用户名: 密码: 验证码:
多杯等流型油水分离器优化设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田含水率的升高,导致举升能耗和集输系统能耗增加,地面工程建设和改造工作量日益增多,水的问题越来越受到重视。本文立足于中国石油天然气股份公司《高含水油田提高采收率关键技术》课题,根据多杯等流理论和浅池理论设计出一种新型重力式油水分离器——多杯等流型油水分离器。通过理论分析和实验研究,对分离器结构进行优化设计,将其应用于同井注采和油田地面污水处理中,并进行了现场试验。
     本文首先介绍了分离器分离原理、结构和工作过程,并分析了油滴在沉降杯中的上升运动和聚并过程。对液体在分离器中流动过程进行理论研究和Fluent软件模拟,确定中心管流动阻力和进液孔局部阻力系数,据此编制了分离器设计计算软件。利用软件进行大量计算,在保证等流的前提条件下,给出不同流量条件下分离器中心管进液孔分布方案。
     油水分离器分离效果的关键是沉降杯的形状,设计了24种形状的沉降杯,通过室内实验,对沉降杯进行优选。研究发现,亲油材质的沉降杯底倾角越小,越容易形成不断沿棱角向上运动的连续油膜,分离效果越好;棱数越多,油滴与杯底接触面积越大,分离效果越好。在这24种沉降杯中,带尖加一个隔板的皇冠状沉降杯分离效果最好。该沉降杯杯底瓦棱状倾角30°,12棱,杯身为筒状,长46.5mm,上缘形状与上一个杯底瓦棱状相吻合,内装亲油材质,且与杯底形状相同的隔板。
     为解决分离器内沉砂导致分离器分离效果变差的问题,进行了分离器排砂实验,在沉降杯底打排砂孔可以起到排砂作用,中心管进液孔也有一定的排砂功能。综合考虑排砂效果和油水分离效果,排砂孔应为:孔径3mm,4孔,上下沉降杯排砂孔错位排列,并与进液孔错开。这种分离器与无排砂孔分离器相比,在含水95%条件下,液面下降速度仅降低了2.6%。
     为进一步提高油水分离效率,在沉降杯中添加亲油滤料,根据相渗理论,这可以提高水的相对渗透率,降低油的相对渗透率,从而提高油水分离效果。通过室内实验,优选出沉降杯中添加厚度为14mm覆膜石英砂滤料效果最好,相比带尖加一个隔板的皇冠状分离器,在含水95%条件下,进液量可以提高59%。
     将优化设计后的多杯等流型油水分离器应用于同井注采和地面污水处理,进行了现场试验。
     同井注采工艺为下层开采、而后回注到上层的双抽油泵工艺,由采出抽油泵、密封活塞、桥式封隔器、注入抽油泵和井下油水分离器组成。同井注采工艺现场试验10口井,平均产液量由103.48t/d下降到32.5t/d,降低产液量达到70.79t/d;含水由95.29%下降到87.32%,下降7.97个百分点,节能效果明显。
     在地面污水处理现场试验中,采用了粗粒化和加剂提高油滴粒径的方法,进一步提高分离效率。添加14mm石英砂滤料皇冠状分离器,在保证分离效果和分离效率的条件下,其处理量是现场沉降罐的49.3倍。使用粗粒化装置后,在保证分离效果和分离效率的条件下,其处理量是现场沉降罐的187.4倍。药剂可以提高油滴粒径,在实验的5种药剂中,S1药剂20mg/L时处理效果最佳,建议加药地点为转油站,也可以井口加药,不建议在联合站内各点加药。
     多杯等流型油水分离器在油田应用,可以减少地面污水处理系统负荷,降低生产运行成本和固定投资,提高油田采收率、实现油田可持续发展。
The increase of oilfield water content leads to increasing energy consumption in liftingand gathering system and more work in ground engineering construction and renovation,therefore water has received more and more attention. Based on “Key Technology to EnhanceOil Recovery in High Water Cut Oil Field” project of PetroChina Company Limited, a newtype of gravity oil-water separator—multicup isoflux oil-water separator—is devised.Multicup isoflux theory and shallow tank theory are used in the separator. Through theoreticalanalysis and experimental research, the structure of separator is optimized, then apply theoptimized separator in injection-production in the same well and produced water treatmentand field experiment is carried out.
     The separation principle, structure and working process of separator are first introducedin this dissertation, and the upward movement and coalescence process of oil droplets in thesettling cups are analyzed. The flow process of fluid in the separator is researchedtheoretically and simulated by Fluent. Both the flow resistance of center tube and localresistance coefficient of liquid inlet hole are determined. Then design calculation software ofseparator is compiled. A large number of calculations are carried out, in the premise of isoflow,distribution of liquid inlet holes in center tube is provided under the condition of differentflow rates.
     The separation effect of oil-water separator is mainly decided by the shape of settlingcup.24kinds of settling cups with different shapes are designed and the best one is picked outthrough laboratory experiment. The research shows that the smaller the dip angle of settlingcup bottom is, the more likely it is to form continuous oil film moving upward along declinededge, and the separation effect is better; the more the edges are, the larger the contact area ofcup bottom is, and the effect is better. Among the24kinds of settling cups, the crown-shapeone with cusp and a battle has the best separating effect, it has cylinder,46.5mm long cup and12edges, its dip angle of settling cup bottom is30°, the upside part inosculates with the ridgeon the bottom of the above one. The cup is with oil wet material and a battle that is the samein shape with cup bottom.
     In order to solve the problem that sand settling in separator leads to poor separationeffect, sand drainage experiment of separator is carried out. Punching in the bottom of settlingcup can help remove sand, liquid inlet hole also has this function. Synthesizes the effect ofsediment sand and oil separation, the diameter of sand drainage outlet is3mm and the outlet number is four. The outlets in the up-cup stagger those in the down-cup, and both themstagger liquid inlets. Compared with separator without outlet, drawdown speed of liquid levelis reduced by only2.6%when the water content is95%.
     In order to further improve the efficiency of oil-water separation, oil wet filter material isadded in settling cup, which can improve relative permeability of water and reduce therelative permeability of oil so that improve the effect of oil-water separation. Throughlaboratory experiment, settling cup that adding coated quartz sand with the thickness of14mmhas the best effect, compared with crown-shape settling cup with cusp and a battle, liquid flowcan increase by59%, when the water content is95%.
     Apply the optimized multicup isoflux oil-water separator in injection-production in thesame well and produced water treatment, and field experiment is carried out.
     Injection-production in the same well is realized by two pumps, one is placed underlayerfor exploiting and the other uplayer for reinjecting. This system is consisted of extractionpump, packed piston, bridge type packer, injection pump and downhole oil-water separator.Test this technology in ten wells, the average producing fluid volume reduces from103.48t/ddown to32.5t/d, fell70.79t/d; Water content reduces from95.29%to95.29%, fell by7.97%,which have a remarkable energy saving effect.
     In the field experiment of produced water treatment, applying coalescence equipmentand additive that can enlarge the oil droplets size to further improve the separation efficiency.In the premise of separation efficiency and effect, the treatment capacity of crown-shapesettling cups that adding coated quartz sand with the thickness of14mm is49.3times that offield settling tank. After the coalescence equipment is applied, the treatment capacity is187.4times that of field settling tank. Adding additive can improve the size of oil droplets, S1hasthe best effect among the five kinds of tested agents when concentration is20mg/L.Recommended dosing sites are transfer station and wellhead, central processing station is notrecommended.
     Appling multicup isoflux oil-water separator in oil field can reduce the load of groundproduced water treatment system, decrease the production cost and fixed investment, improvethe oil recovery and realize sustainable development in oil field.
引文
[1]韩洪升,张艳娟,孙晓宝.多杯等流型气锚对井下油水分离分离的效果[J].石油地质与工程,2007,21(1):80-82.
    [2]韩洪升,林浩然,刘景宇,等.油水分离器的杯形对油水分离效果实验研究[J].石油地质与工程,2010,(01):120-121.
    [3]黄廷林,杨利伟.采油废水回注处理技术[J].工业用水与废水,2000,31(4):1-3.
    [4]董良飞,张志杰.采油废水回注处理技术的现状及展望[J].长安大学学报,2003,20(1):43-44.
    [5]魏平方,邓皓.含油污水处理技术与发展趋势[J].油气田环境保护,2000,10(1):34-36.
    [6]李波,周世俊.含油污水处理技术[J].辽宁化工,2007,20(1):16-22.
    [7]刘承婷,韩洪升,刘保君.油田污水在新型油水分离器中的实验研究[J].科学技术与工程,2011,(19):4582-4585.
    [8]韩洪升,夏楠,彭元,程思南.新型油水分离器提高含油污水处理效率的实验研究[J].科学技术与工程,2011,(23):5533-5537.
    [9] Matthews, C.M., Chachula, R., Peachey, B.R., Solanki, S.C.. Application of downholeoil/water separation systems in the alliance field[C].SPE35817,1996.
    [10] J. F. Michelet. Downhole Separation of Oil and Water, the9th Underwater TechnologyConference[C], Bergen, Norway, March20-22,2003.
    [11] Kjos, T., Sangesland, S., Michelet, J. F., Kleppe, J.. Down-hole Water-Oil Separationand Water Reinjection through Well Branches[C].SPE30518,1995.
    [12] Carlos Gomez, Juan Caldentey, Shoubo Wang. Oil-water separation in liquid-liquidhydrocyclone-experiment and modeling[C]. SPE71538,2001.
    [13] Stuebinger L A, Elphingstone J G. Multipurpose Wells: Downhole Oil/WaterSeparation in the Future[C].SPE65071,2000.
    [14] Veil J A, Langhus B G, Belieu S. DOWS reduce produced water disposal costs[J]. Oil&Gas Journal1999,97(12):76~85.
    [15] John A V. New technology for downhole oil-water separation[J]. Oil&Gas Journal2001,(2):67~71.
    [16] P.J.Schrenkel et.al. Joint Industry Development of the Downhole oil water SeparationSystem. Field Case Study.
    [17] Peachey B. R. Downhole Oil/Water Separator Development[J]. JCPT,1994,2(33):7-8.
    [18] Eko A.Y. Fitnawan, Rocio M. Rivera, Michael Golan. Inclined Gravity DownholeOil-Water Separator: Using Laboratory Experimental Results for Predicting the Impactof Its Application in High Rate Production Wells[C].SPE119939,2009.
    [19] J.A. Veil, J.J. Quinn. Performance of Downhole Separation Technology and ItsRelationship to Geologic Conditions[C].SPE93920,2005.
    [20] O.O. Ogunsina, M.L. Wiggins. A Review of Downhole Separation Technology.SPE94276.2005.
    [21] Yasser K. Bangash, Marcello Reyna. Downhole Oil Water Separation (DOWS)Systems in High-Volume/High HP Application[C].SPE81123,2003.
    [22] Mohamed A., Alhoni, Khalid K. Jerbi, Taher A. Drawil, Abdulrazag Y. Zekri.Application of Downhole Oil-Water Separation: A Feasibility Study[C].SPE80485,2003.
    [23] S.A. Jokhio, M.R. Berry, Y.K. Bangash. DOWS (Downhole Oil-Water Separation)Cross-Waterflood Economics[C].SPE75273,2002.
    [24] Jean-Claude Gay, Jean-Loup Minebois, Yves Lacourie. TOTALFINAELF Experienceand Strategy in Downhole Processing[C].SPE78541,2002.
    [25] A.E. Blanco, D.R. Davies. Technical&Economic Application Guidelines forDownhole Oil-Water Separation Technology[C].SPE67182,2001.
    [26] J.L. Scaramuzza, H. Fischetti, L. Strappa, S. Figliuolo. Downhole Oil/Water SeparationSystem-Field Pilot-Secondary Recovery Application Project[C].SPE69408,2001.
    [27] Chris Shaw. Downhole Separation as a Strategic Water and EnvironmentalManagement Tool[C].SPE61186,2000.
    [28] B.E. Bowers, R.F. Brownlee, P.J. Schrenkel. Development of Downhole Oil/WaterSeparation and Reinjection System for Offshore Application[C].SPE63014,2000.
    [29] J. A. Veil, B.G. Langhus, S. Belieu. Downhole Oil/Water Separators: An EmergingProduced Water Disposal Technology[C].SPE52703,1999.
    [30] C. Chapuis, Y. Lacourie, D. Lan ois. Testing of Down Hole Oil/Water Separationsystem in Lacq Superieur Field, France[C].SPE54748,1999.
    [31] S. Suárez, A. Abou-Sayed. Feasibility of Downhole Oil/Water Separation andReinjection in the GOM[C].SPE57285,1999.
    [32]田楠,范海燕,马团校.井下油水分离技术在曹妃甸油田的应用[J].油气田地面工程,2011,(12):95-96.
    [33]李栋.有杆泵井下油水分离系统设计[J].应用能源技术,2009,(11):5-6.
    [34]罗然,张伟,王家辉,等.用CFD确定物性参数对井下油水分离效率的影响[J].石油和化工设备,2010,(06):23-26.
    [35]李栋.有杆泵井下油水旋流分离效率影响因素[J].油气田地面工程,2010,(09):16-18.
    [36]刘新平,王振波,金有海.井下油水分离采油技术应用及展望[J].石油机械,2007,(02):51-53.
    [37]曲占庆,王璐,苏建,等.三作用泵井下油水分离系统分析[J].石油矿场机械,2008,(09):43-45.
    [38]曲占庆,刘建敏,杨学云.井下油水分离系统优化设计[J].石油矿场机械,2008,(10):46-49.
    [39]薄启炜,张琪,赵东伟,等.重力式井下油水分离确定分流比的实验研究[J].石油机械,2003,(06):3-5.
    [40]薄启炜,张琪,张秉强.井下油水分离同井回注技术探讨[J].石油钻采工艺,2003,(02):70-72.
    [41]孙浩玉,李增亮.井下水力旋流油水分离器的研制与性能试验[J].石油机械,2005,(11):51-53+7.
    [42]曹明君,杜焱,张凤桐.井下油水分离同井注采技术对聚驱采出井适应性分析[J].大庆石油学院学报,2005,(06):55-58+124.
    [43]任闽燕,程军,张子玉,等.井下油水分离采油技术[J].石油钻采工艺,2004,(06):62-64+85-86.
    [44]赵传伟,李增亮,董祥伟.螺杆泵井下油水分离系统设计及地面试验[J].中国石油大学学报(自然科学版),2013,(01):129-133.
    [45]李增亮,赵传伟,吴海燕,等.轴向力平衡式螺杆泵井下油水分离系统设计[J].石油机械,2012,(12):68-72.
    [46]周晓君.井下油水分离系统及往复式双液流泵设计[J].石油机械,2000,(09):1-4+3.
    [47]颜廷俊,李增亮,王旱祥,等.电潜泵井下油水分离系统方案设计[J].石油机械,2000,(09):5-7+3.
    [48]辜志宏,沈磊.井下油水分离与回注双作用泵抽油系统[J].石油机械,2001,(06):52-54.
    [49]曲占庆,张琪,李恒,等.井下油水分离系统设计及地面监测模型研究[J].西安石油大学学报(自然科学版),2006,(03):34-37+115.
    [50]陈胜男,李恒,薄启炜,等.井下油水分离系统设计及参数敏感性分析[J].石油钻采工艺,2007,(03):32-35+121.
    [51]蒋明虎,芦存财,张勇.井下油水分离系统串联结构设计[J].石油矿场机械,2007,(12):59-62.
    [52]于洪敏,李恒,陈胜男,等.电潜泵-井下油水分离系统工作参数优化设计[J].石油机械,2008,(06):16-19+92-93.
    [53]春刚.双流电潜泵和井下油水分离器[J].石油机械,2000,(03):57.
    [54]宋开利,李晓明,徐文庆,等.井下油水分离采油技术初探[J].油气采收率技术,2000,(01):62-64+70.
    [55]李增亮,张瑞霞,董祥伟.井下油水分离系统电泵机组匹配研究[J].中国石油大学学报(自然科学版),2010,(03):94-98+103.
    [56]朱建民.用井下油水分离器延长高含水油井的寿命[J].河南石油,1996,(03):27-47.
    [57]王微.井下油水分离系统结构及类型概述[J].石油机械,1998,(12):48-51.
    [58]周捷,陈李斌.海上井下油水分离系统的故障因素分析[J].油气田地面工程,2003,(10):60.
    [59]岳继红,齐春海.井下油水分离技术最新进展[J].油气田地面工程,2003,(11):56-57.
    [60]蔡文斌,薄启炜,李兆敏.井下油水分离旋流器室内实验研究[C].第二十届全国水动力学研讨会文集,2007:6.
    [61]王勇,郑国兴,丁康玉,等.井下油水旋分器的数值模拟[J].油气田地面工程,2012,(09):33-34.
    [62]郑陵,杜英生.波纹板聚结法油水分离技术[J].油田地面工程,1994,13(2):1-3.
    [63]陆耀军.油水重力分离设备技术及进展[J].化工设备,2001(4):51-52.
    [64] Arnold, Kenneth E. Design Concepts for offshore produced-water Treating andDisposal systems[J]. Petroleum Technology,1983,35(2):276-283.
    [65] Suzuki T., Tambo N., Ozawa G. A new Produced water treatment system with fluidizedpellet bed separator[J].Water Science and Technology,1993,27(11):185-192.
    [66]藏维良,王岩.带翼侧板设备处理石油污水的研究[J].石油化工环境保护,1997,6(2):12-15.
    [67] Hjelmas T.A, Bakke S., Hilde T., et al. Produced water Reinjection: Experiences fromPerformance Measurements on Ula in the North Sea[C]. International Conference onHealth, Safety and Environment in Oil and Gas Exploration and Production,1996,(1):903-913.
    [68]孙治谦,王振波,吴存仙,等.油水重力分离过程油滴浮升规律的实验研究[J].过程工程学报,2009,(01):23-27.
    [69]孙治谦,王振波,金有海.油水重力分离原理及聚结破乳机理初探[J].化工机械,2009,(06):636-639.
    [70]陆耀军.油水重力分离过程中的液滴动力学分析[J].油气田地面工程,1998,(04):1-5.
    [71] M.Thew. Hydrocyclone Redesign for Liquid-Liquid Separation[J]. The ChemicalEngineer,1986,7:17-23.
    [72] Carlos Gomez, Juan Caldentey, Shoubo Wang, et al. Oil-Water Separation inLiquid-Liquid Hydrocyclones (LLHC)-Experiment and Modeling[C], SPE71538,2001.
    [73] Carlos Gomez, Juan Caldentey, Shoubo Wang, et al. Oil/Water Separation inLiquid/Liquid Hydrocyclones: Part1-Experimental Investigation[C], SPE81592,2002.
    [74]马卫国,胡泽明,薛敦松.油水分离水力旋流器的研究与应用综述[J].1995,6(2):71-72.
    [75]赵立新,蒋明虎,孙德智.旋流分离技术进展[J].化工进展,2005,24(10):1118-1119.
    [76]袁惠新,俞建峰,蔡小华.用旋流分离器处理含油污水的前景[J].炼油设计,2005,30(5):48~50.
    [77]王跃进,袁惠新.旋流器用于含油污水的除油[J].无锡轻工大学学报,2000,19(4):385~388.
    [78]李卫东,王跃社,周芳德.液-液两相旋流分离的研究[J].工程热物理学报,1998.
    [79]李雪斌,袁惠新.旋流器内液滴聚结机理的研究[J].矿山机械,2006,34(7):42~46.
    [80]万慧茹,武伟男,张雷.微絮凝加药过滤技术在油田废水处理中的应用[J].环境保护与循环经济,2009,(03):38-41.
    [81]邓波,丁慧,耿伏龙.油田采出水的精细过滤技术[J].水处理技术,2006,(01):73-75.
    [82]蔡钊荣,于永辉,王全义,等.混凝气浮—过滤法处理油田超稠油废水[J].环境污染与防治,2006,(07):519-520+530.
    [83]伍远平,程雁,周孙彪,等.油田含油污水精细过滤技术及装置研究[J].石油机械,2003,(S1):5-7.
    [84]任彦中,朱玉萍,于洪明.大庆油田含油污水深度处理双向过滤技术[J].油田地面工程,1995,(06):27-29.
    [85] Ricaurte M. and Perozo H. Filtration Effect on Water in Oil Emulsions Stabilization inSlop Crude Treatment[C]. SPE107838,2007.
    [86] S.L. Berry and B.B. Beall. Laboratory Development and Application of a SyntheticOil/Surfactant System for Cleanup of OB and SBM Filter Cakes[C]. SPE97857,2006.
    [87] Kenawy, F.A., Kandil, M.E. Comparative Evaluation between a Modified CFPSeparator and All Other Available Oil-Water Separation Techniques[C]. SPE46817,1998.
    [88]顾大明,王吟,宋中健.粗粒化聚并法油水分离技术[J].哈尔滨建筑大学学报,2002,(02):65-67.
    [89]刘成波,李发生,桑义敏,等.含油废水粗粒化处理过程中除油率和油珠粒径分散度的研究[J].石油化工环境保护,2003,(02):24-27.
    [90]李孟,陈义春.改性陶瓷滤球粗粒化装置处理油田废水试验[J].工业用水与废水,2007,(02):55-57.
    [91]张召基,夏世斌,吴建峰,等.新型陶瓷滤料处理含油废水的粗粒化试验研究[J].武汉理工大学学报,2007,(05):58-60+70.
    [92]刘敬敏,刘广丽,卢宇.油田污水处理方法分析[J].油气田地面工程,2010,08:63-64.
    [93]曹书翰,陈立功,刘先杰,等.粗粒化技术对水包油乳状液分离特性的影响[J].后勤工程学院学报,2013,(02):25-29+96.
    [94]梁斌.粗粒化技术在含油废水处理中的应用[J].石油化工环境保护,1993,(02):10-14.
    [95]吴玉琛.油田含油污水的粗粒化除油[J].工业水处理,1986,(05):41-44.
    [96] S.J. Judd and P. Hillis. Optimisation of combined coagulation and microfiltration forwater treatment[J]. Water research,2000,35(15):2895~2904.
    [97] M.Gryta, K. Karakulski and A.W. Morawski. Purification of Oily Wastewater byHybrid UF/MD[J].Water research,2001,35(15):3665~3669.
    [98] Mi-Jung Um, Seong-Hoon Yoon, Chung-Hak Lee, Kun-Yong Chung and Jae-Jin Kim.Flux Enhancement with Gas Injection in Crossflow Ultrafiltration of Oily Watewater[J].Water research,2001,35(17):4096~4101.
    [99] Xianguo Hu, E&a Bekassy-Molnarb, Gyula Vataib. Study of Ultrafiltraltion Behaviourof Emulsified Metalworking Fluids[J]. Desalination,2002,149:191~197.
    [100] Chen A S C, Flynn J T, Casaday A L. Removal of oil, grease, and suspended solidsfrom produced water with ceramic crossflow microfiltration[C].SPE productionEngineering.1991,6:131~135.
    [101] B. Have Ramesh R. Inorganic membranes synthesis, characteristics and applications[J].Chapman&Hall,1991:289~293.
    [102] Tao F T, Curtice S. et al. Reverse osmosis process successfully converts oilfield brineinto freshwater[J]. Oil&Gas Jounrnal,1993,9:88~94.
    [103] Farnand B A, Krug T A, Oil removal from oilfield produced water by crossflowultrafiltration[J]. Journal of Canadian petroleum Technology,1989,28(6):18~24.
    [104] Simms, et al. Recent advances in the application of membrane technology to thetreatment of produced water in Canada[J]. Water Treatment,1995,10:135~144.
    [105]李发永,徐英,李阳初,等.磺化聚砜超滤膜处理含油污水的实验[J].水处理技术,2000,(05):285-288.
    [106]王怀林,王忆川,姜建胜,等.陶瓷微滤膜用于油田采出水处理的研究[J].膜科学与技术,1998,02:61-66.
    [107]袁群杰,李必文,阎安.陶瓷膜处理油田采出水时的膜污染清洗研究[J].石油机械,2003,(07):1-2+5-4.
    [108]尹赐禹,张洪良.超滤法处理油田含油污水的试验研究[J].石油机械,2003,(08):1-4.
    [109]徐晓东,李季,袁曦明,等.膜技术在油田采出水处理中的应用研究[J].过滤与分离,2005,(04):34-36.
    [110]李明义.油田采出水处理技术实践与发展[J].石油规划设计,2003,(01):19-24.
    [111]王旭,金江,梅胜道.陶瓷膜处理油田采出水初探[J].盐城工学院学报(自然科学版),2003,(01):32-34+56.
    [112]马军,曹晓春.膜分离技术处理油田采出水的研究进展[J].油气田地面工程,2004,(04):26.
    [113]梁立军,陈大年,蒋可觐,等.大庆油田回注水过滤净化的研究[J].膜科学与技术,1998,(02):24-26.
    [114]张晓飞,刘光全,张建华,等.利用超滤膜技术处理油田含盐采出水研究[J].油气田环境保护,2007,(01):4-7+59.
    [115]吴琦.气浮选含油污水处理技术[J].油气田地面工程,2010,(03):53-55.
    [116]范兵奇,浦建伟,段凡,等.旋流式气浮选技术及应用[J].石油矿场机械,2011,(01):74-77.
    [117]梁义杰,李秋华.溶气浮选技术在某油田污水处理中的应用研究[J].广州化学,2011,(04):41-46.
    [118]方健,刘振国,董洋,等.旋流加气浮选器处理渤海S油田含聚污水[J].油气田地面工程,2012,(04):36-37.
    [119]柏承志,孙福德,韩志奇,等.加压溶气浮选改为喷射溶气浮选技术小结[J].吉林化工学院学报,1992,(05):19-25.
    [120]鲁来鬓,曾炳坤,陈红梅,等.简单气浮选处理稠油污水[J].油气田环境保护,1998,(03):14-15.
    [121] Shaya Movafaghian, James Chen, R.W. Guidry. Pilot Testing of a New Generation ofInduced Gas Flotation Equipment[C].SPE87630,2004.
    [122] Shaya Movafaghian, James Chen, R.W. Guidry. Introduction Of A New Generation OfInduced Gas Flotation Equipment-A Case Study[C].SPE81135,2003.
    [123] Casaday, A.L. Advances in Flotation Unit Design for Produced Water Treatment[C].SPE25472,1993.
    [124] Ol’shanslii V.O. Sorbent for removing crude oil and petroleum products from waterand ground surface and prepration from brown coal[J].Fuel and Energy Abastracts,2004,31(7):251.
    [125] Cambiella A., Ortea E., Rios G., et al. Treatment of oil-in-water emulsions;Performance of a sawdust bed filter[J].Hazardous Materials,2006,131(1/2/3):195-199.
    [126] Kumagai S., Noguchi Y., Kurimoto Y., et al. Oil adsorbent produced by thecarbonization of rice husks[J].Waste Management,2007,27(4):554-561.
    [127] Toyoda M., Aizawa J., Inagaki M. Sorption and recovery of heavy oil using exfoliatedgraphite[J].Desalination,1998,115(2):199-201.
    [128] Ugda Silva U.G., de F., Melo M.A., da silva A.F., et al. Adsorption of crude oil onanhydrous and hydrophobized vermiculite [J]. Colloid and Interface Science,2003,260(2):302-304.
    [129] Ayotamuno M.J, Kogbara R.B, Ogaji S.O.T, et al. Petroleum contaminatedground-water: Remediation using activated carbon[J]. Applied Energy,2006,83(11):1258-1264.
    [130]刘成宝,陈志刚,刘曦.应用膨胀石墨动态吸附处理油田污水[J].水处理技术,2007,(05):58-60.
    [131]王春娜,张育德.油田污水深度处理与回用技术[J].油气田环境保护,2008,(02):12-15+60.
    [132]王海峰,王增林,张建.国内外油田污水处理技术发展概况[J].油气田环境保护,2011,(02):34-37+62.
    [133]陈炽堂.生物膜活性炭法处理含油污水[J].石油炼制与化工,1989,04:58-65.
    [134]徐应波,王树祥,杨相伟.应用浅池理论与聚结技术改进油田污水处理系统[J].水处理技术,2010,36(10):115-117.
    [135] W. A. Sirignano. Fluid Dynamics and Transport of Droplets and Sprays[M].Cambridge Unirersity Press,2010:87-88.
    [136]李丹.一元/二元/三元驱油体系的界面特性研究[D].大庆石油学院,2007:36-36.
    [137]魏超.流体颗粒聚并过程研究[D].湘潭大学,2005.
    [138]韩路长.多相反应器内流体颗粒传质、破裂分散和聚并行为的研究[D].湘潭大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700