用户名: 密码: 验证码:
闭孔泡沫铝及其夹芯结构的高温力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫金属材料具有优异的力学、热学、电磁学和声学性能,广泛应用于航空航天、海洋船舶、汽车工程等领域。然而,若从构件的强度、吸能和维护等方面综合考虑,单纯的泡沫金属无法作为结构构件,通常要与传统的致密金属组成复合结构才能实现最佳力学性能,多数情况下是作为夹芯结构的芯层材料。目前,对泡沫金属及其夹芯结构的力学性能的研究主要集中在常温条件下,而对其高温力学性能的研究还比较匮乏。泡沫金属具有作为空间飞行器中轻质承载吸能结构构件的潜在应用背景和越来越广泛的应用需求。因此,深入研究泡沫金属及其夹芯结构在高温下的力学性能以及热力耦合效应变得十分迫切。
     本文以实验研究为主,结合理论分析和数值计算系统研究了在不同温度环境下闭孔泡沫铝及其夹芯结构的力学行为。研究内容主要包括四个方面:(一)不同温度下闭孔泡沫铝材料的静动态力学性能、冲击行为和塑性压入力学行为;(二)不同温度下泡沫铝夹芯梁结构的压入和三点弯曲行为;(三)不同温度下泡沫铝夹芯板结构的压入和侵彻力学行为;(四)基于多层复合结构的夹芯板的多功能设计。主要讨论了不同温度条件下泡沫铝及其夹芯结构的变形/失效模式、承载和能量吸收性能,取得的主要成果如下:
     采用MTS材料测试系统和SHPB实验装置,实验研究了闭孔泡沫铝材料在不同温度下的准静态和动态力学性能,得到了闭孔泡沫铝材料力学性能随温度的变化关系。考虑闭孔泡沫铝在牺牲覆盖层中的工程应用,对梯度温度场中闭孔泡沫铝杆受刚性质量块撞击时泡沫铝材料中的冲击波传播建立了冲击波模型,并利用有限元模拟对理论模型进行了验证。探讨了梯度温度场中泡沫铝杆临界长度、临界冲击速度以及冲击载荷等与温度场分布的关系,并得到了给定长度的泡沫铝杆临界冲击速度与杆两端面温差的关系的解析解,为闭孔泡沫铝在牺牲覆盖层等缓冲吸能结构中的工程应用设计提供了理论指导。
     采用MTS材料测试系统,实验研究了闭孔泡沫铝材料在不同温度下不同形状压头作用时的塑性压入力学行为。对比分析了不同温度时泡沫铝的压入变形特征和变形机制,得到了泡沫铝的塑性压垮强度和能量吸收对温度的依赖关系,给出了既包含温度影响也包含压入深度影响的撕裂能的经验公式。采用量纲分析和有限元模拟方法,进一步分析了与泡沫铝球头压入响应有关的物理量,得到了闭孔泡沫铝在球头压入时的压入载荷与温度、泡沫铝相对密度以及压入深度的函数关系。
     采用MTS材料测试系统,实验研究了泡沫铝夹芯梁在不同温度下的准静态压入和三点弯曲变形/失效行为和承载吸能性能,探讨了一些主要参数对夹芯梁结构响应的影响,如压头半径、面板厚度、芯层厚度和相对密度等。将夹芯梁结构的失效模式图扩展到高温情况下,分析了泡沫铝夹芯梁的初始失效模式图随温度的变化趋势,为进一步预测夹芯梁的低速冲击行为奠定了基础,并为夹芯梁的优化设计和工程应用提供了理论参考。
     通过MTS准静态实验,研究了复合材料面板闭孔泡沫铝芯层夹芯板结构的压入和侵彻力学性能,考察了一些关键参数,如面板厚度、芯层厚度和相对密度以及压头形状等,对夹芯板结构的承载和吸能性能产生的影响,同时探讨了边界约束条件对夹芯板的载荷-位移响应的影响。结合落锤低速冲击实验,比较了夹芯板结构的准静态和低速冲击力学性能之间的差异。通过夹芯板在不同温度下的准静态和低速冲击实验和压入实验,研究了温度对泡沫铝夹芯板结构的变形/失效模式、承载和能量吸收性能的影响,探讨了泡沫铝夹芯板结构在高温下的动态力学性能和静态力学性能之间差异。
     从泡沫金属夹芯结构的承载、吸能与隔热等多功能综合考虑出发,通过添加高效轻质的隔热层氧化铝纤维板发展了多种可能的多层复合结构拓扑构型,并通过隔热性能和承载吸能性能的比较进行了初步优选。然后通过准静态压入实验研究了传统夹芯板和优选的多层夹芯板结构在不同温度下的压入力学性能,得到了两种夹芯板结构的失效位移、压实位移、初始峰值载荷、压入平台载荷、能量吸收和比质量能量吸收等性能随温度的变化关系。
Metallic foams, as ultra-light materials, exhibit many unique characteristics in mechanical, thermal, electromagnetic, and acoustic properties and have been widely used in many areas, such as aerospace industry, marine shipping industry and automotive engineering. However, by considering an overall analysis of resistance, energy absorption and maintenance in real applications, the bare metallic foams would not be used but some kind of composite structures along with compact metals are desired. In most cases, metallic foams serve as the cores of sandwich structures. To date, researches on the mechanical behavior of metallic foams and their sandwich structures are limited mainly at room temperature. However, the mechanical properties of metallic foams and metallic foam cored sandwich structures at high temperatures have been much less documented. The large potential and demands of metallic foams to be used in applications of lightweight bearing carrier in aircrafts and spacecrafts is the main reason and motivation to investigate their high temperature mechanical properties and their thermo-mechanical coupling effects urgently.
     It was aimed in the present thesis to study the mechanical properties and energy absorptions of aluminum foams and aluminum foam cored sandwich panels at different temperatures. This was done mainly by carrying out experiments, together with theoretical analysis and numerical simulations. Four different case studies, to determine the high temperature performance of aluminum foams and aluminum foam cored sandwich structures were conducted, which are (1) Quasi-static and dynamic properties, impact behavior and plastic indentation behavior of closed-cell aluminum foams at different temperatures,(2) Indentation and three-point bending behavior of aluminum foam cored sandwich beams at different temperatures,(3) Indentation and perforation behaviors of sandwich panels at different temperatures, and (4) Multi-function design of aluminum foam cored hybrid sandwich panels with interlayer. The main achievements are as follows.
     The quasi-static and dynamic properties of closed-cell aluminum foams at different temperatures were studied experimentally, and the dependent relationship of aluminum foams to temperatures was obtained. Recent interest in metallic foams for the sacrificial cladding applications has generated the need for the studies of graded metallic foams. Thus, the propagation of compaction wave in closed-cell aluminum foams with a temperature gradient under high velocity impact was investigated. An analytical solution was proposed and numerical simulations were carried out to verify the proposed theoretical model of foam compaction. The relations of critical length, critical impact velocity and impact force of the aluminum foam rod with temperature gradient to the temperature distribution and the relation of critical impact velocity of an aluminum foam rod with a given length to the temperature contrast at its two ends were evaluated to guide the application designs.
     Deep indentation response of closed-cell aluminum foam under different temperatures was experimentally investigated by using a flat-ended punch and a hemispherical-ended punch. The indentation deformation behavior and mechanism of aluminum foams at different temperatures were compared and analyzed, and the dependent relationships of the plastic collapse strength, energy absorption to temperatures were obtained. An empirical formula incorporating indentation depth effect and temperature effect was presented for tear energy. Based on dimensional analysis and finite element simulations, several scaling relationships in the indentation of metallic foams with a spherical indenter were obtained and the dependence of the spherical indentation force of closed-cell aluminum foam on temperature, relative density of foam and dimensionless indentation depth were examined.
     The deformation/failure behavior, load carrying capacity and energy absorption capability of aluminum foam cored sandwich beams under quasi-static indentation and three-point bending at different temperatures were investigated experimentally. The effects of several parameters on the structural responses of sandwich beams were examined, such as the diameter of the punch, face sheet thickness, core thickness and relative density. Failure mode maps of sandwich beams at elevated temperatures were achieved and the change trends of failure modes with the temperature were analyzed. This study provides the foundation for predicting the low velocity impact responses of sandwich beams and can be regarded as the theoretical basis of optimization design and engineering application of sandwich beams.
     Indentation and perforation response of sandwich panels with composite face sheets and aluminum foam core were investigated experimentally. Effects of some key parameters on the overall energy absorption behavior of the panels were explored, such as impact energy, face sheets and core thickness, core density and indenter nose shape. The dependency of the load-displacement responses of sandwich panels on boundary conditions was also discussed and drop hammer tests were carried out to compare the quasi-static and low velocity impact responses. The effects of temperature on the deformation/failure modes, load carrying capacity and energy absorption capability of sandwich panels are studied through carrying out quasi-static and low velocity impact perforation and indentation experiments under different temperatures.
     Based on an overall analysis of load carrying, energy absorption and thermal insulation of metallic foam cored sandwich structures, a new hybrid sandwich structure has been developed by inserting lightweight, efficient thermal insulating interlayers between the face sheet and the foam core. Optimum selection was made by studying and comparing the thermal insulation performance, load carrying capacity and energy absorption capability of different designs of the sandwich panels. The structural responses of the traditional sandwich panel and a hybrid sandwich panel under different temperatures were studied experimentally.
引文
[1]崔尔杰,姜宗林,孟庆国,近空间飞行器中的重大力学问题专题,力学进展,39(2009)656-657.
    [2]崔尔杰,近空间飞行器研究发展现状及关键技术问题,力学进展,39(2009)658-673.
    [3]G. Lu, T.X. Yu, Energy Absorption of Structures and Materials, Woodhead Publishing, Cambridge, 2003.
    [4]J. Banhart, D. Weaire, On the Road Again:Metal Foams Find Favor, Physics Today,55 (2002) 37-42.
    [5]L.J. Gibson, M.F. Ashby, Cellular Solids:Structure and Properties, Cambridge University Press, New York,1997.
    [6]M.F. Ashby, T. Evans, N. Fleck, e. al., Metal foams: a design guide, Elsevier Science,2000.
    [7]H.P. Degischer, B. Kriszt, Handbook of cellular metals: production, processing, applications, Wiley-VCH,2002.
    [8]www.metalfoam.net.
    [9]L.J. Gibson, Mechanical behavior of metallic foams, Annual Review of Materials Science,30 (2000)
    191-227.
    [10]W. Hou, Mechanical properties and energy absorption of aluminium foam and sandwich panels in: Doctorate Dissertation, Swinburne University of Technology, Melbourne,2011.
    [11]E. Andrews, W. Sanders, L.J. Gibson, Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering: A,270 (1999) 113-124.
    [12]M.I. Idris, T. Vodenitcharova, M. Hoffman, Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression, Materials Science and Engineering:A,517 (2009) 37-45.
    [13]C. Motz, R. Pippan, Deformation behaviour of closed-cell aluminium foams in tension, Acta Materialia,49 (2001) 2463-2470.
    [14]Y. Mu, G. Yao, L. Liang, H. Luo, G Zu, Deformation mechanisms of closed-cell aluminum foam in compression, Scripta Materialia,63 (2010) 629-632.
    [15]M. Saadatfar, M. Mukherjee, M. Madadi, e. al., Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression, Acta Materialia,60 (2012) 3604-3615.
    [16]H. Yu, Z. Guo, B. Li, G Yao, H. Luo, Y. Liu, Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties, Materials Science and Engineering:A, 454-455 (2007) 542-546.
    [17]A. Paul, U. Ramamurty, Strain rate sensitivity of a closed-cell aluminum foam, Materials Science and Engineering: A,281 (2000) 1-7.
    [18]V.S. Deshpande, N.A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, International Journal of Impact Engineering,24 (2000) 277-298.
    [19]D. Ruan, G. Lu, F.L. Chen, E. Siores, Compressive behaviour of aluminium foams at low and medium strain rates, Composite Structures,57 (2002) 331-336.
    [20]胡时胜,王悟,潘艺,周璟,李英华,泡沫材料的应变率效应,爆炸与冲击,23(2003)13-18.
    [21]R. Montanini, Measurement of strain rate sensitivity of aluminium foams for energy dissipation, International Journal of Mechanical Sciences,47 (2005) 26-42.
    [22]T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, K. Higashi, Compressive response of a closed-cell aluminum foam at high strain rate, Scripta Materialia,54 (2006) 533-537.
    [23]J. Shen, G. Lu, D. Ruan, Compressive behaviour of closed-cell aluminium foams at high strain rates, Composites Part B: Engineering,41 (2010) 678-685.
    [24]Z. Wang, J. Shen, G. Lu, L. Zhao, Compressive behavior of closed-cell aluminum alloy foams at medium strain rates, Materials Science and Engineering: A,528 (2011) 2326-2330.
    [25]J.L. Yu, J.R. Li, S.S. Hu, Strain-rate effect and micro-structural optimization of cellular metals, Mechanics of Materials,38 (2006) 160-170.
    [26]YD. Liu, J.L. Yu, Z.J. Zheng, J.R. Li, A numerical study on the rate sensitivity of cellular metals, International Journal of Solids and Structures,46 (2009) 3988-3998.
    [27]刘耀东,多孔金属材料率效应的数值分析与动态压缩行为的理论研究,in:博士学位论文,中国科学技术大学,合肥,2010.
    [28]G. Gioux, T.M. McCormack, L.J. Gibson, Failure of aluminum foams under multiaxial loads, International Journal of Mechanical Sciences,42 (2000) 1097-1117.
    [29]V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids,48 (2000) 1253-1283.
    [30]A.G. Hanssen, O.S. Hopperstad, M. Langseth, H. Ilstad, Validation of constitutive models-116- applicable to aluminium foams, International Journal of Mechanical Sciences,44 (2002) 359-406.
    [31]P.S. Liu, Mechanical behaviors of porous metals under biaxial tensile loads, Materials Science and Engineering: A,422 (2006) 176-183.
    [32]D. Ruan, G. Lu, L.S. Ong, B. Wang, Triaxial compression of aluminium foams, Composites Science and Technology,67 (2007) 1218-1234.
    [33]Z. Zhou, Z. Wang, L. Zhao, X. Shu, Uniaxial and biaxial failure behaviors of aluminium alloy foams, Composites Part B:Engineering, (2013).
    [34]王二恒,虞吉林,王飞,孙亮,泡沫铝材料准静态本构关系的理论和实验研究,力学学报,36(2004)673-679.
    [35]J.L. Yu, E.H. Wang, J.R. Li, An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression, in: J.H. Fan, H.B. Chen (Eds.) Advances in Heterogeneous Material Mechanics 2008, DEStech Publications,2008, pp.879-882.
    [36]J.L. Yu, E.H. Wang, L.W. Guo, A theoretical and experimental study on the constitutive model of aluminium foams, in: Materials Science Forum,2010, pp.1878-1883.
    [37]D. Tabor, The Hardness of Metals, Clarendon Press, Oxford,1951.
    [38]Y.T. Cheng, C.M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening, Journal of Applied Physics,84 (1998) 1284-1291.
    [39]Y.T. Cheng, C.M. Cheng, Scaling relationships in conical indentation of elastic-perfectly plastic solids, International Journal of Solids and Structures,36 (1999) 1231-1243.
    [40]J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Materialia,51 (2003) 1663-1678.
    [41]柳畅,陈常青,沈亚鹏,泡沫金属压痕试验的数值模拟及其反演,力学学报,38(2006)176-184.
    [42]W. Yan, C.L. Pun, Spherical indentation of metallic foams, Materials Science and Engineering:A, 527(2010)3166-3175.
    [43]P.S. Kumar, S. Ramachandra, U. Ramamurty, Effect of displacement-rate on the indentation behavior of an aluminum foam, Materials Science and Engineering:A,347 (2003) 330-337.
    [44]O.B. Olurin, N.A. Fleck, M.F. Ashby, Indentation resistance of an aluminium foam, Scripta Materialia,43 (2000) 983-989.
    [45]S. Ramachandra, P.S. Kumar, U. Ramamurty, Impact energy absorption in an Al foam at low velocities, Scripta Materialia,49 (2003) 741-745.
    [46]U. Ramamurty, M.C. Kumaran, Mechanical property extraction through conical indentation of a closed-cell aluminum foam, Acta Materialia,52 (2004) 181-189.
    [47]Q.M. Li, R.N. Maharaj, S.R. Reid, Penetration resistance of aluminium foam, Int. J. Veh. Des.,37 (2005) 175-184.
    [48]G. Lu, J. Shen, W. Hou, D. Ruan, L.S. Ong, Dynamic indentation and penetration of aluminium foams, International Journal of Mechanical Sciences,50 (2008) 932-943.
    [49]P.R. Onck, E.W. Andrews, L.J. Gibson, Size effects in ductile cellular solids, part I: modeling, International Journal of Mechanical Sciences,43 (2001) 681-699.
    [50]E.W. Andrews, G. Gioux, P. Onck, L.J. Gibson, Size effects in ductile cellular solids, part Ⅱ: experimental results, International Journal of Mechanical Sciences,43 (2001) 701-713.
    [51]C. Chen, N.A. Fleck, Size effects in the constrained deformation of metallic foams, Journal of the Mechanics and Physics of Solids,50 (2002) 955-977.
    [52]PR. Onck, Scale Effects in Cellular Metals, MRS Bulletin,28 (2003) 279-283.
    [53]C. Tekoglu, L.J. Gibson, T. Pardoen, P.R. Onck, Size effects in foams:experiments and modeling, Progress in Materials Science,56 (2011) 109-138.
    [54]E.W. Andrews, J.S. Huang, L.J. Gibson, Creep behavior of a closed-cell aluminum foam, Acta Materialia,47 (1999) 2927-2935.
    [55]A.C.F. Cocks, M.F. Ashby, Creep-buckling of cellular solids, Acta Materialia,48 (2000) 3395-3400.
    [56]M. Haag, A. Wanner, H. Clemens, e. al., Creep of aluminum-based closed-cell foams, Metall and Mat Trans A,34 (2003) 2809-2817.
    [57]I. Nieves, F. Arceo, T.G. Nieh, J.C. Earthman, Tensile behavior of open-cellular A1 foams at ambient and intermediate temperatures, in: Z. Jin, A. Beaudoin, T.A. Bieler, B. Radhakrishman (Eds.), 2003.
    [58]M. Hakamada, T. Nomura, Y. Yamada, Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam, Materials Transactions,46 (2005) 1677-1680.
    [59]M.S. Aly, Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results, Materials Letters,61 (2007) 3138-3141.
    [60]C.M. Cady, G.T. Gray Iii, C. Liu, e. al., Compressive properties of a closed-cell aluminum foam as-118- a function of strain rate and temperature, Materials Science and Engineering: A,525 (2009) 1-6.
    [61]郭刘伟,泡沫铝夹芯双管结构的力学行为研究,in:博士学位论文,中国科学技术大学,合肥,2010.
    [62]H.G. Allen, Analysis and design of structural sandwich panels, Pergamon Press, Oxford,1969.
    [63]D. Zenkert, An Introduction to Sandwich Construction, Engineering Materials Advisory Services Limited, Sheffiled, UK,1995.
    [64]J.M. Davies, Lightweight Sandwich Construction, John Wiley & Sons,2001.
    [65]H.W. Seeliger, Manufacture of Aluminum Foam Sandwich (AFS) Components, Advanced Engineering Materials,4 (2002) 753-758.
    [66]H.W. Seeliger, Aluminium Foam Sandwich (AFS) Ready for Market Introduction, Advanced Engineering Materials,6 (2004) 448-451.
    [67]D. Schwingel, H.-W. Seeliger, C. Vecchionacci, D. Alwes, J. Dittrich, Aluminium foam sandwich structures for space applications, Acta Astronautica,61 (2007) 326-330.
    [68]S. Guruprasad, A. Mukherjee, Layered sacrificial claddings under blast loading Part Ⅰ-analytical studies, International Journal of Impact Engineering,24 (2000) 957-973.
    [69]S. Guruprasad, A. Mukherjee, Layered sacrificial claddings under blast loading Part Ⅱ experimental studies, International Journal of Impact Engineering,24 (2000) 975-984.
    [70]D. Zenkert, A. Shipsha, K. Persson, Static indentation and unloading response of sandwich beams, Composites Part B:Engineering,35 (2004) 511-522.
    [71]V.I. Rizov, Non-linear indentation behavior of foam core sandwich composite materials—A 2D approach, Computational Materials Science,35 (2006) 107-115.
    [72]M. Sadighi, H. Pouriayevali, Quasi-Static and Low-Velocity Impact Response of Fully Backed or Simply Supported Sandwich Beams, Journal of Sandwich Structures and Materials,10 (2008) 499-524.
    [73]V. Rizov, Failure behavior of composite sandwich structures under local loading, Arch Appl Mech, 79(2009)205-212.
    [74]M. Sadighi, M. Saadati, Non-Linear Indentation Law for Lightweight Sandwich Beam, Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,224 (2010) 1163-1176.
    [75]谢中友,夹芯结构局部压入及弯曲塑性响应的理论研究,in:博士学位论文,中国科学技术大学,合肥,2012.
    [76]Z.Y. Xie, J.L. Yu, Z.J. Zheng, A plastic indentation model for sandwich beams with metallic foam cores, Acta Mech Sin,27 (2011) 963-966.
    [77]Z.Y. Xie, Z.J. Zheng, J.L. Yu, Localized indentation of sandwich beam with metallic foam core, Journal of Sandwich Structures and Materials,14 (2011) 197-210.
    [78]A.M. Harte, N.A. Fleck, M.F. Ashby, Sandwich Panel Design Using Aluminum Alloy Foam, Advanced Engineering Materials,2 (2000) 219-222.
    [79]T.M. McCormack, R. Miller, O. Kesler, L.J. Gibson, Failure of sandwich beams with metallic foam cores, International Journal of Solids and Structures,38 (2001) 4901-4920.
    [80]H. Bart-Smith, J.W. Hutchinson, A.G Evans, Measurement and analysis of the structural performance of cellular metal sandwich construction, International Journal of Mechanical Sciences,43 (2001) 1945-1963.
    [81]C. Chen, A.M. Harte, N.A. Fleck, The plastic collapse of sandwich beams with a metallic foam core, International Journal of Mechanical Sciences,43 (2001) 1483-1506.
    [82]C.A. Steeves, N.A. Fleck, Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design, International Journal of Mechanical Sciences,46 (2004) 561-583.
    [83]C.A. Steeves, N.A. Fleck, Collapse mechansms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part Ⅱ:experimental investigation and numerical modelling, International Journal of Mechanical Sciences,46 (2004) 585-608.
    [84]J.L. Yu, E.H. Wang, J.R. Li, Z.J. Zheng, Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending, International Journal of Impact Engineering,35 (2008) 885-894.
    [85]王二恒,泡沫铝和泡沫铝夹芯梁冲击力学行为研究,in:博士学位论文,中国科学技术大学,合肥,2005.
    [86]J.L. Yu, X. Wang, Z.G Wei, E.H. Wang, Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core, International Journal of Impact Engineering,28 (2003)331-347.
    [87]V. Crupi, R. Montanini, Aluminium foam sandwiches collapse modes under static and dynamic three-point bending, International Journal of Impact Engineering,34 (2007) 509-521.
    [88]L. Jing, Z. Wang, J. Ning, L. Zhao, The dynamic response of sandwich beams with open-cell metal-120- foam cores, Composites Part B:Engineering,42 (2011) 1-10.
    [89]Z. Wang, L. Jing, J. Ning, L. Zhao, The structural response of clamped sandwich beams subjected to impact loading, Composite Structures,93 (2011) 1300-1308.
    [90]Z.H. Tan, H.H. Luo, W.G. Long, X. Han, Dynamic response of clamped sandwich beam with aluminium alloy foam core subjected to impact loading, Composites Part B:Engineering,46 (2013) 39-45.
    [91]N.A. Fleck, V.S. Deshpande, The Resistance of Clamped Sandwich Beams to Shock Loading, Journal of Applied Mechanics,71 (2004) 386-401.
    [92]M.T. Tilbrook, V.S. Deshpande, N.A. Fleck, The impulsive response of sandwich beams: Analytical and numerical investigation of regimes of behaviour, Journal of the Mechanics and Physics of Solids,54 (2006) 2242-2280.
    [93]Q.H. Qin, T.J. Wang, S.Z. Zhao, Large deflections of metallic sandwich and monolithic beams under locally impulsive loading, International Journal of Mechanical Sciences,51 (2009) 752-773.
    [94]Q.H. Qin, T.J. Wang, A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading, European Journal of Mechanics-A/Solids,28 (2009) 1014-1025.
    [95]Q.H. Qin, T.J. Wang, An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch, Composite Structures,88 (2009) 509-518.
    [96]Q.H. Qin, T.J. Wang, Low-velocity heavy-mass impact response of slender metal foam core sandwich beam, Composite Structures,93 (2011) 1526-1537.
    [97]Q.H. Qin, T.J. Wang, Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect, Composite Structures,96 (2013) 346-356.
    [98]Z.J. Wang, Q.H. Qin, J.X. Zhang, T.J. Wang, Low-velocity impact response of geometrically asymmetric slender sandwich beams with metal foam core, Composite Structures,98 (2013) 1-14.
    [99]E.W. Andrews, N.A. Moussa, Failure mode maps for composite sandwich panels subjected to air blast loading, International Journal of Impact Engineering,36 (2009) 418-425.
    [100]O. Kesler, L.J. Gibson, Size effects in metallic foam core sandwich beams, Materials Science and Engineering: A,326 (2002) 228-234.
    [101]GM. Dai, W.H. Zhang, Size effects of basic cell in static analysis of sandwich beams, International Journal of Solids and Structures,45 (2008) 2512-2533.
    [102]U. Sorathia, C.M. Rollhauser, W.A. Hughes, Improved fire safety of composites for naval applications, Fire and Materials,16 (1993) 119-125.
    [103]M. Dao, R.J. Asaro, A study on failure prediction and design criteria for fiber composites under fire degradation, Composites Part A: Applied Science and Manufacturing,30 (1999) 123-131.
    [104]M.D.I. Arafa, High strength-high temperature laminated sandwich beams, in: Doctorate Dissertation, The State University of New Jersey 2007.
    [105]Y.M. Jen, H.B. Lin, Temperature-dependent monotonic and fatigue bending strengths of adhesively bonded aluminum honeycomb sandwich beams, Materials & Design,45 (2013) 393-406.
    [106]张明华,赵恒义,谌河水,泡沫铝夹芯板动态抗侵彻性能的实验研究,力学季刊,29(2008)241-247.
    [107]杨飞,王志华,赵隆茂,泡沫铝夹芯板抗侵彻性能的数值研究,科学技术与工程,11(2011)3377-3383.
    [108]W. Hou, F. Zhu, G Lu, D.-N. Fang, Ballistic impact experiments of metallic sandwich panels with aluminium foam core, International Journal of Impact Engineering,37 (2010) 1045-1055.
    [109]Z. Xie, Z. Zheng, J. Yu, Localized indentation of sandwich panels with metallic foam core: Analytical models for two types of indenters, Composites Part B:Engineering,44 (2013) 212-217.
    [110]S. Gupta, A. Shukla, Effect of temperature on the dynamic performance of the core material, face-sheets and the sandwich composite, in: Proceedings of the IMPLAST Conference, Providence, Rhode Island USA,2010.
    [111]J. Liu, Z. Zhou, L. Ma, J. Xiong, L. Wu, Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores, Composites Part B:Engineering,42 (2011) 1860-1866.
    [112]A. Halvorsen, A. Salehi-Khojn, M. Mahinfalah, R. Nakhaei-Jazar, Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass-Kevlar Sandwich Composites, Applied Composite Materials,13 (2006) 369-383.
    [113]R.A.W. Mines, C.M. Worrall, A.G. Gibson, Low velocity perforation behavior of polymer composite sandwich, International Journal of Impact Engineering,21 (1998) 855-879.
    [114]H.M. Wen, T.Y. Reddy, S.R. Reid, P.D. Soden, Indentation, Penetration and Perforation of Composite Laminate and Sandwich Panels under Quasi-Static and Projectile Loading, Key Engineering Materials,141-143 (1997) 501-552.
    [115]A.T. Nettles, J. Douglas, G. C., A Comparison of Quasi-Static Indentation to Low-Velocity Impact, NASA, Marshall Space Flight Center,2002.
    [116]D. Ruan, G. Lu, Y.C. Wong, Quasi-static indentation tests on aluminium foam sandwich panels, Composite Structures,92 (2010) 2039-2046.
    [117]A.G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, M. Langseth, A numerical model for bird strike of aluminium foam-based sandwich panels, International Journal of Impact Engineering,32 (2006) 1127-1144.
    [118]J. Zhou, M.Z. Hassan, Z. Guan, W.J. Cantwell, The low velocity impact response of foam-based sandwich panels, Composites Science and Technology,72 (2012) 1781-1790.
    [119]K. Mohan, T.H. Yip, S. Idapalapati, Z. Chen, Impact response of aluminum foam core sandwich structures, Materials Science and Engineering: A,529 (2011) 94-101.
    [120]张红,计及界面非均匀性的泡沫铝夹芯板静动态横向压入力学行为的研究,in:博士学位论文,华南理工大学,广州,2007.
    [121]N. Wicks, J.W. Hutchinson, Optimal truss plates, International Journal of Solids and Structures, 38(2001)5165-5183.
    [122]J.S. Liu, T.J. Lu, Multi-objective and multi-loading optimization of ultralightweight truss materials, International Journal of Solids and Structures,41 (2004) 619-635.
    [123]寇东鹏,细观结构对多孔金属材料力学性能的影响及多目标优化设计,in:博士学位论文,中国科学技术大学,合肥,2008.
    [124]D. Jiang, D. Shu, Local displacement of core in two-layer sandwich composite structures subjected to low velocity impact, Composite Structures,71 (2005) 53-60.
    [125]A.P. Suvorov, G.J. Dvorak, Enhancement of low velocity impact damage resistance of sandwich plates, International Journal of Solids and Structures,42 (2005) 2323-2344.
    [126]A.G. Mamalis, K.N. Spentzas, N.G. Pantelelis, D.E. Manolakos, M.B. Ioannidis, A new hybrid concept for sandwich structures, Composite Structures,83 (2008) 335-340.
    [127]Y. Yang, A.S. Fallah, M. Saunders, L.A. Louca, On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads, Engineering Structures,33 (2011) 2781-2793.
    [128]Y.W. Lim, H.-J. Choi, S. Idapalapati, Design of Alporas aluminum alloy foam cored hybrid sandwich plates using Kriging optimization, Composite Structures,96 (2013) 17-28.
    [129]J.E. Hockett, On relating the flow stress of aluminum to strain, strain rate, and temperature, Transactions of AIME,239 (1967) 969-976.
    [130]田杰,胡时胜,基体性能对泡沫铝力学行为的影响,工程力学,23(2006)168-171.
    [131]U. Ramamurty, M.C. Kumaran, Mechanical property extraction through conical indentation of a closed-cell aluminum foam, Acta Mater.,52 (2004) 181-189.
    [132]K.A. Dannemann, J. Lankford Jr, High strain rate compression of closed-cell aluminium foams, Materials Science and Engineering: A,293 (2000) 157-164.
    [133]王鹏飞,胡时胜,轴向尺寸对泡沫铝动静态力学性能的影响,爆炸与冲击,32(2012)393-398.
    [134]王鹏飞,多孔金属的动态力学响应及其温度相关性研究,in:博士学位论文,中国科学技术大学,合肥,2012.
    [135]Q.M. Li, I. Magkiriadis, J.J. Harrigan, Compressive strain at the onset of densification of cellular solids, Journal of Cellular Plastics,42 (2006) 371-392.
    [136]K.C. Chan, L.S. Xie, Dependency of densification properties on cell topology of metal foams, Scripta Materialia,48 (2003) 1147-1152.
    [137]王永刚,王春雷,结构特征参数和应变速率对泡沫铝压缩力学性能的影响,兵工学报,32(2011)106-111.
    [138]M. Vural, G. Ravichandran, Microstructural aspects and modeling of failure in naturally occurring porous composites, Mechanics of Materials,35 (2003) 523-536.
    [139]PJ. Tan, J.J. Harrigan, S.R. Reid, Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam, Materials Science and Technology,18 (2002) 480-488.
    [140]M. Avalle, G Belingardi, R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, International Journal of Impact Engineering,25 (2001) 455-472.
    [141]D. Karagiozova, N. Jones, Energy absorption of a layered cladding under blast loading, in:N. Jones, C. Brebbia (Eds.) Proceedings of the sixth international conference on structures under shock and impact, (SUSI VI), WIT Press, Southhampton,2000, pp.447-456.
    [142]M.D. Theobald, G.N. Nurick, Experimental and numerical analysis of tube-core claddings under blast loads, International Journal of Impact Engineering,37 (2010) 333-348.
    [143]G.W. Ma, Z.Q. Ye, Energy absorption of double-layer foam cladding for blast alleviation, International Journal of Impact Engineering,34 (2007) 329-347.
    [144]S. Palanivelu, W. Van Paepegem, et.al., Close-range blast loading on empty recyclable metal beverage cans for use in sacrificial cladding structure, Engineering Structures,33 (2011) 1966-1987.
    [145]S. Palanivelu, W. Van Paepegem, et.al., Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures, Polymer Testing,29 (2010) 381-396.
    [146]S. Palanivelu, W.V. Paepegem, et.al., Comparison of the crushing performance of hollow and foam-filled small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures, Composites Part B:Engineering,41 (2010) 434-445.
    [147]S. Palanivelu, W.V. Paepegem, et.al., Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions, Composite Structures,93 (2011) 992-1007.
    [148]A.G. Hanssen, L. Enstock, M. Langseth, Close-range blast loading of aluminium foam panels, International Journal of Impact Engineering,27 (2002) 593-618.
    [149]G.W. Ma, Z.Q. Ye, Analysis of foam claddings for blast alleviation, International Journal of Impact Engineering,34 (2007) 60-70.
    [150]Z.Q. Ye, G.W. Ma, Effects of foam claddings for structure protection against blast loads, Journal of Engineering Mechanics,133 (2007)41-47.
    [151]D. Karagiozova, GS. Langdon, G.N. Nurick, Blast attenuation in Cymat foam core sacrificial claddings, International Journal of Mechanical Sciences,52 (2010) 758-776.
    [152]GS. Langdon, D. Karagiozova, M.D. Theobald, e. al., Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading, International Journal of Impact Engineering,37 (2010)638-651.
    [153]M. Hayashi, Thermal fatigue behavior of thin-walled cylindrical carbon steel specimens in simulated BWR environment, Nuclear Engineering and Design,184 (1998) 123-133.
    [154]Q.H. Shah, H. Homma, Fracture criterion of materials subjected to temperature gradient, International Journal of Pressure Vessels and Piping,62 (1995) 59-68.
    [155]K.S. Kim, R.H. Van Stone, Crack growth under thermo-mechanical and temperature gradient loads, Engineering Fracture Mechanics,58 (1997) 133-147.
    [156]Q.M. Li, H. Meng, Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material, International Journal of Impact Engineering,27 (2002) 1049-1065.
    [157]S.R. Reid, C. Peng, Dynamic uniaxial crushing of wood, International Journal of Impact Engineering,19 (1997) 531-570.
    [158]X. Qiu, V.S. Deshpande, N.A. Fleck, Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading, Journal of Applied Mechanics,71 (2004) 637-645.
    [159]D.D. Radford, GJ. McShane, V.S. Deshpande, N.A. Fleck, The response of clamped sandwich plates with metallic foam cores to simulated blast loading, International Journal of Solids and Structures,43 (2006) 2243-2259.
    [160]P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, Dynamic compressive strength properties of aluminium foams. Part II-'shock' theory and comparison with experimental data and numerical models, Journal of the Mechanics and Physics of Solids,53 (2005) 2206-2230.
    [161]Z. Zheng, Y. Liu, J. Yu, S.R. Reid, Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes, International Journal of Impact Engineering,42 (2012) 66-79.
    [162]A.G Hanssen, L. Lorenzi, K.K. Berger, e. al., A demonstrator bumper system based on aluminium foam filled crash boxes, International Journal of Crash worthiness,5 (2000) 381-392.
    [163]D. Karagiozova, GS. Langdon, GN. Nurick, Propagation of compaction waves in metal foams exhibiting strain hardening, International Journal of Solids and Structures,49 (2012) 2763-2777.
    [164]J.J. Harrigan, S.R. Reid, C. Peng, Inertia effects in impact energy absorbing materials and structures, International Journal of Impact Engineering,22 (1999) 955-979.
    [165]Z. Zheng, J. Yu, C. Wang, S. Liao, Y. Liu, Dynamic crushing of cellular materials: A unified framework of plastic shock wave models, International Journal of Impact Engineering,53 (2013) 29-43.
    [166]王礼立,应力波基础,2 ed.,国防工业出版社,北京,2005.
    [167]J.J. Harrigan, S.R. Reid, A. Seyed Yaghoubi, The correct analysis of shocks in a cellular material, International Journal of Impact Engineering,37 (2010) 918-927.
    [168]S. Pattofatto, I. Elnasri, H. Zhao, H. Tsitsiris, F. Hild, Y. Girard, Shock enhancement of cellular structures under impact loading: Part Ⅱ analysis, Journal of the Mechanics and Physics of Solids,55 (2007) 2672-2686.
    [169]P.P. Castaneda, P. Suquet, Nonlinear Composites, in: G. Erik van der, Y.W. Theodore (Eds.) Advances in Applied Mechanics, Elsevier,1997, pp.171-302.
    [170]P. Suquet, Continuum micromechanics, in:S. Kaliszky, M. Sayir, W. Schneider (Eds.), Springer-Verlag Wien, New York,1997.
    [171]S. Liao, Z. Zheng, J. Yu, Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity, International Journal of Impact Engineering,57 (2013)7-16.
    [172]A.E. Markaki, T.W. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams, Acta Materialia,49 (2001) 1677-1686.
    [173]P.S. Follansbee, High strain rate deformation in FCC metals and alloys,1985.
    [174]K.Y.G McCullough, N.A. Fleck, M.F. Ashby, Toughness of aluminium alloy foams, Acta Materialia,47 (1999) 2331-2343.
    [175]D.R. Lesuer, Experimental Investigations of Material Models for Ti-6AI-4V Titanium and 2024-T3 Aluminum, in, U.S. Department of Transportation,2000.
    [176]S.L. Lopatnikov, B.A. Gama, M.J. Haque, C. Krauthauser, J.W. Gillespie Jr, High-velocity plate impact of metal foams, International Journal of Impact Engineering,30 (2004) 421-445.
    [177]M. Save, Experimental verification of plastic limit analysis of torispherical and toriconical heads, Pressure Vessel and Piping, Design and Analysis, ASME I, (1972) 382-416.
    [178]J. Banhart, H.W. Seeliger, Aluminium Foam Sandwich Panels:Manufacture, Metallurgy and Applications, Advanced Engineering Materials,10 (2008) 793-802.
    [179]R. Ferri, B.V. Sankar, A Comparative Study on the Impact Resistance of Composite Laminates and Sandwich Panels, Journal of Thermoplastic Composite Materials,10 (1997) 304-315.
    [180]E.J. Herup, A.N. Palazotto, Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates, Composites Science and Technology,57 (1998) 1581-1598.
    [181]G. Zu, B. Song, Z. Zhong, X. Li, Y. Mu, G. Yao, Static three-point bending behavior of aluminum foam sandwich, Journal of Alloys and Compounds,540 (2012) 275-278.
    [182]Z.P. Bazant, Y. Zhou, I.M. Daniel, F.C. Caner, Q. YU, Size effect on strength of laminate-foam sandwich plates, Journal of Engineering Materials and Technology,128 (2006) 366-374.
    [183]S.S. Hsu, N. Jones, Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes, International Journal of Crash worthiness,9 (2004) 195-217.
    [184]N. Jones, Energy-absorbing effectiveness factor, International Journal of Impact Engineering,37 (2010)754-765.
    [185]李志斌,虞吉林,郑志军,郭刘伟,薄壁管及其泡沫金属填充结构耐撞性的实验研究,实验力学,27(2012)77-86.
    [186]Z.B. Li, J.L. Yu, L.W. Guo, Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading, International Journal of Mechanical Sciences,54 (2012) 48-56.
    [187]Z.B. Li, Z.J. Zheng, J.L. Yu, L.W. Guo, Crashworthiness assessment of empty and foam-filled thin-walled tubes in bending, submitted.
    [188]Z.B. Li, Z.J. Zheng, J.L. Yu, L.W. Guo, Crashworthiness of foam-filled thin-walled circular tubes under dynamic bending, submitted.
    [189]G. Belingardi, M.P. Cavatorta, R. Duella, Material characterization of a composite-foam sandwich for the front structure of a high speed train, Composite Structures,61 (2003) 13-25.
    [190]Z.B. Li, Z.J. Zheng, J.L. Yu, Low-velocity perforation behavior of composite sandwich panels with aluminum foam core, Journal of Sandwich Structures and Materials,15 (2012) 92-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700