用户名: 密码: 验证码:
伴生银铅锌矿浮选药剂的设计、合成与浮选机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在对南京栖霞山伴生银铅锌矿工艺矿物学研究的基础上,运用密度泛函理论(DFT)计算、研究了银矿物及主要载银矿物的电子结构性质与可浮性的关系,基于量子化学计算和研究的结果设计了新型巯基苯并咪唑类捕收剂,选择合成了其中三种理论活性较高的捕收剂(EMBI、PMBI和BMBI);试验研究了合成药剂对方铅矿、闪锌矿、黄铁矿、辉银矿单矿物和人工混合矿物的浮选分离行为;借助紫外光谱分析了EMBI、PMBI和BMBI在溶液中对金属离子的选择性以及与银离子结合的化学计量比和络合常数;通过吸附量、红外光谱测试、分子动力学模拟和热力学分析探讨了合成药剂与矿物表面的作用机理。
     结果表明:方铅矿和闪锌矿为银的主要载体矿物,银矿物分布颗粒较细,增加磨矿细度有利于提高银回收率;主要载银矿物和银矿物氧化顺序由易到难为:方铅矿、辉银矿、淡红银矿、脆银矿、银黝铜矿、闪锌矿;与黄药作用由易到难的顺序为脆银矿、辉银矿、银黝铜矿、淡红银矿、闪锌矿和方铅矿;通过调节pH值,合成捕收剂可以有效地浮选分离方铅矿(或闪锌矿)-黄铁矿,捕收能力BMBI>PMBI>EMBI,对银离子具有较好的选择性,与银离子按照1:1的方式结合,结合常数按照EMBI、PMBI和BMBI依次增大;吸附量测试、红外光谱分析、分子动力学模拟计算表明,该类捕收剂通过-SH、-NH与矿物表面的金属离子形成四元螯合环吸附在矿物表面,相互作用能BMBI>PMBI>EMBI,实验结果与理论计算一致。论文研究结果为实现我国量大、难选含银铅锌矿的综合利用、特别是浮选药剂分子设计与合成提供了指导。
To realize comprehensive utilization of silver containing lead-zinc ore, deposit and occurrence statewas determined by the study of process mineralogy. The relationship between electronic structre and theflotability was explained by using DFT theory, some new mercaptobenzo flotation reagents were designed,and three of them (EMBI, PMBI and BMBI) which have higher theory collectivity were synthesized on thebasis of quantum calculation. The flotation behavior of new collectors on the single mineral (galena,sphalerite and pyrite) and artificial mixed mineral was tested by flotation and separation performance. Theselectivity of new collectors on metal ions as well as well as stoichiometric and binding constant with Ag+was determined by UV-Vis analysis. The adsorption mechanism of collectors on the mineral was explainedby adsorption capacity, FT-IR analysis and molecular dynamics simulation modeling.
     The results show that galena and sphalerite are the main carrier minerals of silver, the distribution ofsilver particles is finer, and increasing the grinding fineness is helpful to improve the recovery of silver.Oxidized order as follows: galena>argentite>proustite>stephanite>freibergite>sphalerite; andinteraction ability with xanthate from easy to hard follows the order ofstephanite>argentite>freibergite> proustite>sphalerite and galena. By adjusting the pH value,galena or sphlerite can be separated from pyrite effectively by using the synthetic collectors, the collectingability follows the order BMBI>PMBI>EMBI. All of them have good selectivity on Ag+and the bindingconstant following the same order as collecting ability. Adsorption test, FT-IR analysis and moleculardynamics simulation show that these collectors adsorbed on the minerals through–SH,-NH and with metalions forming chelate four member ring, and the interaction energy follows the order ofBMBI>PMBI>EMBI, the calculation results are identical with the experimental. All the results provide usgood guidance for designing collectors reasonablely.
引文
[1]李凤楼.关于铅锌多金属矿综合回收白银的几个技术问题[J].国外金属矿选矿,1991,7-8:77-80.
    [2] Moradi S, Monhemius A J. Mixed sulphide–oxide lead and zinc ores: Problems and solutions[J].Minerals Engineering,2011,24(10):1062-1076.
    [3] Gavin M M. An analysis of historic production trends in Australian base metal mining[J]. Ore GeologyReviews,2007,32(1-2):227-261.
    [4]高洪山,肖春泉.浅析提高有色金属伴生金银综合回收水平的几个重要途径[J].矿产保护与利用,1994,6:22-25.
    [5]蔡宁,孙长泉,孙成林.伴生金银综合回收[M].冶金工业出版社,1999.
    [6]王雅富.中国东南沿海金、银矿成因类型和成因[J].大冶科技,1991,(4):11-40.
    [7]孙长泉.硫化铜铅锌矿石伴生金银的综合回收[J].有色矿山,2001,30(2):29-33.
    [8]李艺,贾朝科.中国有色金属伴生银矿床中若干银矿物的初步研究[J].矿物学报,1999,19(4):426-434.
    [9]邱乐,黄美媛.某含银高铅银矿浮选工艺研究[J].有色金属,2003,(3):90-92.
    [10]张长泉.硫化铜铅锌矿石伴生金银的综合回收[J].有色矿山,2001,(2):29-33.
    [11]冷永进.铅锌矿伴生银回收现状及提高回收率的途径[J].湖南有色金属,1993,2(9):88-88.
    [12]王庚辰,魏德洲.甘肃花牛山铅锌硫化物矿石中伴生银的回收[J].中国矿业,2005,14(9):34-37.
    [13]杨磊,刘飞燕,刘厚明等.青海某铜铅锌矿床中伴生银的工艺矿物学研究[J].矿产综合利用,2009,2:22-25.
    [14]李艺,梁有彬.广东大尖山铅锌矿伴生银的赋存状态及其利用前景评价[J].广东有色金属地质,1992,(1):36-41.
    [15]王绍金.安徽某铅锌多金属矿床伴生金银赋存状态研究[J].甘肃冶金,2009,31(1):43-45.
    [16]邓文辉,赖国冶.永平铜矿提高伴生银回收率的研究[J].江西有色金属,1998,12(4):12-16.
    [17]任金菊.从含炭高硫多金属硫化矿中回收伴生银工艺研究[J].国外金属矿选矿,1996,(7):33-36.
    [18]魏盛甲.提高锡铁山铅锌矿伴生金银回收率的优化工艺研究[J].有色矿冶,2001,17(3):15-20.
    [19]陈滨,唐娴敏,唐庚年.焙烧-氰化工艺处理含金硫精矿提高银回收率的研究[J].贵金属,2010,31(2):1-5.
    [20]黄常英.从含锰氧化银矿中回收银[J].贵金属,1996,(4):26-29.
    [21]郑其,杨奉兰,高洪山.采用浮选-氰化工艺合理利用矿产资源[J].有色金属(选矿部分),1998,2:15-18.
    [22]王洪忠.多金属铜矿无尾排放工艺研究[J].金属矿山,2010,1:75-80.
    [23]李锐,鲁珊江.提高邹平铜矿伴生金银总回收率的探讨[J].矿业快报,2002,6:11-13.
    [24]袁明华,周全雄.氰化物体系中含银硫化铜矿生物浸出试验研究[J].有色矿冶,2010,6:23-25.
    [25]杜世勇.某金矿金银回收工艺改造实践[J].中国矿山工程,2010,39(3):32-35.
    [26] Allan G C, Woodcock J T. A review of the flotation of native gold and electrum[J]. MineralsEngineering,2001,14(9):931-961.
    [27]王庚辰.含银铅锌硫化矿石的浮选分离研究[D].东北大学,沈阳,2007.
    [28]武培勇,石先祥. BJ-306提高伴生银回收率的工业应用研究[J].有色金属选矿部分,2007,2:45-49.
    [29]李定芝.浅议凤凰山铜矿金银的回收[J].矿业研究与开发,1996,1:16-18.
    [30]李定芝.凤凰山铜矿伴生金银的回收[J].采矿技术,1996,18:11-14.
    [31]刘广义,钟宏,戴塔根等.用Mac-12提高的德兴铜矿铜金钼回收率的研究[J].金属矿山,2005,10:33-36.
    [32]邵广全.提高易门大红山铜矿石伴生金银回收率的研究[J].矿冶,2001,3:34-38.
    [33] Marabini A M, Ciriachi M, plescia P, et al. Chelatin greagents for flotation[J]. Minerals Engineering,2007,20(10):1014-1025.
    [34]张闿.浮选药剂的组合使用[M].冶金工业出版社,1994.
    [35] Zhu J G. Matallic ore Dressing Abroad[J]. Minerals Engineering,1996,3:46-49.
    [36]任金菊.从含炭高硫多金属硫化矿中回收伴生银工艺研究[J].国外金属矿选矿,1996,7:33-36.
    [37]邱廷省,李国栋,方夕辉.复杂多金属氧化矿中研究金银回收技术研究[J].金属矿山,2009,9:84-88.
    [38]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[M].国外金属矿选矿,1998,(4):8-11
    [39] Carta M.矿物表面能的结构对电选和浮选的影响[J],国外金属矿选矿,1975,(5-6):13-25.
    [40]史红云.化学成分和键价对矿物晶体结构形式的影响[J],地质科技情报,1992,12:41-45.
    [41]王进明.硫化铜矿物电子结构性质的第一性原理计算[M].南宁,广西大学,2010.
    [42]李正勤.晶体化学基本原理在浮选中的应用[J].湖南有色金属,1985,3:18-22.
    [43]崔林.矿物的晶体缺陷[J].国外金属选矿,1982,10:10-20.
    [44] Von Oertzen G U, Jones R T, Gerson A R. Electronic and optical properties of Fe, Zn and Pbsulfides[J]. Physics and chemistry of Minerals,2005,32(4):255-268.
    [45]肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算模拟(I)—晶格畸变与化学反应活性的关系[J].中国有色金属学报,2001,11(5):900-904.
    [46] Fuerstenau D W.硅酸盐矿物的结晶化学、表面特性及浮选行为[J].国外金属矿选矿,1978,9:28-45.
    [47] Edelbro R, Salldstrom A, Paul J. Full potential calculation on the electron band stmctures of sphalerite,pyrite and chalcopyrite[J]. Applied Surface Science,2003,206(1-4):300-3l3.
    [48]曹茂盛,蒋成禹,田永君.现代材料设计理论与方法[M].哈尔滨:哈尔滨工业大学出版社,2002:25-45.
    [49] Leeuw de N H, Purton J A, Parker S C, et al. Density functional theory calculations of adsorption ofwater at calcium oxide and calcium fluoride surfaces[J]. Surface Science,2000,452(1-3):9-l9.
    [50]陈建华,陈晔,曾小钦等.铁杂质对闪锌矿表面电子结构及活化影响的第一性原理研究[J].中国有色金属学报,2009,19(8):1517-1523.
    [51] Lee K D, Archibald J, McLean M A. Reuter Flotation of mixed copper oxide and sulfide minerals withxanthate and hydroxamate collectors[J]. Minerals Engineering,2009,22(4):395-401.
    [52] Semor G D, Guy P J, Bmckard W J. The selective flotation of enargitefrom other copper minerals-asingle mineral study inrelation to beneficiation of theTampakan deposit in the philipines[J].Intemational Joumal of Mineral Processing,2006,81(1):15-26.
    [53] Barkhordari H R, Jorjani E, Eslami A, et al. Occurrence mechanism of silicate and aluminosilicateminerals in Sarcheshmeh copper flotation concentrate[J]. International journal of minerals, metallurgyand materials.2009,16(5):494-499.
    [54]格列姆博茨基B A.浮选过程物理化学基础(郑飞等译)[M].北京:冶金工业出版社,1981:191.
    [55]王檑.晶格缺陷对方铅矿电子结构及浮选行为影响的第一性原理研究[M].南宁:广西大学,2010.
    [56]曾小钦.晶格缺陷对闪锌矿电子结构影响的第一性原理研究[M].南宁:广西大学,2009.
    [57] Richardon P E, Dell C S. Semiconducting characteristics of galena electrodes relationship to mineralflotation[J]. Journal of Electronchemical Society,1985,132(6):1350-1356.
    [58] Taggart A F. Handbook of Mineral Dressing. Ores and Industrial Minerals. John Wiley. New York,1945.
    [59] Pradip, Beena Rai. Molecular modeling and rational design of flotation reagents[J]. IntemationalJournal of Mineral Processing,2003,72(1-4):95-l10.
    [60] Marabini.用作捕收剂的螯合剂及其吸附机理[J].国外金属矿选矿,1993,4:46-52.
    [61]见百熙.浮选药剂的分子结构及其规律性.有色金属,1983,35(1):48-57.
    [62]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计.长沙:中南工业大学出版社,1996.
    [63]杨刚,杨高文,徐桦,侯文华.巯基苯并类浮选剂的浮选作用机理及其分子设计[J].化学学报,2004,2(62):153-159.
    [64] Hohenberg P C, Kohn W. Inhomogneneous Electron Gas. Physics Review B,1964,136:864-871.
    [65] Kohn W, Sham L J. Quantum Density Oscillations in an Inhomogneneous Electron Gas. PhysicsReview A,1965,137:1697-1705.
    [66] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. PhysicsReview,1965,140:1133-1140.
    [67]蒋玉仁.黄金浮选剂设计与合成及结构性能关系研究[D].长沙:中南工业大学,1994.
    [68]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1984,138-170.
    [69] Rez P, Bruley J, Brohan P. Review of methods for calculating near edge structure[J]. Ultramicroscopy,1995,59(1):159-167.
    [70] Tossell J A, Vaughan D J. Theoretical studies of xanthates, dixanthogen, metal xanthates and relatedcompounds[J]. Journal of colloid interface science,1993,155(1):98-107.
    [71] Yekeler H, Yekeler M. Reactivities of some thiol collectors and their interactions with Ag+ion bymolecular modeling[J]. Applied surface science,2004,236(1-4):435-443.
    [72] Edelbro R, Sandstrom A, Paul J. Full potential calculations on electron bandstructures of sphalerite,pyrite and chalcopyrite[J]. Applied surface science,2003,206(1-4):300-313.
    [73] Porento M, Hirva P. Theoretical study on the interaction of sulfhydryl surfactants with S covellite(001)surface[J]. Surface science,2004,555(1-3):75-82.
    [74] Porento M, Hirva P. The adsorption interaction of anionic silfhydryl collectors on different PbS(001)surface sites[J]. Surface Science,2003,539(1-3):137-144.
    [75] Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphaleritesurface[J]. Surface Science,2005,576(1-3):98-106.
    [76] Porento M, Hirva P. Theoretical studies on the intraction of anionic collectors with Cu+, Cu2+, Zn2+andPb2+ions[J]. Theoretical Chemistry accounts,2002,107(4):200-205.
    [77] Karvinen S, Hiva P, Pakkanen T A. Ab initio quantum chemical studies of cluster models for dopedanatase and Rutile TiO2[J]. Journal of molecular structure: Theochem,2003,626(1-3):271-277.
    [78]朱淮武.有机分子结构波谱解析[M].化学工业出版社,2005.
    [79]陈建华.电化学浮选能带理论及其在有机抑制剂研究中的应用[D].长沙:中南工业大学博士论文,1999.
    [80] Suoninen E, Laajalehto K. Structure of thio collector layers on sulfide surfaces.18th InternationalMineral Processing Congress(IMPC), Parkville Victoria, Australia,1993:625-629.
    [81] Hanson J S, Fuerstenau D W. The mechanism of xanthate adsorption on pyrite.18th InternationalMineral Proeessing Congress (IMPC), Parkville Vietoria, Australia,1993:57-661.
    [82] Buckley A N. A survey of the application of X-ray photoelectron Spectroscopy to flotation research[J].Colloids and Surface,1994,93:159-172.
    [83] Finkestein N P, Poling G W. The role of dithiolates in the flotation of Sulfide minerals[J]. MineralsScience Engineering,1977,9(4):177-197.
    [84] Fuerstenau M C, Miller J D. The role of the hydroc-Bond chain in anion flotation of calcite[J]. Trans.AIME.,1967,238(2):153-160.
    [85] Leppinen J O. FT-IR and flotation investigation of the adsorption of ethyl xanthate on activated andnon-activated sulfide minerals[J]. International Journal and Mineral Processing,1990,30:245-263.
    [86]张芹,胡岳华,徐兢等.脆硫锑铅矿与乙基黄药相互作用电化学浮选红外光谱研究[J].有色金属(选矿部分),2006,4:4-6.
    [87]张芹,胡岳华,顾帼华等.磁黄铁矿与乙黄药相互作用电化学浮选红外光谱的研究[J].矿冶工程,2004,24(5):42-44.
    [88] Bulut G, Atak S. Role of dixanthogen on Pyrite fiotation: solubility, adsorption studies and Eh, FTIRmeasurements[J]. Minerals&Mentallurrgieal Proeessing,2002,19(2):81-86.
    [89]余雪花.乙基黄药同黄铁矿作用行为的紫外光谱研究[J].有色金属(选矿部分),1994,5:29-33.
    [90]刘广义.硫化铜矿石的综合利用及新型捕收剂研究[D].长沙:中南大学,2004.
    [91]罗思岗,王福良.分子力学在研究浮选药剂与矿物表面作用中的应用[J].矿冶,2009,18(1):1-4.
    [92] Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force for molecular mechanicsand molecular dynamics simulations[J]. Journal of American Chemistry Society,1992,114:10024-10035.
    [93]曹斌,高金森,徐春明.分子模拟技术在石油相关领域的应用[J].化学进展,2004,16(2):291-298.
    [94]普拉蒂普.浮选药剂的分子模拟及合理设计[J].国外金属矿选矿,2004,10:28-34.
    [95]徐敬.用分子模拟方法研究羟基乙二叉膦酸(HEDP)在方解石表面的吸附行为[J].物理学报,2006,55:1107-1112.
    [96]王福良.铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D].东北大学,2008,沈阳.
    [97]魏明安.黄铜矿和方铅矿浮选分离的基础研究[D].东北大学,2008,沈阳.
    [98]李欣欣.单羧基三羟肟酸类化合物对铝硅矿物的浮选性能及理论分析[M].长沙:中南大学,2012.
    [99] Lindqvist O, Striclh K. In proceedings of16international mineral processing congress. McGraw Hill,New York,1988, p177.
    [100]200Xue G, Lu Y. Various adsorption states of2-mercaptobenzoimidazole on the surfaces of goldand silver studied by surface-enhances Raman scattering [J]. Langmuir,1994,10:967-972.
    [101] Woods R, Hope G A, Watling K. A SERS spectroelectrochemical investigation of the interactionof2-mercaptobenzothiazole with copper, silver and gold surfaces [J]. Journal of appliedelectrochemistry,2009,30:1209-1215.
    [102] Reza K S, Abdolhamid H, Mohsen K B. Comparative electrochemical study of self assembledmonolayers of2-mercaptobenzoxazole,2-mercaptobenzothiazole, and2-mercaptobenzimidazoleformed on polycrystalline gold electrode[J]. Electrochimica acta,2007,53:7051-7058.
    [103] Khullar I P, Agarwala U. Complexes of deprotonated2-mercaptobenzoxazole with Cu(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Pb(Ⅱ), Ag(Ⅱ), and Tl(Ⅱ)[J]. Canadian Journal of Chemistry,1975,53(8):1165-1171.
    [104] Carlo P, Giuseppe T. Transition metal complexes of deprotonated2-mercaptobenzoxazole studyof the thiol-thioketo form equilibrium[J]. Canadian Journal of Chemistry,1997,55:1409-1414.
    [105] Shukla B, Robert E B, Stanley E L. Metal Complexes of2-mercaptobenzothiazole[J]. TransitionMetal Chemistry,1982,7(1):5-10.
    [106] Maier G S, Dobias B.2-mercaptobenzothiazole and derivatives in the flotation of ga lena,chalcocite and sphalerite: A study of flotation, adsorption and microcalcorimetry[J]. MineralsEngineering,1997,10(12):1375-1395.
    [107] Maier G S, Qiu X, Dobias B. New collectors in the flotation of sulphide minerals: a study of theelectrokinetic, calorimetric and flotation properties of sphale rite, galena and chalcocite[J]. Colloidsand Surfaces A,1997,122(1/3):207-225.
    [108] Marabini A, Alesse V, Belardi G. A new reagent for the selective flotation ofCu-sulphides[C]//Proceedings ⅩⅤⅢ International Mineral Processing Congress. Parkville:Australasian Institute of Mining and Metallurgy,1993,3:561-566.
    [109] Marabini A, Alesse V, Barbaro M. New synthetic collectors for flotation of Zn and Pb oxidisedminerals[C]//ⅩⅤⅠ International Mineral Processing Congress. Amsterdam: Elsevier,1988:1197-1207.
    [110]刘广义,詹金华,钟宏,夏柳荫,王帅.溶液中巯基苯并噻唑、咪唑和恶唑反应性的理论研究[J].中国有色金属学报,2010,11(20):2248-2253.
    [111] Numata Y, Takahashi K, Liang R, Wakamatsu T. Adsorption of2-mercaptobenzothiazole ontopyrite[J]. International Journal of Mineral Processing,1998,53(1/2):75-86.
    [112] Donald Mkhonto P E, Ngoepe Timothy G, Cooper Nora H. de Leeuw. A computer modeling stufyof the interaction of organic adsorbates with fluorapatite surfaces[J]. Phsics chemistry minerals,2006,33:314341.
    [113]杨刚,龙翔云.巯基类浮选药剂电子结构及其与金属离子作用的量子化学研究[J].高等学校化学学报,2001,22(1):8690.
    [114] Yekeler M, Yekeler H. A density functional study on the efficiencies of2-mercaptobenzoxazoleand its derivatives as chelating agents in flotation processes[J]. Colloids and Surfaces A,2006,286(1/3):121125.
    [115] Yekeler M, Yekeler H. Predicting the efficiencies of2-mercaptobenzothiazole collectors used aschelating agents in flotation processes: a density-f unctional study[J]. Journal of Molecular Modeling,2006,12(6):763768.
    [116] Becke A D. Density-functional thermochemistry III[J]. Journal of Chemical Physics,1993,98(7):5648-5652.
    [117]王庚辰.含银铅锌硫化矿石的浮选分离研究[D].东北大学,2008.
    [118]李绥远,李艺,赖来仁.中国伴生银矿床银的工艺矿物学[M].地质出版社,1996,6-10.
    [119]李艺.伴生银矿床若干硫化物矿物中银的赋存状态[J].矿产综合利用,1997,4:12-15.
    [120]许志华.银工艺矿物学进展[J].广东有色金属学报,1996,6(1):7-13.
    [121]杨磊,刘飞燕,陈晓青,杨忠进.某氧化铅锌矿石工艺矿物学研究[J].矿产综合利用,2009,6:28-31.
    [122]鱼鹏涛,梁杰,陈颖,黄岩.贵州某低品位氧化铅锌矿物相分析[J].冶金分析,2010,30(12):14-21.
    [123]于蕾,李正要,马斌.某铅-锌-银矿银的工艺矿物学研究[J].现代矿业,2009,1(477):33-36.
    [124]王玲,汤集刚.四川省白玉县呷村银多金属矿工艺矿物学研究[J].矿业,2004,13(2):94-96.
    [125]王庚辰,魏德洲,张凯.锡铁山铅锌矿床银的工艺矿物学研究[J].矿物学报,2005,25(2):165-167.
    [126]陈新林.内蒙古某低品位铜铅锌矿石中金银回收工艺研究[J].金属矿山,2011,9(432):107-119.
    [127] Segall M D, Lindan P J, Probert M J, et al. First principles simulation:ideas, illustrations and theCASTEP code[J]. J Phys Cond Matt,2002,14(11):2717-2744.
    [128]谢希德,陆栋.固体能带理论.复旦大学出版社,2007,54-69.
    [129] Von Oertzen G U, Jones R T, Gerson A R. Electronic and optical properties of Fe, Zn and Pbsulfides[J]. J Electron Spectrum,2005,144-147(6):1245-1247.
    [130] Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions[J].Journal of Chemical Physicas,1955,23(12):2343-2346.
    [131] Mcmurdie H F, Morris M C, Evans E H, et al. Methods of producing standard X-ray diffractionpower patterns from the JCPDS reaearch associateship[J]. Power Diffraction,1986,4(1):334-345.
    [132] Kalbskoppf R. Strukturver feinerung des freibergites. T schemaks Mineralogische andPetrolographische Mitteilungen,1972,18:147-155.
    [133] Cava R J, Reidinger F, Wuensch B J. Single-crystal neutron diffraction study of the fast-ionconductor beta-Ag2S between186and325[J]. Journal of Solid State Chemistry,1980,31:69-80.
    [134] Harker D. The application of the three-dimensional patters on method and the crystal structures ofproustite, Ag3AsS3, and pyrargyrite, Ag3SbS3[J]. Journal of Chemical Physics,1936,4:381-390.
    [135] Ribar B, Nowacki W. Schweizerische Mineralogische und Petrographische Mitteilungen[J].Journal of Solid State Chemistry,1969,49:379-379.
    [136] Michael J S, Dewar S. A critique of frontier orbital theory[J]. Journal of Molecular Structure:Theochem,1989,20:301-323.
    [137]夏柳萌.双季铵盐性Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究[M].天津:天津大学,2009.
    [138]王淀佐.矿物浮选与浮选剂[M].长沙:中南工业大学出版社,1986,77-89.
    [139]陈远道.高效铝土矿浮选捕收剂的研究及应用[D].长沙:中南大学,2007.
    [140]王淀佐,龙翔云,孙水裕.硫化矿的氧化与浮选机理的量子化学研究.中国有色金属学报,1991,1(1):15-23.
    [141]汪凤珍,龙翔云,王淀佐.硫化矿物浮选剂电子结构与浮选性能相关的量子化学研究.有色金属,1992,44(1):35-40.
    [142] Takahashi K. In Proceedings of the18thInternational Mineral Processing Congress, Sydney,1993,3, p.735.
    [143] Marabini, A, Aesse V, Belardi G. In Proceedings of the18thInternational Mineral ProcessingCongress, Sydney,1993,3, p.561.
    [144]胡岳华,铝硅矿物溶液化学与铝土矿脱硅[M].北京:科技出版社,2004.
    [145] Maier G S, Qiu X, Dobias B. New collectors in the flotation of sulphide minerals: a study of theelectrokinetic, calorimetric and flotation properties of sphalerite, galena and chalcocite[J]. Colloids andSurfaces A,1997,122(1/3):207225.
    [146] Marabini A, Alesse V, Belardi G. A new reagent for the selective flotation ofCu-sulphides[C]//Proceedings ⅩⅤⅢ International Mineral Processing Congress. Parkville:Australasian Institute of Mining and Metallurgy,1993,3:561566.
    [147] Marabini A, Alesse V, Bararo M. New synthetic collectors for flotation of Zn and Pb oxidizedminerals[C]//ⅩⅤⅠ International Mineral Processing Congress. Amsterdam: Elsevier,1988:1197-1207.
    [148] Maier G S, Dobias B.2-mercaptobenzothiazole and derivatives in the flotation of galena,chalcocite and sphalerite: A study of flotation, adsorption and microcalcorimetry[J]. MineralsEngineering,1997,10(12):1375-1395.
    [149] Liu G Y, Zhong H, Dai T, Xia L. Investigation of the effect of N-substituents on performance ofthionocarbamates as selective collectors for copper sulfides by abinitio calculations[J]. MineralsEngineering,2008,21:10501054.
    [150] Bernar L, John H, Musser, et al.1,2,4-Triazolo [4,3-a]quinoxaline-1,4-diones as AntiallergicAgents[J]. Journal of Medical Chemistry,1985,28:363-366.
    [151] Irina P. Beletskaya, Alexey D. Averin. Palladium-catalyzed arylation of linear and cyclicpolyamines[J]. Pure and Applied Chemistry,2004,76(9):1605-1619.
    [152]毛郑州,汪朝阳,侯晓娜,宋秀美,罗玉芬.苯并咪唑类化合物的合成研究进展[J].有机化学,2008,28(3):542-547.
    [153]许志华.银工艺矿物学[M].北京:第三届全国金银选冶学术会论文集,1989,10:1-7.
    [154]傅贻谟.凡口铅锌矿选矿厂生产流程的工艺矿物学评价[J].矿冶,2002,11(4):32-38.
    [155]王庚辰,魏德洲.甘肃花牛山铅锌硫化物矿石中银的工艺矿物学研究[J].矿产保护与利用,2005,6:32-35.
    [156]胡耀国,李朝阳,廖震文等.贵州银厂坡银矿床银矿物特征及其赋存状态[J].矿物学报,2000,20(2):150-159.
    [157]胡耀国,李朝阳,温汉捷等.川滇黔接壤处铅锌银矿床中银矿物特征[J].矿物岩石地球化学通报,2000,9(4):318-320.
    [158]许时,刘金华,孟书青,刘永之.矿石可选性研究[M].冶金工业出版社,1987.
    [159]陈稼轩,田怡,向清祥等.罗丹明B衍生物的合成及其对Cu2+, Hg2+的识别研究[J].有机化学,2012,32:1930-1935.
    [160] Diao K S, Wang H J, Qiu Z M. A DFT study on the selective extraction of metallic ions by12-crown-4[J]. Journal of Solution Chemistry,2009,38:713-724.
    [161] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Gaussian, Inc., Pittsburgh, PA,2003.
    [162] Diao K S, Wang H J, Qiu Z M. A DFT study on the metal binding selectivity of12-crown-4and itsheterocyclic analogs[J]. Journal of Molecular Structure-Theochem,2009,901:157-162.
    [163]周贺鹏.四川会理铅矿伴生银综合回收工艺及机理研究[D].赣州:江西理工大学,2011.
    [164]周国华.提高锌浸出渣中银浮选回收率的工艺与理论研究[D].长沙:中南大学博士论文,2004.
    [165] Duarte A C P, Grano S R. Mechanism for the recovery of silicate gangue minerals in theflotation of ultrafine sphalerite[J]. Minerals engineering,2007,20(8):766-775.
    [166] El-Shall H. Mechanisms involved in activation and depression of zinc sulfide by zinc sulfate[J].Muslim Science,1981,10(4):512-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700