用户名: 密码: 验证码:
原位生成中间相沥青增密C/C复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/C复合材料是由炭纤维增强炭基体组成,由于具有高导热性,低热膨胀系数,优良的摩擦性能及在极端条件下良好的性能表现使其成为一种具有广阔用途的先进复合材料。
     中间相沥青具有高炭化收率,高密度和易石墨化等特点,是浸渍法增密C/C复合材料的优质炭基体前躯体。但是由于中间相沥青黏度很高会堵塞浸渍剂进入复合材料内部的通道,使材料内部的浸渍效果于低外部造成密度的不均一性。原位生成中间相沥青增密C/C复合材料是一种高效率,低成本的增密方法,可以有效解决致密化不均一的问题。原位增密的机理为:熔融的液态单体(纯多环芳烃如萘等)和催化剂渗入预制体的纤维束和孔洞中。当孔洞被完全填充后,原位热缩聚反应使单体转变为中间相沥青。经过随后的热缩聚和炭化处理,中间相沥青在预制体内转变为炭基体。
     本工作研究了分别使用AlCl_3和ZrCl_4为催化剂催化聚合蒽制备光学各向异性含量高的优质中间沥青。考察了催化剂种类,催化剂添加量,反应温度及保温时间对中间相沥青形成与转化行为的影响。同时考察了AlCl_3和ZrCl_4在中间相沥青形成,炭化和石墨化过程的化学状态和转化行为。在以上研究的基础上确定了原位生成中间相沥青增密C/C复合材料的最佳工艺条件,制备出掺杂不同催化剂的C/C复合材料。对催化剂的残留和转化对C/C复合材料性能的影响进行了研究和分析。
     在相同的反应条件下AlCl_3的催化活性优于ZrCl_4,而随着使用量的增加ZrCl_4的催化效果也会增加。使用AlCl_3为催化剂生成的中间相沥青具有更好的光学结构和更高的炭化收率。在一定的反应条件下,使用ZrCl_4为催化剂也可以制备出具有良好性能的中间性沥青。虽然使用ZrCl_4作为催化剂反应速度较使用AlCl_3慢,但是其反应体系内存在的大量的烷基侧链,环烷结构和小分子物质可以大大降低生成沥青的黏度。对比不同的反应温度发现在,350℃下可以得到性能更加优秀的中间相沥青。在经过炭化处理后,由于中间相沥青所含有的轻组分的挥发和逸出使微晶结构受到破坏,其结构参数会发生下降。
     AlCl_3在经过沥青热缩聚反应后转变为非晶态的Al(OH)_3,其原因可能是由于AlCl_3与反应原料中的少量水反应。在经过炭化处理后部分Al(OH)_3分解为Al_2O_3,但两者都为非晶态物质无法从XRD谱图中检测到。在以上过程中AlCl_3的转化使其在1000℃热处理后仍然可以保存在沥青中,但是进一步的石墨化处理使含Al物质完全消失。ZrCl_4在经过沥青热缩聚反应后转变为t-ZrO_2。在进一步炭化处理后t-ZrO_2晶体结构进一步完善并有部分t-ZrO_2转变为m-ZrO_2。在石墨化处理后,大部分ZrO_2与碳反应生成ZrC,部分则生成碳氧化锆(ZrCxOy)。由于在炭化和石墨化过程中ZrCl_4转变为相对稳定的ZrO_2,ZrC和碳氧化锆,使催化剂完整地保留在了沥青炭中。在石墨化过程中生成的ZrC能够促进石墨结构的生长。由于AlCl_3和ZrCl_4转变为氧化物与氢氧化物,Cl元素则以不稳定的Cl-状态吸附于催化剂的表面,随着热处理温度的升高Cl元素最终逸出。
     在350℃进行三次原位增密后,使用不同催化剂(AlCl_313wt.%,ZrCl_413wt.%,ZrCl_420wt.%)的低密度和高密度C/C复合材料的表观密度由初始编织体的0.625g/cm3和1.715g/cm3分别提升到1.289g/cm3,1.383g/cm3,1.373g/cm3和1.790g/cm3,1.810g/cm3,1.798g/cm3。使用AlCl_3为催化剂的增密效果较使用ZrCl_4低,这是由于AlCl_3的催化活性很高使体系粘度快速上升,从而大大降低了浸渍效率。经过三次原位增后,低密度C/C复合材料的抗弯强度由低于5MPa分别上升至74.1Ma,68.3MPa和55.0MPa。而高密度复合材料的抗弯强度则由101.5MPa上升至200.8MPa,234.5MPa和220.6MPa,虽然高密度C/C复合材料增密效果只有5%左右,但是强度增加量达到100%以上。低密度复合材料的力学性能随ZrCl_4使用量的提高而下降,这是由于在炭化处理过程中ZrO_2晶粒的长大及晶型转化破坏了炭基体的结构所致。由于高密度C/C复合材料中催化剂的含量很低,其力学性能在ZrCl_4含量的上升时保持不变。
     含Zr催化剂的残留会对炭基体微晶结构产生破坏,使材料的导电性能下降。在低温下C/C复合材料的抗氧化性能主要由其密度因素决定,具有更高密度的样品其内部缺陷更少,抗氧化性能也相应提高。虽然ZrO_2颗粒的存在会部分降低复合材料的力学性能,但是由于其可以与碳反应生成ZrC进而极大提高C/C复合材料的抗烧蚀性能,因此通过原位增密制备的ZrO_2和ZrC掺杂的C/C复合材料将拥有广阔的前景。
Carbon/carbon (C/C) composites, consisting of carbon matrix reinforcedwith carbon fibers, are advanced materials that have widespread applicationsattributed to their superior mechanical properties, high thermal conductivity,low thermal expansion, excellent friction properties and good performanceunder extreme conditions.
     Mesophase pitch, with high carbon yeild, high density and highgraphitizability, can be used as good precursor of carbon matrix in makingC/C composites. But due to its high viscosity, the mesophase pitch blocks theaccess channels to the inner part of the preform. The extent of mesophasepenetration decreases from the outer edge to the center of the composites,resulting in non-uniform filling. The in situ mesophase transformation indensification of C/C composites is a new, efficient, and low-cost process toaddress this issue. The mechanism of the process is that the mixture of moltenmonomer (pure aromatic hydrocarbons such as naphthalene) and catalyst easily penetrate fiber bundles and void space of the preform. When thepreform is completely filled, the in situ poly-condensation leads the monomerto mesophase pitches. After poly-condensation and carbonization, mostmesophase pitches retained in the preform are transformed into carbon matrix.
     In this work, mesophase pitches were prepared by the aid of AlCl_3andZrCl_4as catalyst. We investigated the effect of catalysts, temperature andholding time on the mesophase formation and transformation behavior. Thechemical state and transformation behavior of catalyst during carbonizationand graphitization were also investigated. On the basis of the above researchwe found the optimum conditions for in situ mesophase transformation indensification of C/C composites. The C/C composites doped with catalystswere prepared and characterized. The effect of retained catalyst andtransformation of catalyst on the properties of C/C composites were alsostudied in detail.
     Under the same conditions, the catalytic activity of AlCl_3was superior tothat of ZrCl_4, and with increasing the amount of ZrCl_4, the catalytic effect alsoincreased. AlCl_3could make the mesophase pitches have better opticalstructure and higher carbonization yield. In certain conditions, the mesophasepitches with good optical texture could also be prepared by useing ZrCl_4ascatalyst. Although the poly-condensation reaction rate of samples using ZrCl_4was much slower than that using AlCl_3, the large amount of small moleculesand alkyl groups in the pitches greatly decreased the viscosity of the pitches. After comparing different reaction temperatures, we found that mesophasepitches with best properties were obtained at350℃. The volatilization of lightcomponent in mesophase pitches easily destroyed the microcrystallinestructure of the samples during carbonization.
     After poly-condensation, AlCl_3was transformed into amorphous Al(OH)_3,this may be due to the reaction between AlCl_3and a small amount of waterwithin the raw materials. After carbonizing, a part of Al(OH)_3was transformedinto Al_2O_3, but both substances were amorphous, which can not be detectedfrom XRD patterns. In the above process, AlCl_3was transformed into othersubstance, so it was saved after heat treatment at1000℃. After graphitizationall the Al containing substance was completely removed. ZrCl_4wastransformed into t-ZrO_2druing poly-condensation, and the crystal structure oft-ZrO_2was improved and some of t-ZrO_2was transformed into m-ZrO_2aftercarbonization. During graphitization, a majority of ZrO_2was transformed intoZrC, others transformed to zirconium oxycarbide (ZrCxOy). Since ZrCl_4wastransformed into ZrO_2, ZrC and zirconium oxycarbide after carbonization andgraphitization, the Zr containing catalyst perfectly retained in the pitches. TheZrC generated during graphitization promoted the growth of graphite structure.While the AlCl_3and ZrCl_4were converted into the oxides and hydroxides, theCl element was transformed into unstable Cl-ions, which adsorbed at thesurface of catalyst. With increasing the temperature, the Cl elementseventually disappear.
     After three in situ desification at350℃using different catalysts (AlCl_313wt%, ZrCl_413wt%, ZrCl_420wt.%), the bulk density of low and high densityC/C composites increased from0.625g/cm3and1.715g/cm3to1.289g/cm3,1.383g/cm3,1.373g/cm3and1.790g/cm3,1.810g/cm3,1.798g/cm3, respectively.Due to the higher catalytic activity of AlCl_3, the high viscosity greatly reducedthe efficiency of the impregnation process, which made the densificationefficiency using AlCl_3was much lower than that using ZrCl_4. After three insitu densification, the flexural strength of low density composites rose fromlower than5MPa to74.1Ma,68.3MPa and55.0MPa, while the flexuralstrength of high density composites increased from101.5MPa to200.8MPa,234.5MPa and220.6MPa, respectively. Although the densification efficiencyof high density C/C composites was only about5%, the flexural strengthincreased more than100%. The mechanical properties of low densitycomposites decreased when increasing ZrCl_4content. This is because thegrowth of ZrO_2grain and phase transformation of ZrO_2during carbonizationdestroyed the carbon matrix structure, which decreased the mechanicalproperties of the composites. Attributed to the very low content of catalyst incomposites, the mechanical properties of high density composites did notchange when the content of ZrCl_4increased.
     Due to the retained Zr-containing catalysts brought damage to themicrocrystalline structure of the carbon matrix, the electrical conductivity ofthe composites decreased. The oxidation properties of the C/C composites at low temperatures were mainly determined by their density, the higher densityand fewer defects increased the oxidation resistance. Although the ZrO_2particles partly reduced the mechanical properties of the composite, it couldreact with carbon into ZrC, which would greatly reduce the ablation rates ofC/C composites. The ZrO_2and ZrC doped C/C composites fabricated throughin situ mesophase transformation will have broad applications.
引文
[1]石荣.碳/碳复合材料的工艺、组织和性能[J].材料导报,1998,12(3):65-59
    [2]李崇俊.新型二维炭/炭复合材料研究[D].西安交通大学,2001,西安
    [3] Fitzer E, Manocha L M. Carbon reinforcements and carbon/carbon composites[M]. Berlin:Christiane;1998
    [4] Fitzer E, Terwiesch B. Carbon-carbon composites unidirectionally reinforced with carbon andgraphite fibres[J]. Carbon,1972,10(4):383-390
    [5] Fitzer E, Burger A. Int. Conf. on Carbon Fibers, their Composites and Applications[R]. Theplastics Institute, London(1971), pp.36
    [6]任学佑,马福康.碳/碳复合材料的发展前景[J].材料导报,1996(2):72-75
    [7]付东升,张康助,孙福林,等.碳/碳复合材料的基体前驱体研究进展[J].化工新型材料,2003,31(6):19-21
    [8]武保华,刘春立,张涛,等.碳/碳复合材料超高温力学性能测试研究[J].宇航材料工艺,2001,6:67-71
    [9]李翠云,李辅安.碳/碳复合材料的应用研究进展[J].化工新型材料,2006,34(3):18-20
    [10] Tzeng S S, Lin W C. Mechanical behavior of two-demensional carbon/carbon composites withinterfacial carbon layers[J]. Carbon,1999,37:2011-2019
    [11]孙乐民,张永振,陈跃.沥青基碳/碳复合材料的弯曲破坏分析[J].航空制造技术,2003,6:47-55
    [12]刘皓,李克智,李贺军,等.热处理温度对中间相沥青基碳/碳复合材料力学性能的影响[J].材料工程,2007,1:15-18
    [13] Buckley J D, Edie D D. Carbon/carbon materials and composites[M]. Park Ridge, New Jersey:Noyes Publications,1993.1-17
    [14] Golecki I. Rapid vapor-phase densification of refractory composites[J]. Materials Science andEngineering,1997,20(2):37-124
    [15]赵建国,李克智,李贺军,等.碳/碳复合材料导热性能的研究[J].航空学报,2005,26(4):501-504
    [16]高燕,宋怀河,陈晓红. C/C复合材料的研究进展[J].材料导报,2002,16(7):44-47
    [17] Chen Z, Wu W P, Chen Z F, et al. Microstructural characterization on ZrC doped carbon/carboncomposites[J]. Ceramic International,2012,38(1):761-767
    [18] James R S, James E S. Ceramic coating for carbon-carbon composites[J]. Ceram Bull,1988,67(2):369-374
    [19] Mckee D W, Spiro C L, Lamby J E. The effects of boron additives on the oxidation behavior ofcarbon[J]. Carbon,1984,22(5):507-511
    [20] Ehrburge P, Baranne P, Lahaye J. Inhibition of oxidation of carbon/carbon composites by bornoxide[J]. Carbon,1986,24(4):495-499
    [21] Wang Y G, Liu Q M, Liu J L, et al. Depositionmechanism for chemical vapor deposition ofzirconium carbide coatings[J]. Journal of American Ceramic Society,2008,91(4):1249-1252
    [22] He H W, Zhou K C, Xiong X, et al. Investigation on decomposition mechanism of tantalumethylate precursorduring formation of TaC on C/C composite material[J]. Material Letters,2006,60(28):3409-3412
    [23] Chen Z K, Xiong X, Huang B Y, et al. Phase composition and morphology of TaC coating oncarbonfibers by chemical vapor infiltration[J]. Thin Solid Films,2008,516(23):8248-8254
    [24] Li G D, Xiong X, Huang B.Y, et al. Structuralcharacteristics and formation mechanisms ofcrack-freemultilayer TaC/SiC coatings on carbon–carbon composites[J]. Trans Nonferrous MetSoc China2008;18(2):255-261
    [25] Zhao D, Zhang C R, Hu H F, et al. Ablation behavior and mechanism of3D C/ZrC composite inoxyacetylenetorch environment[J]. Composites Science and Technology,2011,71:1392-1396
    [26] Tong Q F, Shi J L, Song Y Z, et al. Resistance to ablation of pitch-derived ZrC/C composites[J].Carbon,2004,42:2495-2500
    [27] Patterson M, He S, Fehrenbacher L, et al. Advanced HfC-TaC oxidation resistant compositerocket thruster[J]. Mater. Manuf. Processes,1996,11:376-369
    [28] Pierson H O, Handbook of Refractory Carbides and Nitrides[M], Noyes Publications,Westwood, NJ,1996
    [29] Storms E K, The Refractory Carbides[M], Academic Press, New York,1967
    [30] Marsh H, Warburton A P. Catalytic graphitization of carbon using titanium and zirconium[J].Carbon,1976(14):47-52
    [31] Qiu H P, Han L J, Liu L. Properties and microstructure of graphitisedZrC/C or SiC/Ccomposites[J]. Carbon,2005(43):1021-1025
    [32] Tong Q F, Shi J L, Song Y Z, et al. Resistance to ablation of pitch-derived ZrC/C composites[J].Carbon,2004(42):2495-2500
    [33] Shen X T, Li K Z, Li H J, et al. Microstructure and ablation properties of zirconium carbidedoped carbon/carbon composites[J]. Carbon,2010(48):344-351
    [34] Gao X Q, Guo Q G, Shi J L, et al. The fabrication of chopped carbon fiber-carbon compositesand their thermal/electrical conductivity and microstructure[J]. New Carbon Material,2005(20):18-22
    [35]朱良杰,廖东娟.炭/炭复合材料在美国导弹上的应用[J].宇航材料工艺,1993,4(12):10-13
    [36]罗瑞盈.碳/碳复合材料制备工艺及研究现状[J].器材料科学与工程,1998,21(1):64-70
    [37]丘哲明.固体火箭发动机材料与工艺[M].北京:宇航出版社,1995,338-342
    [38]左劲旅,张红波,熊翔,等.喉衬用炭/炭复合材料研究进展[J].炭素,2003(2):7-10
    [39] Isola C, Appendino P, Bosco F, et al. Protective Glass Coating for Carbon-CarbonComposites[J]. Carbon,1998,36(7-8):1213-1218
    [40] Choury J J. Carbon/Carbon materials for nozzles of solid propellant rocket motors[R]. AIAAJournal. P7626091
    [41]郭正,赵稼祥.碳/碳复合材料的研究与发展[J].宇航工艺,1995,5:1-7
    [42] Barton J M, Hamerton I, Jones J R, et al. Mechanical properties of tough, high temperaturecarbon fiber composites from novel functionalized aryl cyanate ester polymers[J]. Polymer,1996,37(20):4519-4528
    [43] Hsu S E, Wu H D, Wu T M, et al. Oxidation Protection for3D Carbon/Carbon Composites [J].Acta Astronautica,1995,35(1):35-44
    [44]李贺军,罗瑞盈,杨峥.碳/碳复合材料在航空领域的应用研究现状[J].材料工程,1997,(8):8-10
    [45] Yamamoto O, Sasamoto T, Iinagak M. Antioxidation of carbon/carbon composites by SiCconcent ration gradient and zircon overcoating[J]. Carbon,1995,33(4):359-365
    [46]黄凤萍,李缨.碳纤维及其复合材料的发展[J].陕西科技大学学报,1999,11(6):46-50
    [47] Fitzer E, Gkofkidis A. In petroleum Derived Carbons[R](Edited by J.D. Bacha, John W.Newman and J.L. White), pp.346-379, American Chemical Society Symposium Series No.303(1986)
    [48] Jortner J. Macroporosity and interface cracking in multi-directional Carbon-Carbons[J]. Carbon,1986,24(5):603-613
    [49]汤中华,邹志强. C/C复合材料致密化工艺新进展[J].粉末冶金材料科学与工程,1999,4(4):289-294
    [50]国外纤维增强复合材料[M].上海科学技术情报研究所,第三辑:25-125
    [51]李崇俊,马伯信,金志浩.化学气相沉积/渗透技术综述[J].固体火箭技术,1999,22(1):54-58
    [52] Huno J J, Jaiyuaung L. How is pyrolytic carbon formed? Transmission electron micrographswhich can explain the change of its density with deposition temperature [J]. Carbon,1984,22(3):317-319
    [53]石荣.热解碳基碳/碳复合材料的组织与力学性能研究[D].西安:西北工业大学.1997
    [54]艾艳玲,李铁虎.快速致密化制备C/C复合材料的新发展[J].材料导报,2005,19(7):90-96
    [55] Nazem F F. Flow of molten mesophase pitch[J]. Carbon,1982,20(4):345-354.
    [56] Lachter A, Trinquecoste M, Delhaes P. Fabrication of carbon/carbon composites by d.c. plasmaenhanced CVD of carbon[J]. Carbon,1985,23(1):111-116
    [57]贺福,王茂章,等. CF的制造、性质及其应用[M].北京:科学出版社,1984,467-468
    [58] Sudarshan T S,范玉殿等译.表面改性技术[M].北京:清华大学出版社,1992,175-176
    [59] Houdayer M, Spitz J, Tran V D. Process for the densification of a porous structure[P]. US.patent,4472454
    [60]嵇阿琳,马伯信,霍肖旭,等. CLVD法制备2D C/C复合材料[J].新型炭材料,2000,15(1):35-39
    [61]张教强,李贺军,李克智,等.液相气化快速致密化工艺研究[J].炭素技术,2001,(6):1-4
    [62]孙乐民,李贺军,宋克兴,等.沥青基碳/碳复合材料常压浸渍-碳化工艺及组织[J].机械科学与技术,2000,19(2):278-280
    [63]李贺军,曾燮榕,李克智.碳/碳复合材料研究应用现状及思考[J].炭素技术,2001,22(8):44-47
    [64]孙乐民,李贺军,闰国杰.碳/碳复合材料液相浸渍-碳化致密规律研究[J].航天工艺,1998,13(6):20-22
    [65]曹建华,丁学文,庄元其,等.芳基乙炔聚合物研究[J].材料导报,2001,15(8):64-66
    [66]布里亚А И.,契尔卡索娃Η Г.,王剑锋,等.醛树脂和沥青碳纤维为基础的碳素复合材料[J].新型碳材料,2002,17(3):15-19
    [67]赵根祥,邱海鹏,刘朗.聚糠醛基玻璃碳形成过程中结构变化的研究[J].碳素,1998,4:30-34
    [68]徐音,印杰.以萘为单体、三聚甲醛为交联剂的缩合多核芳香烃类树脂的合成、交联及性能的研究[J].高分子材料科学与工程,1997,3:27-31
    [69]印杰,徐音.以三氧六环为交联剂的COPNA树脂的合成与性能研究[J].高分子材料科学与工程,1996,3:23-28
    [70]王剑铎.碳素前驱体-COPNA树脂及其应用[J].新型碳材料,1992,(3):6-8
    [71] Yasuda E, Tanabe Y, et al. Orientation dependence of the mechanical properties of aunidirectional carbon/carbon composite with a resin-derived char matrix[J]. Hightemperature-High Pressure,1990,22:329-337
    [72]李崇俊,马伯信,霍肖旭,等.硼在碳/碳复合材料中的状态及其催化石墨化作用[J].材料工程,1998,12:3-7
    [73]许斌,薛改风.浸渍剂沥青[J].炭素,1998,4:38-42
    [74]闫修瑾,张元歧,李玉财,等.浸渍剂沥青的制备方法[J].炭素技术,2001,5:34-37
    [75]刘瑞周,许斌,薛改凤.原生喹啉不溶物QI结构性质的研究[J].炭素技术,1997,5:22-23
    [76]许斌,李铁虎.炭/炭复合材料用高性能浸渍剂沥青的研究[J].复合材料学报,2003,2:71-75
    [77] Compin S, Aim R B, Couderc P, et al. Methods for the characterization of impregnating pitches[J]. Fuel,1987,66:1552-1554
    [78]李铁虎,杨铮.用改性沥青制备C/C复合材料的研制[J].材料工程,1992,7:17-18
    [79]林起浪,李铁虎,谢钢,等.低温交联法制备碳材料用改性沥青[J].炭素技术,2001,4:1-4
    [80]刘占军,史景利,刘乃芝,等,共炭化制备高残碳浸渍沥青[J].炭素技术,2000,(5):1-3
    [81]闫国杰.高压浸渍-炭化制备碳/碳复合材料工艺及机理研究[D].西北工业大学硕士论文.1997
    [82]韩杰才,赫晓东,杜善义.碳/碳复合材料研究的现状与发展(一)[J].宇航材料工艺,1994.4:1-5
    [83]杨爱玉,王者辉.国外碳/碳复合材料致密化工艺的最新进展[J].宇航材料工艺,1997,4:20-23
    [84] Oh J S, Kim J I, et al. Effects of pressure on the pore formation of carbon/carbon compositesduring carbonization[J]. Journal of Materials science,1999,34:4585-4595
    [85] Gray G, Savage G M. Fabrication of carbon-carbon composites by using hot iostatic pressingtechnology and novel precursor materials[J]. Materials at High Temperatures,1991,9(2):
    [86] Matzinos P D, Patrick J W, Walker A. The efficiency and mechanism of densification of2-DC/C composites by coal-tar pitch impregnation[J]. Carbon,2000,38:1123-1128
    [87]宋永忠,史景利,宋进仁,等.影响浸渍效果因素的理论分析[A].第四届全国新型炭材料学术研讨会论文集[C].
    [88]李同起.碳质中间相结构的形成及其相关材料的应用研究[D].天津:天津大学化工学院,2005,6.
    [89] Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and applicationof aromatic-drived mesophase pitch[J]. Carbon,2000,38:305-328
    [90] Brooks J D, Taylor G H. The formation of graphitizing carbons from the liquid phase. Carbon,1965,3(2):185-193
    [91] Lewis I C. Thermotropic mesophase pitch. Carbon,1978,16(6):503
    [92] White J L, Buechler M. Pertoleum derived carbons[C], ACS symposium series, Vol.303,1986,p.62
    [93]史景利,刘朗,查庆芳.沥青流变性质的研究方法[J].炭素技术,1996,15(3):18-23
    [94]盛英,李克键,朱晓苏.中间相沥青的研究及利用[J].洁净煤技术,2008,14(6):32-35
    [95] Singer L S. The mesophase and high modulus carbon fibers from pitch[J]. Carbon,1978,16(6):409-415
    [96] Hamaguchi M, Suzuki T, Nishizawa T. Mesophase pitch for high-performance carbon fiber[J].KOBELCO Technology Rewivew,1990,7:39-42
    [97]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [98]马兆昆,史景利,刘朗,等,中间相沥青纤维制备高导热炭材料的研究[J].无机材料学报,2006,21(5):1167-1172
    [99]夏金童,周声励.沥青中间相粉末的活化与自烧结性能的研究[J].炭素技术,1996,2:1-4
    [100]周少荣,白世鸿,乔生儒,等,碳/碳复合材料基体用中间相沥青[J].材料工程,1997,2:10-12
    [101] Kanno K, Koike N, Korai Y, et al. Densification of carbons prepared from mesophase pitch andphenolic resin blend[J]. Carbon,1998,36(7-8):869-874
    [102]宋永忠,翟更太,史景利.中间相沥青制备高密度高强度炭/石墨材料[J].无机材料学报,2008,23(3):519-524
    [103] Ultramet advanced materials solutions[R]. USA Ultramet Foams Datasheet,1998
    [104]袁观明,李轩科,董志军,等.中间相沥青的应用研究进展[J].材料导报,2008,22(11):83-86
    [105]许斌,李铁虎.中间相沥青的调制对纳米级微孔超高表面积活性炭性能的影响[J].材料科学与工艺,2003,11(4):434-437
    [106] Mochida I, Ku C H, Yoon S H, et al. Anodic performance and mechanism ofmesophase-pitch-derived carbons in lithium ion batteries[J]. Journal of Power Sources,1998,75:214-222
    [107] Lee S J, Nishizawa M. Uchida L. Fabrication of mesophase pitch carbon thin film electrodesand the effect of heat treatment on electrochemical lithium insertion and extraction[J].Electrochimica Acta,1999,44:2379-2383
    [108]许斌,陈鹏.中间相碳微珠(MCMB)的开发、性质和应用[J].新型碳材料,1996,11(3):4-8
    [109] Wang Y G, Korai Y, Mochida I. Carbon disc of high density and strength prepared fromsynthetic pitch-derived mesocarbon microbeads[J]. Carbon,1999,37:1049-1057
    [110] Hagiwara S et al. Preprint of7th A nnual Meeting of Carbon Soc. Japan,1980,70
    [111] Ishii C, Kaneko K. Surface and physicial properties of microporous carbon spheres[J]. Progressin Organic Coatings,1997,31(1-2):147-152
    [112]李保华,吕永根,凌立成.中间相炭微球用作锂离子电池阳极的充放电性能研究[J].新型碳材料,1999,14(4):28-33
    [113] Marsh H, Martinez-Escandell M, Rodriguez-Rernoso F. Semicokes from pitch pyrolysis:mechanisms and kinetics[J]. Carbon,1999,37:363-390
    [114]王茂章.有机化合物的液相炭化化学[J].化学通报,1990,12:22-28
    [115] White J L, Sheaffer P M. Oxidation stabilization of the carbonaceous mesophase, ExtendedAbstracts and Program-Biennial Conference on Carbon,17thBiennial Conference onCarbon-Extended Abstracts and Program, Lexington, KY USA,1985,161-162
    [116] Li T Q, Wang C Y, An B X, et al. Preparation of graphitic carbon foam using size-restrictionmethod under atmospheric pressure[J]. Carbon,2005,43(9):2030-2032
    [117] Fathollahi B, Chau P C, White J L. Injection and stabilization of mesophase pitch in thefabrication of carbon-carbon composites: Part II. Stabilization process[J]. Carbon,2005,43:135-141
    [118]张德勤.石油沥青的生产与应用[M].北京:中国石化出版社2001,35
    [119] Mochida I, Shimizu K, Korai Y, et al. Structure and carbonization properties of pitches producedcatalytically from aromatic hydrocarbons with HF/BF3[J]. Carbon,1998,26(6):843-852
    [120] Taylor G H, Pennock G M, Fitz Gerald J D. Influence of QI on mesophase structure[J]. Carbon,1994,31(2):341-345
    [121]刘秀军,王成扬,李同起.酚醛树脂对均相成核的中间相碳微球生成的作用[J].炭素技术,2003,123(1):1-4
    [122] Figueiras A, Granda M, Casal E. Influence of primary on pitch pyrolysis with reference tounidirectional C/C composites[J]. Carbon,1998,36:883-891
    [123]李同起,王成扬.影响炭质中间相形成和发展的因素I-原料和热缩聚条件[J].炭素技术,2007,26(1):34-40
    [124] White J L, Price R J. The formation of mesophase microstructure during the pyrolysis ofselected coker feedstocks[J]. Carbon,1974,12:321-333
    [125] Moriyama R, Kumagai H, Hayashi J I. Formation of mesophase spheres from a coal tar pitchupon heating and subsequent cooling observed by and in situ H-NMR[J]. Carbon,2000,38:749-758
    [126] Santamaria-Ramirez R, Romero-Palaxon E, Gomez-De-Salazar C. Influence of pressurevariations on the formation and development of mesophase in a petroleum residue[J]. Carbon,1999,37:445-455
    [127] Garcia R, Crespo J L, Martin S C. Development of mesophase from a low-temperature coal tarpitch[J]. Energy&Fuels,2003,17:291-301
    [128] Rahimi P, Gentzis T, Fairbridge C. Interaction of clay additives with mesophase formed duringthermal treatment of solid-free Athabasca bitumen fraction[J]. Energy&Fuels,1999,13:817-825
    [129] Kanno K, Yoon K E, Fernandez J J. Effects of carbon black addition on the carbonization ofmesophase pitch[J]. Carbon,1994,32(5):801-807
    [130]李同起,王成扬,刘秀军.鳞片石墨对中间相炭微球织构的影响[J].新型炭材料,2002,17(4):1-6
    [131]李同起,王成扬,刘秀军.亚微米鳞片石墨存在下炭质中间相的形成机理研究[C].第六届全国新型炭材料学术研讨会论文集,昆明,2003.10,30-36
    [132] Mochida I, An K H, Sakanishi K, et al. Preparation of nitrogen-rich pitches fromdiazanaphthalenes using AlCl3[J]. Carbon,1996,34:601-608
    [133]田兴彩,冯伊利.硼的缺电子特性与硼化合物[J].青岛大学学报(自然科学版),1998,16(1):50-54
    [134] Hu R, Chung T C. Co-carbonization of9-chloroboranflurene and pitch, synthesis of B/Cmaterias[J]. Carbon,1997,35(8):1101-1109
    [135] Eichner T, Brau M, Huttinger K J. Element substituted polyaromatic mesophase: I.Boron-substitution with the pyridine-borane complex[J]. Carbon,1996,34(11):1367-1381
    [136] Kim Y, Lim Y S. Effects of borane-pyridine complex on the mesophase pitch formation fromdecant oil[J]. Carbon,2003,41(12):2369-2376
    [137] Carreira P, Matinez-Escandell M, Jimenez-Mateos J M. Chesistry of the co-pyrolysis of anaromatic petroleum residue with a pyridineborane complex[J]. Carbon,2003,41(3):549-561
    [138] Boudou J P, Begin D, Alain E. Effects of FeCl3(intercalated or not in graphite) on the pyrolysisof coal or coal tar pitch[J]. Fuel,1998,77(6):601-606
    [139] Bernhauer M, Braun M, Huettinger K J. Kinetics of mesophase formation in a stitted tandkreactor and properties of the products-V. Catalysisi of ferrocene[J]. Carbon,1994,32(6):1073-1085
    [140] Song H H, Chen X H, Chen X G, et al, I nfuence of ferrocene addition on the morphology andstructure of carbon from petroleum residue[J]. Carbon,2003,41(15):3037-3046
    [141]尚尔超,马军旗,张殿浩,等.一种中间相炭微球的制备方法[P].中国专利, CN1272453A.2000-11-08
    [142]李同起,王成扬,胡子君,等.影响炭质中间相形成和发展的因素-II.添加剂和外加场[J].炭素技术,2007,26(2):22-28
    [143] Mochida I, Kudo K, Fukuda N, et al. Carbonization of pitches-IV: Carbonization of polycyclicaromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135-139
    [144] Mochida I, Inoue S I, Maeda K, et al. Carbonization of aromatic hydrocarbons-VI:Carbonization of heterocyclic compounds catalyzed by aluminum chloride[J]. Carbon,1977,15(1):9-16
    [145] Mochida I, Otsuka K, Maeda K, et al. Catalytic carbonization of aromatic hydrocarbons-VII:Carbonization mechanism of heterocyclic nitrogen compounds catalyzed by aluminum chloride.Carbon,1978,16(6):1978,453-458
    [146] Chioujones K M, Ho W, Fathollahi B, et al. Microstructural analysis of in situ mesophasetransformation in the fabrication of carbon–carbon composites[J]. Carbon,2006,44(2):284-292
    [147] Wapner P G, Hoffman W P, Jones B. US Patent6,309,703B1;2001
    [148] Fathollahi B, Mauldin M, Chau P C, et al. Integrated mesophase injection and in situtransformation in fabrication of high-density carbon–carbon composites[J]. Carbon,2006,44(5):854-858
    [1] Fathollahi B, Chau P C, White J L. Injection and stabilization of mesophase pitch in thefabrication of carbon-carbon composites: Part II. Stablization process[J]. Carbon,2005;43:135-141
    [2] Fernandez A L, Granda M, Bermejo J, et al. Catalytic polymerization of anthracene oil withaluminium trichloride[J]. Carbon,1999;37:1247-1255
    [1] Mochida I, Kudo K, Fukuda N, et al. Carbonization of pitches-IV: Carbonization of polycyclicaromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135-139
    [2] Mochida I, Korai Y, Fujitsu H, et al. Modifying ability of Ql-free coal-tar pitch to developoptical anisotropy in co-carbonizations[J]. Fuel1981,60(5):405-412
    [3]宋怀河.优质中间相合成的反应设计及高性能沥青基炭纤维制备的研究[D].中国科学院山西煤炭化学研究所.1996.12
    [4] Fernadez A.L, Granda M, Bermejo J, et al. Catalytic polymerization of anthracene oil withaluminium trichloride[J]. Carbon,1999,37(8):1247-1255.
    [5] Torregrosa-Rodriguez P, Martinez-Escandell M, Rodriguez-Reinoso F, et al, Comez de SalazarE, Palazon E.R. Pyrolysis of petroleum residues II. Chemistry of pyrolysis[J]. Carbon,2000,38:525-546
    [6] Mochida I, Nakamura E, Maeda K. Carbonization of aromatic hydrocarbons-IV: reaction patchof carbonization catalyzed by alkali metals[J]. Carbon,1976,14:123-129
    [7] Saranchuck V I, Pashchencko L V, Shendrik T G, et al. In: Extended Abstracts, Carbon’96,Newcastel upton Tyne, UK: The British Carbon Group,1996, pp.435-436
    [8] Alvarez A G, Martinez-Escandell M, Molina-Sabio M, et al. Pyrolysis of petroleum residues:analysis of semicokes by X-ray diffraction[J]. Carbon,1999,37:1627-1632
    [9] Takagi H, Maruyama K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coalduring heat treatment[J]. Fuel,2004,83(17-18):2427-2433
    [10] Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and applicationaromatic-derived mesophase pitch[J], Carbon,2000,38:305-328
    [11] Marsh H, Martinez-Escandell M, Rodriguez-Rernoso F. Semicokes from pitch pyrolysis:mechanisms and kinetics[J]. Carbon,1999,37:363-390
    [12] Alvarez P, Sutil J, Santamaria R, et al. Mesophase from anthracene oil-based pitches[J]. Energy&Fuels,2008,22:4146-4150
    [13] Fanjul M, Granda M, Santamaria R, et al. Pyrolysis behavior of stabilized self-sinteringmesophase[J]. Carbon,2003,41:413-422
    [14] Criatadoro A, Kulkarni S U, Burgess W A, et al. Structural characertization of the oligomericconstituents of petroleum pitches[J]. Carbon,2009,47:2358-2370
    [15] Mochida I, Shimizu K, Korai Y, et al. Preparation of mesophase pitch from aromatichydrocarbons by the aid of HF/BF3[J]. Carbon,1990,28:311-319
    [16] Mochida I, Shimizu K, Korai Y, et al. Mesophase pitch catalytically prepared from antrracenewith HF/BF3[J]. Carbon,1992,30:55-61
    [1] Mochida I, Kudo K, Fukuda N, et al. Carbonization of pitches-IV: Carbonization of polycyclicaromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135-139.
    [2] Mochida I, Shimizu K, Korai Y. Structure and carbonization properties of pitches producedcatalytically from aromatic hydrocarbons with HF/BF3[J]. Carbon,1988,26(6):843-852.
    [3] Fernadez A L, Granda M, Bermejo J, et al. Catalytic polymerization of anthracene oil withaluminium trichloride[J]. Carbon,1999,37(8):1247-1255.
    [4] Rey Boero J F, Wargon J A. Study of the AlCl3catalytic activity on aromatic hydrocarbons-I:Low temperature range[J]. Carbon,1981,19(5):333-340.
    [5] Rey Boero J F, Wargon J A. Study of the AlCl3catalytic activity on aromatic hydrocarbons-II:Mesophase formation[J]. Carbon,1981,19(5):341-346.
    [6] Shukla S, Seal S. Thermodynamic tetragonal phase in sol-gel derived naodomains of purezirconia[J]. Journal of Physical Chemistry B,2004,108:3395-3399.
    [7] Wang H, Li G S, Xue Y F, et al. Hydrated surface structure and its impacts on the stabilizationof t-ZrO2[J]. Journal of Solid State Chemistry.2007,180:2790-2797.
    [8] Chen Z, Wu W P, Chen Z F, et al. Microstructural characterization on ZrC doped carbon/carboncomposites[J]. Ceramics International.2012,38(1):761-767
    [9] Criscione J M, Mercuri P A, Schram A W, et al. High temperature protective coating forgraphite. Air Force Materials Lab, Wright Patterson AFB, OH,1964.
    [10] Nam Y S, Cui X M, Jeong L, et al. Fabrication and characterization of zirconium carbide (ZrC)nanofibers with thermal storage property[J]. Thin Solid Films.2009,517(24):6531-6538
    [11] Crist V. Handbook of monochromatic XPS spectra (Elements and Native Oxides)[M], XPSInternational LLC, CA, USA,2004.
    [12] Diaz B, Harkonen E, Swiatowska J, et al. Low-temperature atomic layer deposition of Al2O3thin coatings for corrosion protection of steel: Surface and electrochemical analysis[J].Corrosion Science.2011,53:2168-2175.
    [13] Kloprogge J T, duong L V, Wood B J, et al. XPS study of the major minerals in bauxite:Gibbsite, bayerite and (pseudo-)boehmite[J]. Journal of Colloid and Interface Science,2006,296(2):572-576.
    [14] Mochida I, Nakamura E, Maeda K, et al.Carbonization of aromatic hydrocarbons-VI: Reactionpath of carbonization catalyzed by alkali metals[J]. Carbon,1976,14:123-129.
    [15] Garbassi F, Cila L, Proto A. XPS study of metallocence based catalysts for the polymerization ofethylene[J]. Journal of Molecular Catalysis A: Chemical1995,101:199-209.
    [16] Steiner S A, Baumann T F, Bayer B C, et al. Nanoscale zirconia as a non-metallic catalyst forgraphitization of carbon and growth of single-and multiwall carbon nanotubes[J]. J. Am. Chem.Soc.2009,113:12144-12154
    [17] Barr T L. An ESCA study of the termination of the passivation of elemental metals[J]. Journal ofPhysicial Chemistry,1978,82:1801-1810
    [18] Morant C, Sanz J M, Galan L, et al. An XPS study of the interaction of oxygen withzirconium[J]. Surface Science,1989,218:331-345
    [19] Barnier P, Thevenot F. Synthesis and hot-pressing of single-phase ZrCxOyand two-phaseZrCxOy-ZrO2materials[J]. Journal of High Technology Ceramic,1986,2:291-307
    [20] Gendre M, Maitre A. Trolliard G. Synthesisi of zirconium oxycarbide (ZrCxOy) powders:Influence of stoichiometry on densification kinetics during spark plasma sintering and onmechanical properties[J]. Journal of the European Ceramic Society,2011,31:2377-2385
    [21] Guo F W, Javed A, Shapiro I P, et al. Effect of HCl concentration on the sintering behaviour of8mol%Y2O3stabilized ZrO2deposits produced by electrophoretic deposition (EPD)[J]. Journalof the European Ceramic Society,2012,32(1):211-218
    [22] Chen Z, Wu W P, Chen Z F, et al, Microstructural characterization on ZrC doped carbon/carboncomposites[J]. Ceramics International.2012,38(1):761-767
    [1] Chioujones K M, Ho W, Fathollahi B, et al. Microstructural analysis of in situ mesophasetransformation in the fabrication of carbon–carbon composites[J]. Carbon,2006,44(2):284-292
    [2] Wapner P G, Hoffman W P, Jones B. US Patent6,309,703B1;2001.
    [3] Fathollahi B, Mauldin M, Chau P C, et al. Integrated mesophase injection and in situtransformation in fabrication of high-density carbon–carbon composites[J]. Carbon,2006,44(5):854-858
    [4] Marsh H, Martinez-Escandell M, Rodriguez-Rernoso F. Semicokes from pitch pyrolysis:mechanisms and kinetics[J]. Carbon,1999,37:363-390
    [5] Rodriguez-Reinoso F, Santana P, Palazon Romero E, et al. Delayed coking: Industrial andlaboratory aspects[J]. Carbon,1998,36(1-2):105-116
    [6] Tzeng S S, Lin W C. Mechanical behavior of two-demensional carbon/carbon composites withinterfacial carbon layers[J]. Carbon,1999,37:2011-2019
    [7] Chen T F, Liao J Q, Liu G S, et al. Effects of needle-punched felt structure on the mechanicalproperties of carbon/carbon composites[J]. Carbon,2003,41:993-999
    [8] Manocha L M, Bahl O P, Singh Y K. Mechanical behavior of carbon-carbon composites madewith surface treated carbon fibers[J]. Carbon,1989,27(3):381-387
    [9] Wang H, Li G S, Xue Y F, et al. Hydrated surface structure and its impacts on the stabilizationof t-ZrO2[J]. Journal of Solid State Chemistry,2007,180:2790-2797
    [10] Liu Z J, Guo Q G, Song J R, et al. Effect of Ti dopant on shrinkage and performance ofMCMB-derived carbon laminations[J]. Carbon,2007,45(1):146-151
    [11] Fan Z G, Liu L, Li J G, et al. The preparation of fine-grain doped graphite and its properties[J].Journal of Nuclear Materials.2002,305(1):77-82.
    [12] Li S H. Carbon and graphite materials[M]. Beijing: Metallurigic Industry press;1983.pp.40-42
    [13] Grand M, Casal E, Bermejo J, et al. The influence of primary QI on the oxidation behavior ofpitch-based C/C composites[J]. Carbon,2001,39:483-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700