of hardware-in-the-loop simulation in fly-by-light systemdevelopment.11thDASC, Proceedings of IEEE,1992:19~24.
    [82] Kevin Thompson, John Stipanovich, Brian Smith. Fault tolerant architecture for a fly-by-light flight controlcomputer. SPIE,1989, Vol.1173:167~173.
    [83]郭锁凤,申功璋,吴成富等编著.先进飞行控制系统.北京:国防工业出版社,2003.
    [84]宋翔贵,张新国等编著.电传飞行控制系统.北京:国防工业出版社,2003.
    [85]龚华军,光传飞控系统实现技术研究[博士学位论文].南京:南京航空航天大学,1999.
    [86]金益辉,光传飞行控制实现技术研究[硕士学位论文].南京:南京航空航天大学,2007.
    [87]杨柳,基于USB的光传操纵系统开发[硕士学位论文].南京:南京航空航天大学,2007.
    [88]张益东,基于PCI总线的光传飞行控制系统研究[硕士学位论文].南京:南京航空航天大学,2007.
    [89]王敬亭,廖力清,凌玉华. AD698型LVDT信号调理电路的原理与应用.国外电子元器件,2005,2005(9):63~64.
    [90]林锦棠.基于单片机构成高精度PWM式12位D/A转换器.大众科技,2008,2008(2):63~65.
    [91]赵君,田利民. RC滤波参数对PWM方式D/A转换精度的影响.东北电力学院学报,1998,18(1):99~102.
    [92]王岚,吴海强,孙卓君.基于PWM滤波数模转换电路设计.应用科技,2007,34(10):50~53.
    [93]李文伟,双凯.在RISC机中实现D/A转换的PWM方法.科学技术与工程,2009,9(14):4202~4204.
    [94]刘佳.小型化飞行控制计算机设计与实现[硕士学位论文].南京:南京航空航天大学,2008.
    [95] EDA先锋工作室,王诚,蔡海宁等编著. Altera FPGA/CPLD设计(基础篇)(第2版).北京:人民邮电出版社,2011.
    [96]丁超.基于PC104的视频采集系统设计[硕士学位论文].哈尔滨:哈尔滨工程大学,2010.
    [97]喻小虎.基于ARM的PC/104嵌入式计算机设计[硕士学位论文].长沙:国防科学技术大学,2005.
    [98]韩峰.基于PC104的无人直升机飞行控制系统设计[硕士学位论文].大连:大连理工大学,2010.
    [99] PC/104Embedded Consortium. PC/104Specification (Version2.6).2008.
    [100]柳义利,周渭,刘海霞.一种高速连续频率测量方法.宇航计测技术,2000,20(1):32~38.
    [101]李长安,李琦,曾锐利,符峰钊.基于V/F变换器实现快速A/D转换的探讨.电子科技,2008,21(6):30~33.
    [102]刘永刚,孟真,阎跃鹏.高准确度数字式时频域实时频率测量系统.电讯技术,2010,50(9):28~32.
    [103]李红刚.基于FPGA的高速等精度频率测量系统设计.微计算机信息,2008,24(11):218~220.
    [104]李丽娟,张寿明.基于CPLD/FPGA的等精度频率计设计.工业控制计算机,2008,21(8):73~74.
    [105]夏振华.等精度频率计的实现.电子设计工程,2010,2010(6):177~178.
    [106]严晓军,多路光纤传输系统的研究与实现[硕士学位论文].南京:南京航空航天大学,1997.
    [107] ZhengHong Aviation Tech Co., ltd. MIL-STD-1553Protocol Tutorial.2005.
    [108]陈冬梅,杨一栋.基于1773光纤数据总线的光传飞控系统.海军航空工程学院学报,2005,20(3):345~348.
    [109]陈冬梅,直升机光传飞行控制系统的技术研究[硕士学位论文].南京:南京航空航天大学,2005.
    [110]张树坤,光传操纵系统数据总线及可视化仿真技术研究[硕士学位论文].南京:南京航空航天大学,2006.
    [111]刘晓里,预警机光传飞行控制系统研究[硕士学位论文].南京:南京航空航天大学,2005.
    [112]蒋德中,宋征宇,周德祥.1773光纤数据总线技术与应用研究.航天控制,2006,24(5):10~13.
    [113]张剑平,周东. AS1773航空光纤总线调制机制的研究.光通信技术,2007,2007(9):49~51.
    [114]刘方楠,孙力军,何灼容,张宇科.1773数据总线光收发器的设计与测试.光通信研究,2007,2007(5):36~38.
    [115]郭偶凡.三余度光传飞控总线配置及实现技术研究[硕士学位论文].南京:南京航空航天大学,2011.
    [116]周密,金惠华,尚利宏,李化云.1553B总线协议IP核设计与实现.电子器件,2007,30(1):334~338.
    [117]陈卫涛,史忠科.基于FPGA的1553B总线系统设计与实现.测控技术,2008,27(8):74~76.
    [118]温瑾,波分复用光传飞行控制系统实现技术研究[硕士学位论文].南京:南京航空航天大学,2004.
    [119]黄智锋,波分复用光传飞行控制系统设计[硕士学位论文].南京:南京航空航天大学,2005.
    [120]吴文海,高丽,周胜明.飞行控制系统设计方法现状与发展.海军航空工程学院学报,2010,25(4):421~426.
    [121]张汝麟.飞行控制与飞机发展.北京航空航天大学学报,2003,29(12):1077~1083.
    [122]葛铁,胡涛.无人直升机的自适应非线性控制.直升机技术,2002,2002(3):33~36.
    [123]吴国辉,范宁军,王正杰,何乐.基于小型飞行器的动态逆控制方法研究.弹箭与制导学报,2008,28(3):1~4.
    [124]安凤栓,常俊林,苏丕朝,李亚朋等.基于改进粒子群优化算法的PID控制器参数优化.工矿自动化,2010,2010(5):54~57.
    [125]姜斌,杨浩.飞控系统主动容错控制技术综述.系统工程与电子技术,2007,29(12):2106~2110.
    [126]王新华,分布式三余度光传综合火力/飞行控制系统研究[硕士学位论文].南京:南京航空航天大学,2003.
    [127] Antony Kutschera. Performance assessment of fighter aircraft incorporating advanced technologies[DoctorThesis]. Loughborough University,2000.
    [128] L. Sonneveldt. Nonlinear F-16model description(Version1.0). Control&Simulation Division Faculty ofAerospace Engineering Delft University of Technology,2010.
    [129] Robert F. Stengel. Flight dynamics. Princeton University Press,2004.
    [130]肖业伦.航空航天器运动的建模:飞行动力学的基础理论(第1版).北京:北京航空航天大学出版社,2003.
    [131] Ronald J. Ray. Evaluation of various thrust calibration techniques on an F404engine. NASA Technical Paper3001,1990.
    [132] John B. Davidson, Patrick C. Murphy, and Frederick J. Lallman, etc. High-alpha research vehiclelateral-directional control law description, analyses, and simulation results. NASA/TP-1998-208465,1998.
    [133]满翠芳,江驹,王新华,郑晟等.舰载机动力补偿系统模糊逻辑设计技术.南京航空航天大学学报,2010,42(5):656~660.
    [134]杨一栋编著.舰载机着舰引导与控制.北京:国防工业出版社,2007.
    [135] John W. Sheppard, William R. Simpson. A neural network for evaluating diagnostic evidence.NAECON1991,proceedings of IEEE,1991:717~723.
    [136] V. Tispsuwanpom, A. Sangrayub, T. Suesut, etc. Development of PLC fiber-optic network for redundantsystem, IEEE ICIT’02,2002:303~306.
    [137] James M. Urnes. Application of neural network technology to fly-by-light control systems. SPIE,1995,Vol.2467:142~149.
    [138] Gerald C. Hadfield, Craig M. Cigich, Integrated intelligent fault diagnostics,1994IEEE National Telesystemsconference,1994:263~266.
    [139] Edward C. Larson, B. Eugene Parker, Jr., Brian R. Clark. Model-based sensor and actuator fault detection andisolation, Proceedings of the American Control Conference,2002:4215~4219.
    [140] James M. Urnes, Sr., John Cushing, Bill Bond, etc. On-board fault diagnostics for fly-by-light flight controlsystems using neural network flight processors. SPIE,1996, Vol.2840:96~103.
    [141]姜震,邵定蓉,熊华钢等.实时网络系统可靠性建模研究.航空学报,2004,25(3):275~278.
    [142]齐劲松,王伟,吴成富等.三余度飞控计算机交叉数据链系统设计.测控技术,2007,26(5):73~75.
    [143]王海涛,高金源,夏洁.综合容错飞行控制系统的设计与仿真.飞行力学,2007,25(3):17~20.
    [144]杨伟,章卫国,杨朝旭等.容错飞行控制系统.西安:西北工业大学出版社,2007.
    [145]靳红涛,焦宗夏,王少萍等.高可靠三余度数字式作动器控制器设计与实现.北京航空航天大学学报,2006,32(5):548~552.
    [146]安金霞,朱纪洪,王国庆等.多余度飞控计算机系统分级组合可靠性建模方法.航空学报,2010,31(2):301~309.
    [147]陈坚.光网络可靠性及其相关技术研究[硕士学位论文].南京:东南大学,2004.
    [148] Emray R. Goossen, Larry A. Nelson, James W. Woods. Fault tolerant optical cross-channel data link. USPatent:5396357,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700