用户名: 密码: 验证码:
新型TiAlCrFe系低成本钛合金的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用廉价的Cr-Fe中间合金设计并熔炼制备新型TiAlCrFe系低成本钛合金,该新型钛合金原材料成本仅为TC4合金的75-80%。文中采用光学显微镜(OM)、SEM、TEM和XRD等方法对该新型合金在不同热处理状态下的相组成、组织特征和力学性能进行了研究;并选取两种合金进行Gleeble热模拟实验研究合金的热变形特征,确定合金热加工工艺性能。通过研究得到以下主要结果:
     本文对各合金在不同热处理条件下的相组成及组织演变进行研究,结果表明:在Tβ+20℃下进行加热保温0.5h,TCF、TACF、TACF1、TACFB和TACF2合金空冷和炉冷后组织由α相和β相组成;水淬后组织由p相和马氏体相组成,且在TCF和TACF合金的组织中还有ω相。TACF3合金在水淬和空冷后的组织内含有β相、ω相和马氏体相存在;合金在炉冷后的组织由α相和β相组成。在TACFB合金组织中有TiB相存在,TiB相可抑制晶粒长大。在相变点以上进行热处理后,合金晶粒随保温时间和加热温度增加而增大。在相变点以下进行热处理后,合金组织由β相和初生α相组成,随温度升高,组织内初生α相逐渐减少并转变成β相。合金在单相区固溶后再时效的组织除含有α相和β相外,还有TiFe2相;在两相区固溶后再时效与直接时效后的组织均由α相和β相组成。
     本文对合金元素含量、冷却方式、加热温度和加热时间等对合金力学性能的影响研究结果表明:不同冷却方式下,由于水淬后TCF和TACF合金中含有ω相,致使水淬后强度最高,但塑性最差;TACF1、TACFB、TACF2和TACF3合金空冷后强度最高,其中TACF3合金空冷后抗拉强度为1260MPa,水淬后弹性模量最低为73.0GPa。在相变点以上进行加热处理,热处理温度和加热时间对合金强度影响不大。
     在单相区固溶后再时效的组织内包含有TiFe2相,该相使塑性显著降低,甚至完全脆化。合金在两相区固溶后再时效后的强度和塑性与单相区固溶后再时效相比均有所提高,TACF2合金经860℃/1.0h/WQ+525℃/8.0h/AC热处理后抗拉强度和延伸率分别为1359MPa和4.5%,与单相区固溶后再时效相比分别提高了118MPa和4.0%,延伸率最高可提高19.0%。合金经过退火热处理后,随Cr和Fe元素含量增加,合金强度逐渐增加。随直接时效温度和时间增加,合金强度逐渐降低,TACF3合金在525℃/8.0h/AC时效后强度最高,抗拉强度为1415MPa,延伸率为7.0%。
     该系列合金(TACF1和TACFB)是对应变速率和变形温度比较敏感的合金。在不同温度下,随应变速率增加,合金真应力逐渐增大;在不同应变速率下,随形变温度升高,合金真应力逐渐降低。通过Arrhenius双曲正弦本构方程建立TACF1和TACFB合金本构方程,在同等条件下变形,TACF1合金需要激活能比TACFB合金要低,说明TACF1合金高温变形比TACFB合金要容易。在TACF1和TACFB合金变形量为0.7时的加工图中可知,在本实验条件下TACF1合金可加工区域为900℃和950℃下的各应变速率;TACFB合金不可加工区域为870~940℃、应变速为1.0s-1的区域,其余区域均为可加工区域。虽然TACF1合金比TACFB合金变形要容易,但是TACFB合金的加工性更好。随形变温度和应变速率增加,合金组织内岀现动态再结晶的趋势越来越明显,细小的动态再结晶晶粒位于变形晶粒的交叉点和晶界上,所发生的动态再结晶均为不完全动态再结晶。
In this paper, new type of low cost TiAlCrFe alloys were designed and melted by using bargain Cr-Fe alloy as master alloy. The costs of raw materials for these new alloys are three-quarters to eighty percent of TC4. Observation and analysis of the microstructure of alloys under different heat treatment conditions were done by employing OM, SEM, TEM, and XRD. The effects of cooling ways, heating temperature and holding time on mechanical properties of alloys were discussed. Thermal simulation experiments were carried out for some well-selected alloys to explore the processing technology during hot working. The main results are as follows:
     Cooling methods, heating temperature and holding time all have certain effect on the microstructure of alloys. The microstructure consists of a phase and β phase when TCF, TACF, TACF1, TACFB and TACF2alloys were heat treated at Tp+20℃and then cooled by air cooling or furnace cooling; β and a martensite when they were heat treated at Tp+20℃and then water quenched except that co also observed in TCF and TACF alloys,β phase,ω phase and a martensite were observed in TACF3alloy after air cooling or quenching in water while a phase and (3phase after furnace-cooled. TiB precipitated in TACFB alloy under different conditions and it could refine ingot microstructure of alloys. The grain size of alloys increased with increasing holding time and heating temperature when the alloys were heat treated above transus temperature and then air cooled. β phase and primary a were observed when the alloys heated below transus temperature, and primary a transformed to β gradually with temperature increasing.
     The amounts of alloying elements, cooling methods, heating temperature and holding time have certain effect on tensile properties of alloys. Because of ω phase, TCF and TACF alloys obtained the highest strength when they were water quenched; TACF1, TACFB, TACF2and TACF3alloys obtained the highest strength when they were air cooled, with the highest tensile strength is1260MPa of TACF3alloy. The strength of TACF, TACF2, TACFB and TACF3alloys changed a little with increasing holding time when they were heat treated above transus temperature. The strength of all of six alloys changed a little with increasing heating temperature. The strength of TACF2and TACF3alloys decreased gradually with increasing time and temperature during direct aging, and TACF3alloy directly aged at525℃for8hours obtained the highest strength; with tensile strength and elongation are1415MPa and7.0%respectively.
     Strain rates and deformation temperature have a significant influence on true stress-true strain curves for TACF1and TACFB alloys. At the initial stage of hot compression, true stress increased rapidly with increasing true strain, and then decreased after reaching the peak value, and finally reached a constant value. It was found that true stress increased with increasing true strain at different temperature, and decreased with increasing deformation temperature at different strain rates.Constitutive equations were established for TACF1and TACFB alloys based on Arrhenius constitutive equation. When deformed under the same condition, TACF1alloy required less activation energy than TACFB alloy. From the processing map of TACF1and TACFB alloys at the strain of0.7, it could be concluded that TACF1alloy can be processed at various strain rates from900℃to950℃, and TACFB alloy can be processed at every field except at strain rate of1.0s-1from870℃to940℃. The trend of dynamic recrystallization became more and more obviously with increasing deformation temperature and strain rates, and fine recrystallized grains deformed at the intersection of grains and grain boundary. In these experiments, the dynamic recrystallization was incomplete.
引文
[1]A.D.Hartman, S.J.Gerdemann, J.S.Hansen. Producing lower-cost titanium for automotive applications [J] Journal of the Minerals, Metals and Materials Society, 1998,50(9):16-19
    [2]冯颖芳.发展中的汽车用钛合金[J].钛工业进展,2002,3:9—11
    [3]张大军,张凤杰.钛合金在汽车轻量化中的应用[J].钛工业进展,2007,24(1):32—36
    [4]K.Faller, F.H.(Sam) Froes. The use of titanium in family automobiles:Current trends [J]. Journal of the Minerals, Metals and Materials Society,2001,53(4):27-28
    [5]吴引江,段庆文,周廉等.汽车用低成本钛合金及其制品的研究进展[J].新材料产业,2003,(2):11-15
    [6]杨遇春.钛材降低成本的途径[J].宇航材料工艺.2004.1:26—29
    [7]李珍,孙建科.低成本钛合金的开发与应用[J].稀有金属材料与工程,2008,37(增3):973—976
    [8]H. FuJii, K. Takahshi, Y.Yamashita. Application of Titanium and Its Alloys for Automobile Parts [J]. Nippon Steel Technical Report,2003(88):70-75
    [9]P.G. Esteban, E.M. Ruiz-Navas, L.Bolzon, et al. Low-cost titanium alloys? Iron may hold the answers [J]. Metal Powder Report,2008,63(4):24-27
    [10]S.R. Seagle. The state of the USA titanium industry in 1995 [J]. Materials Science and Engineering A,1996,(213):1-7
    [11]M. Ogawa. Research and development of low cost titanium alloys [J]. Journal of Japan Institute of Light Metals,2005,55(11):549-552
    [12]B.Gunawarman, M.Niinomi, T.Akahori, et al. Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications [J]. Materials Science and Engineering C,2005 (25):304-311
    [13]V.V. Balasubrahmanyam, Y.V.R.K. Prasad. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging [J]. Materials Science and Engineering A,2002(336):150-158
    [14]M.Ikeda, S.Komatsu, M.Ueda, et al. The Effect of Cooling Rate from Solution Treatment Temperature on Phase Constitution and Tensile Properties of Ti-4.3Fe-7.1Cr-3.0Al Alloy [J]. Materials Transactions,2005,46(7):1566-1570
    [15]B.Gunawarman, M.Niinomi, T.Akahoril, et al. Fatigue Characteristics of Low Cost β Titanium Alloys for Healthcare and Medical Applications[J]. Materials Transactions, 2005,46(7):1570-1577
    [16]赵永庆,李月璐,吴欢等.低成本钛合金研究[J].稀有金属,2004,28(1):66-69
    [17]赵永庆,魏建峰,高建军等.钛合金的应用和低成本制造技术[J].材料导报,2003,17(4):5—7
    [18]汤慧萍.汽车用粉末冶金TiFeMoAl合金的研究[D].湖南:中南大学粉末冶金研究院,2004:13
    [19]S.Tamirisakandala, R.B. Bhat, J.S.Tiley, et al. Grain refinement of east titanium alloy via trace boron addition[J]. Scripta Materiafia,2005,53:1421-1426
    [20]T.Seshacharyulu, B.Radhakrishna, S.Bhat, et al. Processing, Microstructure and Properties of β Titanium Alloys Modified with Boron [J]. Journal of Materials Engineering and Performance,2005,14:741-746
    [21]罗皓,陈志强.硼改性钛合金研究进展[J].材料开发与应用,2010,25(4):77—81
    [22]S.Roy, S.Suwas, S.Tamirisakandala,et al. Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B[J]. Acta Materialia,2011,59:5494-5510
    [23]V.Sinhaa, R.Srinivasanc, S.Tamirisakandalaa, et al. Superplastic behavior of Ti-6A1-4V-0.1 B alloy [J]. Materials Science and Engineering A,2012 (539):7-12
    [24]李邦盛,尚俊玲,郭景杰等.原位TiB/Ti复合材料的熔铸制备及其显微组织[J].材料研究学报,2005,19(4):375—381
    [25]韩明臣.硼改性钛合金的显微组织特征及仿真研究[J].稀有金属快报,2007,26(10):44-45
    [26]张虎,高文理,张二林等.硼含量对Ti-50Al-xB合金中TiB2(?)微观形貌的影响[J].材料工程,2001,(12):36-39
    [27]K.B.Panda, K.S.Ravi. Synthesis of Ductile Titanium-Titanium Boride(Ti-TiB) Composites with a Beta-Titanium Matrix:The Nature of TiB Formation and Composite Properties [J]. Metallurgical and materials transactions A,2003, 34(6):1371-1385
    [28]M.J.Bermingham, S.D. McDonald, K.Nogita. Effects of boron on microstructure in cast titanium alloys[J].Scripta Materialia,2008,59:538-541
    [29]P.Chandrasekar, Sriram, Santhosh, et al. Surface Modification of Titanium-Titanium Boride (Ti-TiB) Composite using Low Traverse Speed Laser Beam[J].Indian Society for Surface Science and Technology.2008, (1-2):57-64
    [30]毛小南,张鹏省,于兰兰等.BT22合金的成分设计和淬透性的关系研究[J].稀有金属快报,2006,25(6):21—26
    [31]钛及钛合金简介及如何用好钛http://www.bjtljs.cn/ShowNews.asp?id=35
    [32]张新平,于思荣,何镇明等.义齿钛合金成分的d-电子合金理论法设计[J].中国生物医学工程学报,2004,23(6):567-572
    [33]娄贯涛,孙建科,杨学东等.Al、Mo含量对铸造钛合金力学性能的影响[J].材料开发与应用,2003,18(4):32-36
    [34]牛文娟,邱贵宝,白晨光.高性能钛合金低成本制备方法综述[J].材料导报,2007,21(5A):335-337
    [35]张利军,田军强,常辉等.B-21S超高强钛合金性能实验研究[J].中国材料进展,2011,30(11):46—49
    [36]S.Birosca, J.Y.Buffiere, F.A. Garcia-Pastor.Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction[J].Acta materialia,2009,57(9):5834-5847
    [37]杨东,郭金明.钛合金的腐蚀机理及耐蚀钛合金的发展现状[J].钛工业进展,2011,28(2):4—7
    [38]K.Yoji, P.Stephen, C.Fox, et al. Alpha-beta Ti-Al-V-Mo-Fe alloy [P]. United States Patent,US6786985 B2,2004,9
    [39]徐丽娟,肖树龙,陈玉勇.Mo、Cr元素对牙科用钛合金显微组织和性能的影响[J].特种铸造及有色合金,2007,27(12):909-911
    [40]陈春和,高灵清.Mo对Ti-Al合金的组织和性能的影响[J].材料开发与应用,2000,15(3):5—7
    [41]闵新华,秦桂红,常红英等N、O、Fe的含量对TA15钛合金性能和组织的影响[A].第六届华东三省一市真空学术交流会论文集[C],上海,2009:219—222
    [42]王孟光,周洪强,姜建伟.Ti-1023合金铸锭的铁偏析[J].中国有色金属学报,2010,20(Special 1):784—787
    [43]赵永庆,刘军林,周廉.典型β钛合金元素Cu, Fe和Cr的偏析规律[J].稀有金属材料与工程,2005,34(4):53 1-537
    [44]孟祥炜,薛祥义,付宝全等Ti-10V-2Fe-3Al合金铸锭Fe元素宏观偏析行为[J].稀有金属材料与工程,2008,37(增3):123—125
    [45]常辉.Ti-B19合金固态相变动力学及其组织演变规律[D].西安:西北工业大学,2006:14
    [46]黄俊.新型亚稳态β钛合金Ti-5Al-5V-5Mo-3Cr-0.5Fe循环变形机理及疲劳断裂性能研究[D].合肥:合肥工业大学,2011:18—22
    [47]葛鹏,赵永庆周廉.一种新型高强度亚稳p钛合金Ti-B20[J].稀有金属材料与工程,2005,34(5):790-794
    [48]辛社伟,赵永庆,曾卫东.钒和铬对Ti40阻燃钛合金力学性能的影响机制[J].中国有色金属学报,2008,18(7):1216-1222
    [49]高娃,张存信.低成本钛合金制备技术及其军事应用[J].钛工业进展,2008,25(3):6-10
    [50]鲁春艳.汽车轻量化技术的发展现状及其实施途径[J].上海汽车,2007,(6):28-31
    [51]马鸣图,易红亮,路洪洲等.论汽车轻量化[J].中国工程科学,2009,11(9):20-27
    [52]应善强,张捷,王景晟等.汽车轻量化技术途径研究[J].汽车工艺与材料,2010,(2):1—3
    [53]高荣新,王柏龄,韦安杰.汽车轻量化的现状及展望[J].汽车工程师,2010,(2):20—23
    [54]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009,(11):11-16
    [55]廖君.汽车轻量化技术发展的探讨[J].机械,2009,36(1):4—7
    [56]王智文.汽车轻量化技术发展现状初探[J].汽车工艺与材料,2009,(2):10—15
    f57]孙景林,郭静.镁合金在汽车轻量化方面的应用[J].轻金属,2008,(7):58—61
    [58]罗鹰.铝、镁、钛合金材料在汽车发动机中的应用[J].上海汽车,2009,(3):42-45
    [59]Lu Hongzhou, Ma Mingtu, You Jianghai, et al. Dent Resistance for Automobile Body Panels [J]. Chinese Journal of Mechanical Engineering,2009,22(6):903-911
    [60]马鸣图,马露霞.铝合金在汽车轻量化中的应用及其前瞻技术[J].新材料产业2008,(9):43—50
    [61]李坤,宋西平.汽车用钛合金的研究现状[J].材料导报,2007,21(5A):338—341
    [62]A. Lenain, N.Clement, M.Veron, et al. Characterization of the a Phase Nucleation in a Two-Phase Metastable P Titanium Alloy [J]. Journal of Materials Engineering and Performance,2005,14(6):722-727
    [63]杨世杰,金勇,钱均等.钛在汽车上的应用与展望[J].汽车工艺与材料,2002,(8/9):44-46
    [64]肖永清.诠释现代车用钛合金的应用及前景[J].铝加工,2008,180:41-43
    [65]K.Yoji, P.Stephen. Properties and Processing of TIMETAL LCB[J]. Journal of Materials Engineering and Performance,2005, (14):792-798
    [66]宋西平.钛合金在汽车零件上的应用现状及研发趋势[J].钛工业进展,2007,24(5):9-13
    [67]A.M.Sherman, C.J.Sommer, F.H. Froes. The Use of Titanium in Production Automobiles:Potential and Challenges [J]. Journal of the Minerals, Metals and Materials Society,1997,49(5):38-41
    [68]常辉,汤慧萍,赵永庆等.汽车用低成本钛合金的发展与应用[A].中国有色金属工业协会.2003年钛金属与汽车工业技术研讨会论文集[C],北京:中国有色金属工业协会,2003:31-39
    [69]山下义人,高山勇,藤井秀树等.汽车零件适用钛的状况与今后涵待解决问题[A].2003年钛金属与汽车工业技术研讨会论文集[C],北京:中国有色金属工业协会,2003:45—49
    [70]吴怡芳,张小聪.家庭轿车用钛目前趋势[A].2003年钛金属与汽车工业技术研讨会论文集[C],北京:中国有色金属工业协会,2003:74—75
    [71]F.H. Froes, H. Friedrich, J. Kiese, et al. Titanium in the family automobile:The cost challenge[J]. Journal of the Minerals, Metals and Materials Society,2004,56(2):40-44
    [72]K.Marcin, L. Wagner, B. Yazgan-Kokuoz, et al. The High-Cycle-Fatigue Performance of Lightweight Titanium Automotive Suspensions[J].Journal of the Minerals, Metals and Materials Society,2005,51(11):66-68
    [73]W.M.Parris, H.W.Rosenberg, P.O. Box. Producing Ti-13V-11Cr-3Al Mill Product at TMCA. History Note II [A]. In:Beta Titanium Alloys in the 1980's[C]. Warrendale, Pennsylvania:A Publication of Metallurgical Society of AIME,1984:9-15
    [74]A.Salam, C.Hammond. Superplasticity and associated activation energy in Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. Journal of Materials Science,2005,40 (20):5475-5482
    [75]K.Yoji, K.Faller. Advance of Beta Titanium Alloy TIMETAL LCB in Automotive Spring Applications [J].Wire Journal Internation,2006,39(4):87-93
    [76]姜国焱.钛合金及钛合金弹簧[A].中国机械工程学会第十二届全国弹簧学术会、第十届全国弹簧失效分析讨论会暨第六届海峡两岸弹簧专业研讨会论文集[C],福建:中国机械工程学会,2008:130-135
    [77]S.R.Seagle, R.Bajoraitis, C.F.Pepka. Titanium Alloy Springs [J]. Materials and Design, 1989,10(4):215-216
    [78]曾立英,葛鹏.弹簧用高强钛合金的研究进展[J].钛工业进展,2009,26(5):5—9
    [79]E.Barel, G.B.Hamu, D.Eliezer, et al. The effect of heat treatment and HCF performance on hydrogen trapping mechanism in Timetal LCB alloy [J]. Journal of Alloys and Compounds,2009 (468):77-86
    [80]P.Pontieel. Timet titanium for Ferrari springs [J]. Automotive Engineering International,2004,112(7):83-85
    [81]K.Failer. Titanium suspension springs for production motorcycles-less costly alloy brings titanium's benefits to motocross rear suspension springs [J]. Springs,2006, 45(3):49-50
    [82]罗亿.钛金属在建筑上的应用[A].中国有色金属工业协会钛业分会2005年年会论文集[C],遵义:中国有色金属工业协会钛业分会,2005:58—63
    [83]赵娟,蒋冬青.新型金属材料在建筑领域的应用[J].陕西建筑,2005,119:29-33
    [84]杨红,陈纲伦.钛金属及其在建筑上的应用[J].工业建筑,2001,31(12):81—82
    [85]郭建军,何瑜.钛的新应用及展望[J].世界有色金属,2010,(1):66-69
    [86]郭瑞萍,孙葆森,高彬彬.兵器装备用钛合金的低成本制造技术[J].兵器材料科学与工程,2008,31(5):83-85
    [87]高娃,张存信.低成本钛合金制备技术及其军事应用[J].钛工业进展,2008,25(3):6—10
    [88]黄晓艳,刘波,李雪.钛合金在军事上的应用[J].轻金属.2005,(9):51—55
    [89]韩明臣.防弹性能优良的低成本钛合金[J].稀有金属快报,2006,25(7):40
    [90]赵永庆,魏建峰,高占军等.钛合金的应用和低成本制造技术[J].材料导报,2003,17(4):5—7
    [91]国家技术监督局.GB/T228—2002金属材料室温拉伸试验方法[S].北京:中国标准岀版社,2002
    [92]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业岀版社,2007:1
    [93]莫畏.钛[M].北京:冶金工业岀版社,2008:330—333
    [94]S.Tamirisakandala, R.B. Bhat, J.S. Tiley. et al. Grain refinement of cast titanium alloys via trace boron addition [J]. Scripta Materialia,2005,53:1421-1426
    [95]D.Hu. Effect of composition on grain refinement in TiAl-based alloys[J].Intermetallics, 2001,9(12):1037-1043
    [96]江治国,陈波,马颖澈等.添加硼对铸造Ti-46.5Al—8Nb合金组织和性能的影响[J].金属学报,2007,43(5):487-492
    [97]K.S.Ravi, K.B.Panda, S.S.Sahay. TiBw-Reinforced Ti Composites:Processing, Properties, Application Prospects and Research Needs [J]. Journal of the Minerals, Metals and Materials Society,2004,56(5):42-48
    [98]吴晓东,葛鹏,毛小南等.BT22钛合金相变点的测定[J].热加工艺,2009,38(2):124-125
    [99]中华人民共和国国家标准.钛合金β转变温度测定方法[S].GB/T 23605—2009
    [100]李玉涛,耿林,徐斌等.TC11钛合金相变点的测定与分析[J].稀有金属,2006,30(2):231-234
    [101]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(I)—-同素异构转变[J].钛工业进展,2007,24(5):23—28
    [102]胡宇鹏.具有低温马氏体转变的新型亚稳p钛合金的设计及组织性能研究[D].天津:河北工业大学,2008:35-38
    [103]M.Hiroaki, K.Kazuki, S.Kazuhisa, et al. Microstructure and Mechanical Properties of a'Martensite Type Ti Alloys Deformed under the α' Processing[J]. Materials Transactions,2009,50 (12):2744-2750
    [104]李士凯,惠松骁,叶文君等.冷却速度对TA15ELI合金组织与性能的影响[J].稀有金属材料与工程,2007,36(5):786-789
    [105]Y. Mantani, M. Tajima. Phase transformation of quenched α" martensite by aging in Ti-Nb alloys[J].Materials Science and Engineering A,2006,438-440:315-319
    [106]宋淼,马英杰,邬军等.冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响[J].中国有色金属学报,2010,20(Special 1):565-569
    [107]F.J. Gil, M.P.Ginebra, J.M.Manero, et al. Formation of α-Widmanstatten structure effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti6A14V alloy [J]. Journal of Alloys and Compounds,2001, 329 (1-2):142-152
    [108]S. Banerjee, P. Mukhopadhyay. Phase Transformations:Examples from Titanium and Zirconium Alloys [M]. UK:Elsevier Science Ltd,2007:48
    [109]崔玉友,李东,万晓景.Ti合金中ω相的形成规律[J].金属学报,1993,29(2):61-67
    [110]G. Shao, P. Tsakiroppulos. On the ω phase formation in Cr-Al and Ti-Al—Cr alloys [J]. Acta Mater,2000; 48 (14):3671-3685
    [111]常辉,周廉,张廷杰.钛合金固态相变的研究进展[J].稀有金属材料与工程,2007,36(9):1505—1510
    [112]K.C.Chen, S.M.Allen, J.D.Livingston. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys [J]. Materials Science and Engineering A,1998,242(1/2):162-173
    [113]冯亮,葛鹏,杨义等.Ti-10Cr合金析出相对硬度的影响[J].中国有色金属学报,2010,20(Special 1):1-5
    [114]刘智恩.材料科学基础[M].西安:西北工业大学出版社,2003:272-273
    [115]王国,惠松骁,叶文君等.Ti-3.0Al-3.7Cr-2.0Fe低成本钛合金的热压缩变形行为[J].中国有色金属学报,2012,22(8):2223—2229
    [116]罗皎,李淼泉,李宏等.TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报,2008,18(8):1395-1401
    [117]Huang L.J, Geng L, Li A.B, et al. Characteristics of hot compression behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure[J]. Materials Science and Engineering A,2009,505:136-143
    [118]赵映辉,葛鹏,赵永庆等.Ti-1300合金的热变形行为研究[J].稀有金属材料与工程.2009,38(1):46-49
    [119]Zeng Zhipeng, Zhang Yanshu, S.Jonsson. Deformation behaviour of commercially pure titanium during simple hot compression [J]. Materials and Design,2009,30: 3105-3111
    [120]宋维锡.金属学[M].北京:冶金工业岀版社,2008:215
    [121]V.V. Balasubrahmanyam, Y.V.R.K. Prasad. Deformation behavior of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging [J].Materials Science and Engineering A, 2002,(336):150-158
    [122]王克鲁,鲁世强,李鑫等.应变速率对TC11钛合金α+β相区变形行为的影响[J].材料热处理技术,2009,38(8):13-16
    [123]舒滢,曾卫东,周军等.BT20合金高温变形行为的研究[J].材料科学与工艺,2005,13(1):66-69
    [124]尤振平,王博,惠松骁等.Ti5Mo5V2Cr3Al合金热变形行为[J].中国有色金属学报,2010,20(suppl.1):822-825
    [125]郭爱红,余魏,张永强等.医用β-Ti3ONb13Zr0.5Fe合金的热变形行为[J].中国有色金属学报,2010,20(Special 1):357-364
    [126]曾卫东,周义刚,周军等.加工图到论研究进展[J].稀有金属材料与工程,2006,35(5):673—677
    [127]鲍如强,黄旭,曹春晓等.加工图在钛合金中的应用[J].材料导报.2004,18(7):26—29
    [128]Y.Prasad, T.Seshacharyulu. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A,1998,243(1-2):82-88
    [129]Chen Huiqin, Cao Chunxiao, Guo Ling, et al. Hot deformation mechanism and microstructure evolution of TC11 titanium alloy in β field[J].Transactions of Nonferrous Metals Society of China,2008,18(5):1021-1027
    [130]门菲.TC11钛合金热加工图及组织演变机理研究[D].沈阳:沈阳理工大学2008:18-20
    [131]欧阳德来,鲁世强,丘伟等.铸态TB6钛合金p热变形中的动态再结晶行为[J].稀有金属材料与工程,2012,41(3):477-481
    [132]Yadong Qu, Minmin Wang, Liming Lei, et al. Behavior and modeling of high temperature deformation of an α+β titanium alloy [J]. Materials Science and Engineer A, 2012,555:99-105
    [133]吴超,鲁师强,欧阳德来.应变速率对TA15钛合金p热变形动态再结晶组织的影响[J].塑性工程学报,2009,16(3):167—170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700