用户名: 密码: 验证码:
高性能与高稳定性致密陶瓷氢分离膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气作为一种洁净的能源材料和重要的化工原料,备受人们的重视。特别是近年来严重的环境污染,更是增加了人们对清洁能源的渴望。氢气的主要来源是天然气的水汽重整和煤炭以及生物质的气化。由于反应产物是含氢的混合气体,因此经过氢分离环节才能得到高纯度的氢气。传统的氢分离技术主要有变压吸附、深冷分离和膜分离三种。深冷分离和变压吸附已经实现了工业化应用,膜分离是将来主要发展的氢分离技术,它具有能耗低,可以连续分离,操作简单和成本低廉等优点。氢分离膜又分为很多种类,致密的陶瓷氢分离膜是其中的一种。人们对致密陶瓷氢分离膜做了大量研究,也取得了丰硕的成果:从最初的单相分离膜,到后来的金属陶瓷双相分离膜,氢渗透效率得到了极大的提升;从稳定性较差的铈酸盐到掺杂改性后的较稳定铈酸盐,材料的化学稳定性得到了明显改善。这些发展给致密陶瓷氢分离膜的应用带来了希望,但是还存在许多问题亟待解决。本论文从目前陶瓷氢分离膜存在的氢渗透量低和化学稳定性差两个缺点出发,展开了实验研究,目标是制备高渗透性能和高稳定性的致密陶瓷氢分离膜。
     第一章是论文综述,首先简要的介绍了质子导体材料以及潜在的应用;随后详细介绍了陶瓷氢分离膜的渗透原理以及渗透理论。对各种材料的致密陶瓷氢分离膜做了全面的阐述,着重介绍SrCeO3, BaCeO3, La2Ce207和La6WO12材料体系。最后论述了目前致密陶瓷氢分离膜存在的问题和未来的发展方向。
     第二章介绍了Ni-Ba(Zr0.iCe0.7)Y0.2O3-δ(BZCY)金属陶瓷双相非对称结构氢分离膜的制备及其氢渗透性能研究。利用共压成型技术和两步烧结工艺首次成功制备了双相非对称氢分离膜。制备的关键步骤之一是采用了柠檬酸-硝酸盐燃烧法一步合成NiO-BZCY复合粉体。粉体中NiO和BZCY两相彼此独立,没有副反应发生,而且两者均匀混合。此外,蓬松的NiO-BZCY粉体利于运用共压技术制备厚度较小的薄膜。另一个关键步骤是两步烧结,首先在空气中煅烧排除支撑体中的有机造孔剂,随后在5%H2/Ar气氛下烧结致密。30μm的Ni-BZCY非对称膜表现出了优越的氢渗透性能,在20%H2/Ar的氢化学势梯度下,900℃时的氢渗透速率为1.37×10-7mol cm-2s-1.通过制备不同厚度的非对称膜,我们还研究了膜厚度倒数与氢渗透量的关系。
     第三章研究了Ni-La0.5Ce0.5O2-δ(LDC)非对称膜的制备和氢渗透性质。通过采用无机造孔剂,一步烧结制备了Ni-LDC非对称膜。性能评价表明氢渗透速率随温度和原料气氢分压的升高而不断增大;在20%H2/Ar的氢化学势梯度下,900℃时48μm厚的非对称膜氢渗透速率为6.8×10-8mol cm-2s-1,相比于600μm厚对称膜的1.57×10-8mol cm-2s-1高4倍多。膜两侧是否添加水蒸气对氢分离性能具有较大的影响:两侧水蒸气的添加都会引起氢渗透速率的增加,特别是吹扫气一侧,3%H20湿润吹扫气后氢渗透量提升1.5-2.0倍。C02气氛下的长期氢渗透测试表明Ni-LDC非对称膜具有出色的稳定性。
     第四章研究了单相混合质子-电子LDC非对称氢分离膜的氢渗透性质。鉴于LDC电解质的燃料电池测试结果预示着LDC具有一定的电子电导,我们制备了Ni-LDC支撑的致密LDC非对称膜并对其氢渗透性质进行了系统表征。氢渗透速率与温度和氢分压梯度的变化关系反映:在20%H2/Ar的氢化学势梯度下,温度从700到900℃,氢渗透速率由3.27×10-9增加到2.67×10-8mol cm-2s-1;原料气中氢气含量自20%增加到80%,900℃时氢渗透速率从2.67x10-8升高到4.51×10-8mol cm-2s-1。膜两侧是否添加水蒸气对氢渗透速率有着较大的影响:原料气侧加入水蒸气,LDC的电子电导降低,氢渗透速率降低;吹扫气侧加入水蒸气,发生水的裂解反应,氢渗透量增加。
     第五章研究了Ni-Ba(Zr0.7Pr0.1)Y0.2O3-δ(BZPY)氢分离膜的氢渗透性质。在1440℃烧结10h,可得到致密的Ni-BZPY氢分离膜。Ni-BZPY的氢渗透性能随温度和原料气氢分压的升高而增大。原料气为湿润40%H2/N2且吹扫气为干燥氩气时,950℃时氢渗透性能是1.21×10-8molcm-2s-1。原料气中加入水蒸气,有利于氢渗透速率的提高并轻微地降低表观激活能。氢渗透性能与膜厚度的倒数存在线性关系,表明在测试的厚度范围内,氢渗透受体扩散控制。长期的氢渗透测试结果表明Ni-BZPY膜在潮湿的30%CO2气氛下化学性质稳定。
     第六章给出了外短路BZCY非对称膜的制备与氢渗透性能研究。在多孔Ni-BZCY支撑的致密BZCY膜表面和侧面涂覆Pt浆提供电子通道,就构成了外短路BZCY非对称膜。此结构的氢分离膜在增大致密膜中质子传导相体积的同时又不损失电子电导,使得氢渗透性能进一步提高。在原料气为20%H2/N2(3%H2O)且吹扫器为干燥氩气时,900℃温度下膜的氢渗透速率高达1.71×10-7mol cm-2s-1。实验结果分析得知外短路BZCY非对称膜的氢渗透速率可能仍然是体扩散步骤决定。长期的氢渗透测试显示,3%C02气氛下,氢分离膜可保持稳定的氢渗透输出;但在20%CO2气氛下,45h后氢渗透速率衰减了约8%。
Hydrogen is clean energy materials and important industrial chemicals. Particularly with the environmental degradation in recent years, people desire that the fossil fuel can be substituted by a clean energy. There are two main sources for hydrogen:one is the stream reforming of natural gas; the other is the coal or biomass gasification. The primary products after reactions are a mixing gas containing H2, CO and CO2etc, so hydrogen separation is an indispensable process to obtain the high-purity hydrogen gas. Currently, hydrogen can be purified through one (or a combination) of three major processes:(1) pressure swing adsorption (PSA), fractional/cryogenic distillation, or membrane separation. PSA and fractional/cryogenic distillation systems are in commercial operation, while membrane separation is currently considered to be the most promising because of low energy consumption, possibility for continuous operation, dramatically lower investment cost, its ease of operation and ultimately cost effectiveness. Hydrogen separation membranes also have various types, and the dense ceramic membrane is one of them. People have carried on a large amount of research on dense ceramic membranes and yielded a rich harvest:the hydrogen separation efficiency remarkably increased when previous single-phase membranes developed into present metallic-ceramic membranes; the badly chemical stability of cerate has been improved significantly through doping high-electronegativity element. These developments bring a bright prospect for application of hydrogen separation membranes, but some problems have to be settled urgently. This thesis focuses on hydrogen permeation performance and chemical stability of dense ceramic hydrogen separation membrane.
     Chapter1is the literature review. Firstly, it briefly describes proton conductors and its potential applications as well as hydrogen permeation principle. Next, the current developing situation of ceramic hydrogen separation membrane is introduced in detail, specially for SrCeO3, BaCeO3, La2Ce2O7and La6WO12material system. Finally, the thesis presents development direction and burning questions of ceramic membrane.
     In chapter2, Ni-Ba(Zr0.1Ce0.7)Y0.2O3-δ(BZCY) metal-ceramic asymmetric membranes were prepared via a method to combine co-pressing technique and two-step sintering process, and developed as hydrogen permeation membrane for the first time. The key process is one-step synthesis of NiO-BZCY powders using a citrate-nitrate combustion method. The obtained powders are very fluffy, and in which NiO and BZCY keep well chemical compatibility and mixing homogeneity. Another key factor is two-step sintering process, sintering in air to remove the pore-forming agent and sintering in5%H2/Ar to obtain a dense top membrane. Hydrogen permeation flux through a30-μm-thickness asymmetric membrane achieves1.37×10-7mol cm-2s-1at900℃when using20%H2/N2(with3%of H2O) as feed gas and dry high purity Ar as sweep gas. At last, the relationship between hydrogen permeation fluxes and membrane thicknesses were investigated.
     Chapter3showed the study on preparation technology and permeation properties of Ni-La0.5Ce0.5O2-δ(LDC) asymmetrical membranes. The asymmetrical membrane was fabricated by one-step sintering process by adopting inorganic pore former NH4HCO3. The permeation fluxes respectively increases with increasing of temperature and hydrogen partial pressure gradient; at900℃the value is6.8×10-8mol cm-2s-1under20%H2/N2(with3%H2O) as feed gas and dry Ar as sweep gas, which has a great growth in comparison with1.57×10-8mol cm-2s-1of symmetric membrane. The effect of water vapor on both sides of membrane was studied:adding water vapor into feed gas or sweep gas all result in a increasing of hydrogen fluxes, particularly sweep gas, increasing by1.5-2.0times. A long-term testing operated in CO2-containing atmosphere demonstrates Ni-LDC membrane is a stable membrane for hydrogen separation.
     In chapter4, the hydrogen permeation performance of single-phase mixed electronic-protonic conducting membrane was investigated. The testing of fuel cell with LDC electrolyte ascertained the electronic conductivity existing in LDC. Therefore, LDC asymmetric membrane was fabricated and then its properties were investigated. The LDC membrane was dense sintering at1350℃for5h. Permeation fluxes increased from3.27×10-9to2.67×10-8mol cm-2s-1with the temperature increasing from700℃to900℃under20%H2/N2(with3%H2O) as feed gas. As the hydrogen partial pressure in feed gas increased from0.2to0.8atm, permeation fluxes increased from2.67×10-8to4.51×10-8mol cm-2s-1at900℃. The water vapor in feed gas had a negative effect because it caused the decreasing of LDC electronic conductivity; the water vapor in sweep gas had a positive influence because water splitting reaction produced extra hydrogen.
     In chapter5, Ni-Ba(Zr0.7Pr0.1)Y0.203-δ(BZPY) mixed electronic-protonic conductor was employed as the hydrogen separation membrane for the first time. Dense samples were obtained by combining dry-press and5%H2/Ar-atmosphere sintering process. Hydrogen permeation properties were systemically studied. The hydrogen fluxes of400μm-thickness membrane increase with increasing temperature in range of700-950℃and the value was1.21×10-8mol cm-2s-1at950℃under humid40%H2/N2as feed gas and dry Ar as sweep gas. Water vapor efficiently increased the hydrogen permeation performance and reduced the corresponding activity energy. Thickness dependence of hydrogen permeation through Ni-BZPY composite membranes revealed that the bulk diffusion was the rate determining step of hydrogen permeation throughout the investigated thickness range. The Ni-BZPY membrane maintained steady output of hydrogen permeation under humid and CO2-containing atmosphere during40-hours testing.
     Chapter6reported the BZCY asymmetric membrane with an external short circuit for hydrogen permeation, which was fabricated by covering Ni-BZCY supported BZCY membrane surface and flank using a porous Pt layer. Due to increase the volume of proton conducting phase, the permeation flux further increased correspondingly. Permeation flux reached1.71×10-7mol cm-2s-1at900℃when using20%H2/N2(with3%of H2O) as feed gas. The influence of hydrogen partial pressure in feed gas and flow rate of sweep gas was researched and the results indicated that the bulk diffusion controlled the hydrogen permeation process. The long-term stability testing indicated that the asymmetric membrane remained steady output under3%CO2atmosphere, but under20%CO2the permeation performance degraded by about8%.
引文
[1]Nathan W. Ockwig, Tina M. Nenoff. Membranes for Hydrogen Separation Chem. Rev.107(2007)4078-4110.
    [2]James H. Clark, Ronald M. Dell, David A. J Rand. Hydrogen energy. Book,2004.
    [3]Z. P. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. L. Zhan, Scott A. Barnett. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435 (2005) 795-798.
    [4]H. Z. Zhang, W. S Yang. Highly efficient electrocatalysts for oxygen reduction reaction. Chem. Commun.41 (2007) 4215-4217.
    [5]A. Boudghene Stambouli, E Traversa. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews.6 (2002) 433-455.
    [6]H. Iwahara, H. Uchida, K. Ono, K. Ogaki. Proton Conduction in Sintered Oxides Based on BaCeO3. J. Electrochem. Soc.135 (1988) 529-533.
    [7]H Iwahara, T Esaka, H Uchida, N Maeda-Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics,3-4 (1981) 359-363.
    [8]Truls Norby. Solid-state protonic conductors:principles, properties, progress and Prospects. Solid State Ionics 125 (1999) 1-11.
    [9]Sushil Adhikari, Sandun Fernando. Hydrogen Membrane Separation Techniques. Ind. Eng.Chem. Res.45 (2006) 875-881.
    [10]Jianlin Li, Heesung Yoon, Eric D. Wachsman. Carbon dioxide reforming of methane in a SrCe0.7Zr0.2Eu0.1O3-δ proton conducting membrane reactor. Journal of Hydrogen Energy 37 (2012) 19125006-19132.
    [11]Jianlin Li, Heesung Yoon, Tak-Keun Oh, Eric D. Wachsman. SrCe0.7Zr0.2Eu0.1O3-δ based hydrogen transport water gas shift reactor. International Journal of Hydrogen Energy 37 (2012) 16006-16012.
    [12]Yoshinori Kawamura, Kanetsugu Isobe, Toshihiko Yamanishi. Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump. Fusion Engineering and Design 82 (2007) 113-121.
    [13]G. Marnellos, M. Stoukides, Science 282 (1998) 98-100.
    [14]Ji-De Wang, Ya-Hong Xie, Zheng-Fang Zhang, Rui-Quan Liu, Zhi-Jie Li. Protonic conduction in Ca2+-doped La2M2O7 (M= Ce, Zr) with its application to ammonia synthesis electrochemically. Materials Research Bulletin 40 (2005) 1294-1302.
    [15]Feng Zhang, Qing Yang, Bo Pana, Rui Xua, Hongtao Wang, Guilin Ma. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α ceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure. Materials Letters 61 (2007) 4144-4148.
    [16]H. Iwahara, H. Uchida, N. Maeda. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. Journal of Power Sources 7 (1982)293-301.
    [17]Tetsuro Kobayashi, Katsushi Abe, Yoshio Ukyo, Hiroshige Matsumoto. Study on current efficiency of steam electrolysis using a partial protonic conductor SrZro.9Ybo.i03-a. Solid State Ionics 138 (2001) 243-251.
    [18]Yutie Liu, Xiaoyao Tan, K. Li. Nonoxidative Methane Coupling in a SrCe0.95Yb0.05O3-α (SCYb) Hollow Fiber Membrane Reactor. Industrial & Engineering Chemistry Research 45 (2006) 3782-3790.
    [19]Tetsuro Kobayashi, Shinya Morishita, Katsushi Abe, Hiroyasu Iwahara. Reduction of nitrogen oxide by a steam electrolysis cell using a proton conducting electrolyte. Solid State Ionics 86-88(1996) 603-607.
    [20]T Yajima, K Koide, N Fukatsu, T Ohashi. A new hydrogen sensor for molten aluminum. Sensors and Actuators B 14(1993) 697-699.
    [21]Wensheng Wang, Author Vitae, Anil V. Virkar. A conductimetric humidity sensor based on proton conducting perovskite oxides. Sensors and Actuators B: Chemical 98 (2004) 282-290.
    [22]Lorenzo Malavasi, Craig A. J. Fisher, M. Saiful Islam. Oxide-ion and proton conducting electrolyte materials for clean energy applications:structural and mechanistic features. Chem. Soc. Rev.39 (2010) 4370-4387.
    [23]M. S. Islam, Ionic transport in ABO3 perovskite oxides:a computer modelling tour. J. Mater. Chem.10 (2000) 1027-1038; M. S. Islam and P. R. Slater, Solid-State Materials for Clean Energy:Insights from Atomic-Scale Modeling. MRS Bull.34 (2009) 935-941.
    [24]K. D. Kreuer. PROTON-CONDUCTING OXIDES. Annu. Rev. Mater. Res.33 (2003) 333-359.
    [25]T. Norby and Y. Larring. Concentration and transport of protons in oxides. Curr. Opin. Solid State Mater. Sci.2 (1997) 593-599.
    [26]D.A Stevenson, N Jiang, R.M Buchanan, F.E.G Henn. Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics 62 (1993) 279-285.
    [27]Hideki Maekawa, Yoshitaka Ukei, Kai Morota, Naohito Kashii, Junichi Kawamura, Tsutomu Yamamura. High temperature proton NMR study of yttrium doped barium cerates. Solid State Communications 130 (2004) 73-77.
    [28]K. Kunstler, H.-J. Lang, A. Maiwald, G. Tomandl. Synthesis, structure and electrochemical properties of In-doped BaCeO3. Solid State Ionics 107 (1998) 221-229.
    [29]Hiroyasu Iwahara, Tamotsu Yajima, Takashi Hibino, Haruhisa Ushida. Performance of Solid Oxide Fuel Cell Using Proton and Oxide Ion Mixed Conductors Based on BaCe1-xSmxO3-α. J. Electrochem. Soc.140(1993) 1687-1691.
    [30]Chendong Zuo, S. E. Dorris, U. Balachandran, Meilin Liu. Effect of Zr-Doping on the Chemical Stability and Hydrogen Permeation of the Ni-BaCe0.8Y0.2O3-δ Mixed Protonic-Electronic Conductor. Chem. Mater.18 (2006) 4647-4650.
    [31]Yao Wang, Han Wang, Tong Liu, Fanglin Chen, Changrong Xia. Improving the chemical stability of BaCe0.8Sm0.2O3-δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications 28 (2013)87-90.
    [32]K. Xie, R.Q. Yan, X.X. Xu, X.Q. Liu, G.Y. Meng. The chemical stability and conductivity of BaCe0.9-xYxNb0.1O3-σ proton-conductive electrolyte for SOFC. Mater, Res. Bull.44 (2009) 1474-1480.
    [33]L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCeo.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun.10 (2008) 1598-1601.
    [34]C.S. Tul, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, C.L. Tsai, Thermal stability of Ba(Zr0.8-xCexY0.2)O2.9 ceramics in carbon dioxide. J. Appl. Phys.105 (2009) 103504
    [35]P D. ergolesi, E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat. Mater.9 (2010) 846-852.
    [36]Z.Q. Sun, E. Fabbri, L. Bi, E. Traversa, Electrochemical Properties and Intermediate-Temperature Fuel Cell Performance of Dense Yttrium-Doped Barium Zirconate with Calcium Addition, J. Am. Ceram. Soc.95 (2012) 627-635.
    [37]S.W. Tao, J.T.S. Irvine, A Stable, Easily Sintered Proton-Conducting Oxide Electrolyte for Moderate-Temperature Fuel Cells and Electrolyzers. Adv. Mater. 18 (2006) 1581-1584.
    [38]Takehisa Fukui, Satoshi Ohara, Shigeyuki Kawatsu. Conductivity of BaPrO3 based perovskite oxides. Journal of Power Sources,71 (1998) 164-168.
    [39]J.B. Goodenough, J.E. Ruiz-Diaz, Y.S. Zhen. Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr). Solid State Ionics 44(1990) 21-31.
    [40]Katsuyoshi Kakinuma, Aya Tomita, Hiroshi Yamamura, Tooru Atake. Water vapor absorption and proton conductivity of (Ba1-xLax)2In2O5+x. J Mater Sci 41 (2006) 6435-6440.
    [41]Eric Quarez, Samuel Noirault, Maria Teresa Caldes, Olivier Joubert. Water incorporation and proton conductivity in titanium substituted barium indate. Journal of Power Sources.195 (2010) 1136-1141.
    [42]Lei Bi, Shangquan Zhang, Shumin Fang, Lei Zhang, Haiying Gao, Guangyao Meng, Wei Liu. In Situ Fabrication of a Supported Ba3Ca1.18gNb1.82O9-δ Membrane Electrolyte for a Proton-Conducting SOFC. Journal of the American Ceramic Society 91 (2008) 3806-3809.
    [43]T Schober, F Krug, W Schilling. Criteria for the application of high temperature proton conductors in SOFCs. Solid State Ionics 97 (1997) 369-373.
    [44]Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki. Hydrogen permeability in Ce0.8Yb0.2O1.9 at high temperatures. Solid State Ionics 136-137 (2000) 215-221.
    [45]Fang SM, Bi L, Yan LT, Sun WP, Cheng CS, Liu W. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Phys. Chem. C. 114(2010)10986-10991.
    [46]W.Sun, S.Fang, L.Yan, W.Liu. Investigation on ProtonConductivity of La2Ce2O7 inWetAtmosphere:Dependence on WaterVapor Partial Pressure. FUEL CELLS 12(2012)457-463.
    [47]Erin E Ericksona, Danielle Graya, Kathryn Taylora, Robin T Macalusoa, Lee Ann LeTarda, GS Leeb, Julia Y Chana. Synthesis, structure and dielectric characterization of Ln2Ti2-2XM2xO7(Ln=Gd, Er; M=Zr, Sn, Si). Materials Research Bulletin 37 (2002) 2077-2083.
    [48]Hiroshi Yamamura, Hanako Nishino, Katsuyoshi Kakinuma, Katsuhiro Nomura. Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics 158 (2003) 359-365.
    [49]Xie Y H, Liu R Q, Wang J D. Synthesis and Electrical Properties of Ca and Ce Doped Pyrochlore-type Oxides. Chinese J. Inorg. Chem.20 (2004) 551-554.
    [50]Shimura T, Komori M, Iwahara H. Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature. Solid State Ionics 86-88 (1996) 685-689.
    [51]Reidar Haugsrud, Truls Norby. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Materials 5 (2006) 193-196.
    [52]Satoshi Hamakawa, Lin Li, Anwu Li, Enrique Iglesia. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films. Solid State Ionics 48 (2002) 71-81
    [53]Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U. Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ. Solid State Ionics 2008;179:1854-1857.
    [54]S.-J. Song, E.D. Wachsman, S.E. Dorris, U. Balachandran. Electrical Properties of p-Type Electronic Defects in the Protonic Conductor SrCe0.9sEu0.05O3-δ. Journal of The Electrochemical Society 150 (2003) A790-A795.
    [55]Toshihide Tsuji, Takuji Nagano. Electrical conduction in SrCeO3 doped with Eu2O3. Solid State Ionics 136-137 (2000) 179-182.
    [56]Tak-keun Oh, Heesung Yoon, E.D. Wachsman. Effect of Eu dopant concentration in SrCe1-xEuxO3-δ on ambipolar conductivity.180 (2009) 1233-1239.
    [57]S.-J. Song, E.D. Wachsman, J. Rhodes, S.E. Dorris, U. Balachandran. Hydrogen permeability of SrCe1-xMxO3-δ (x=0.05, M=Eu, Sm). Solid State Ionics 167 (2004) 99-105.
    [58]S.-J. Song, E.D. Wachsman, J. Rhodes, H.-S. Yoon, K.-H. Lee, G. Zhang. Hydrogen permeability and effect of microstructure on mixed protonic-electronic conducting Eu-doped strontium cerate. Journal of materials science 40 (2005) 4061-4066.
    [59]Takkeun Oh, Heesung Yoon, Jianlin Li, E.D. Wachsman. Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes. Journal of Membrane Science 345 (2009) 1-4.
    [60]Udit N. Shrivastava, Keith L. Duncanb, J.N. Chung. Experimentally validated numerical modeling of Eu doped SrCeO3 membrane for hydrogen separation. International Journal of Hydrogen Energy 37 (2012) 15350-15358.
    [61]Heesung Yoon, Takkeun Oh, Jianlin Li, K. L. Duncan, E. D. Wachsman. Permeation Through SrCe0.9Eu0.1O3-δ/Ni-SrCeO3 Tubular Hydrogen Separation Membranes. Journal of The Electrochemical Society 156 (2009) B791-B794.
    [62]Heesung Yoon, Sun-Ju Song, Takkeun Oh, Jianlin Li, Keith L. Duncan, Eric D. Wachsman. Fabrication of Thin-Film SrCe0.9Eu0.1O3-δ Hydrogen Separation Membranes on Ni-SrCeO3 Porous Tubular Supports. J. Am. Ceram. Soc.92 (2009) 1849-1852.
    [63]Jianlin Li, Heesung Yoon, Tak-Keun Oh, Eric D. Wachsman. High temperature SrCe0.9Eu.O3-δ proton conducting membrane reactor for H2 production using the water-gas shift reaction. Applied catalysis. B, Environmental B92 (2009) 234-239.
    [64]I. Kosacki, H.L. Tuller. Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ionics 80 (1995) 223-229.
    [65]Sun-Ju Song, Hyun-Soo Park. Mixed proton-electron conducting properties of Yb doped strontium cerate. J Mater Sci 42 (2007) 6177-6182.
    [66]Maki Matsuka, Roger D. Braddock, Hiroshige Matsumoto, Takaaki Sakai, Igor E. Agranovski, Tatsumi Ishihara. Experimental and theoretical studies of hydrogen permeation for doped strontium cerates. Solid State Ionics 181 (2010) 1328-1335.
    [67]S.-J. Song, T. H. Lee, E. D. Wachsman, L. Chen, S. E. Dorris, U. Balachandrana. Defect Structure and Transport Properties of Ni-SrCeO3-δ Cermet for Hydrogen Separation Membrane. Journal of The Electrochemical Society 152 (2005) J125-J129.
    [68]Yutie Liu, K. Li. Preparation of SrCe0.95Yb0.05O3-α hollow fibre membranes:Study on sintering processes. Journal of Membrane Science 259 (2005) 47-54.
    [69]Yutie Liu, Xiaoyao Tan, and K. Li. SrCe0.95Yb0.05O3-α Hollow-Fiber Membrane and Its Property in Proton Conduction. Aiche journal 52 (2006) 1577-1585.
    [70]Maki Matsuka, Roger Braddock, Igor Agranovski. Numerical study of hydrogen permeation flux in SrCe0.95Yb0.05O3-α and SrCe0.95Tm0.05O3-α Solid State Ionics 178(2007)1011-1019.
    [71]Xiwang Qi, Y.S. Lin. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes. Solid State Ionics 130 (2000) 149-156.
    [72]Shigao Cheng, Vineet K. Gupta, Jerry Y.S. Lin. Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics 176 (2005) 2653-2662.
    [73]Shijing Zhan, Xuefeng Zhu, Baofeng Ji, Weiping Wang, Xiaoliang Zhang, JiboWang, Weishen Yang, Liwu Lin. Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes. Journal of Membrane Science 340 (2009) 241-248.
    [74]Hiroshige Matsumoto, Sachio Okada, Shinichi Hashimoto, Kazuya Sasaki, Reiri Yamamoto, Makiko Enoki, Tatsumi Ishihara. Hydrogen separation from syngas using high-temperature proton conductors. Ionics 13 (2007) 93-99.
    [75]J. L. Li, H. S. Yoon, T. K. Oh, E. D. Wachsman. Stability of Zr-Doped SrCeO3-δ Under Wet CO/CO2 Atmospheres. ECS Transactions 11 (2008) 81-87.
    [76]Liang Jie, MAO Lingling, LI Li, YUAN Wenhui. Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ(0≤x≤0.40) Membrane. Chinese Journal of Chemical Engineering 3(2010) 506-510.
    [77]Jay Kniep, Y. S. Lin. Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Ind. Eng. Chem. Res.49 (2010) 2768-2774.
    [78]Wen Hui Yuan, Ling Ling Mao, Li Li. Novel SrCe0.75Zr0.20Tm0.05O3-δ membrane for hydrogen separation. Chinese Chemical Letters 21 (2010) 369-372.
    [79]Wen Hui Yuan, Chun Shan Dong, Li Li.Conductivity and chemical stability of SrCe0.92Nb0.03Tm0.05O3-δ membrane prepared by modified sol-gel method. Chinese Chemical Letters 23 (2012) 957-960.
    [80]H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61 (1993) 65-69.
    [81]J. Guan, S. E. Dorris, U. Balachandran, M. Liu. The Effects of Dopants and A:B Site Nonstoichiometry on Properties of Perovskite-Type Proton Conductors. J. Electrochem. Soc.145(1998) 1780-1786.
    [82]Rhodes, James Michael. Effect of B-site europium doping on the hydrogen transport properties of barium cerate [D]. Florida, University of Florida,2005.
    [83]Hiroshige Matsumoto, Tetsuo Shimura, Hiroyasu Iwahara, Tohru Higuchi, Keiji Yashiro, Atsushi Kaimai, Tatsuya Kawada, Junichiro Mizusaki. Hydrogen separation using proton-conducting perovskites. Journal of Alloys and Compounds 408-412 (2006) 456-462.
    [84]Guang Tao Li, Guo Xing Xiong, Shi Shan Sheng, Wei Shen Yang. Hydrogen Permeation Properties of Perovskite-type BaCe0.9Mn0.1O3-δ Dense Ceramic Membrane. Chinese Chemical Letters 12 (2001) 937-940.
    [85]Marzieh Heidari, Akbar Zamaniyan, Aliakbar SafeKordi, Ensieh Ganji Babakhani, Mahdi Amanipour. Effect of Sintering Temperature on Microstructure and Hydrogen Permeation. Properties of Perovskite Membrane. J. Mater. Sci. Technol.29 (2013) 137-141.
    [86]Mingya Cai, Song Liu, Konstantin Efimov, Jiirgen Caro, Armin Feldhoff, HaihuiWang. Preparation and hydrogen permeation of BaCe0.95Nd0.05O3-δ membranes. Journal of Membrane Science 343 (2009) 90-96.
    [87]Xiaoyao Tan, Jian Song, Xiuxia Meng, Bo Meng. Preparation and characterization of BaCe0.95Tb0.05O3-α hollow fibre membranes for hydrogen permeation. Journal of the European Ceramic Society 32 (2012) 2351-2357.
    [88]U. Balachandran, T. H. Lee, S. Wang, J. J. Picciolo, J. T. Dusek, S. E. Dorris. Dense cermet membranes for hydrogen separation. Fuel Chemistry Division Preprints 48 (2003) 296-297.
    [89]R.V. Siriwardane, J.A. Poston Jr., E.P. Fisher, T.H. Lee, S.E. Dorris, U. Balachandran. Characterization of ceramic hydrogen separation membranes with varying nickel concentrations. Applied Surface Science 167 (2000) 34-50.
    [90]Yang Jing, Fang Shu-Min, Wu Xiu-Sheng, Chen Chu-Sheng, Liu Wei. Hydrogen Permeation of Ni-BaCe0.9Ye0.1O3-δ Cermet Journal of inorganic materials 22 (2007) 1243-1246.
    [91]Gong Zhang, Stephen Dorris, Uthamalingam Balachandran, Meilin Liu. Effect of Pd Coating on Hydrogen Permeation of Ni-Barium Cerate Mixed Conductor. Electrochem. Solid-State Lett.5 (2002) J5-J7.
    [92]Gong Zhang, Stephen E. Dorris, Uthamalingam Balachandran, Meilin Liu. Interfacial resistances of Ni-BCY mixed-conducting membranes for hydrogen separation. Solid State Ionics 159 (2003) 121-134.
    [93]Chendong Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, Meilin Liu. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. Journal of Power Sources 159 (2006) 1291-1295.
    [94]Litao Yan, Wenping Sun, Lei Bi, Shumin Fang, Zetian Tao, Wei Liu. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds 508 (2010) L5-L8.
    [95]Zhiwen Zhu, Wenping Sun, Litao Yan, Weifeng Liu, Wei Liu. Synthesis and hydrogen permeation of Ni-BaZr0.1Ce0.7Y0.2)O3 metal-ceramic asymmetric membranes. International journal o f hydrogen energy 36 (2011) 6337-6342.
    [96]Xiuxia Meng, Jian Song, Naitao Yang, Bo Meng, Xiaoyao Tan, Zi-Feng Ma, K. Li. Ni-BaCe0.95Tb0.05O3-δ cermet membranes for hydrogen permeation. Journal of Membrane Science 401-402 (2012) 300-305.
    [97]Chun-li Yang, Qi-ming Xu, Zhi-wen Zhu, Wei Liu. Hydrogen Permeation Performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ Metal-Ceramic Hollow Fiber Membrane. Chinese journal of chemical physics,25 (2012) 125-128.
    [98]Shumin Fang, Lei Bi, XiushengWu, Haiying Gao, Chusheng Chen,Wei Liu. Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ in an H2S-containing atmosphere. Journal of Power Sources 183 (2008) 126-132.
    [99]Shumin Fang, Lei Bi, Chunli Yang, Litao Yan, Chusheng Chen,Wei Liu. H2S poisoning and regeneration of Ni-BaZr0.1Ce0.7Y0.2O3-δ at intermediate temperature. Journal of Alloys and Compounds 475 (2009) 935-939.
    [100]Y.Nigara, K. Kawamura, T. Kawada, J. Mizusaki, M. Ishigame, "Hydrogen permeability in sintered CeO2 at high temperatures", Journal of the Electrochemical Society 146 (1999) 2948-2953.
    [101]Y. Nigara, K. Yashiro, J. O. Hong, T. Kawada, J. Mizusaki, "Hydrogen permeability of YSZ single crystals at high temperatures", Solid State Ionics 171 (2004) 61-67.
    [102]Y. Nigara, K. Yashiro, I. Kawada, J. Mizusaki. "Hydrogen permeability in (CeO2)0.9(GdO1.5)o.i at high temperatures", Solid State Ionics 159 (2003) 135-141.
    [103]Wenping Sun, Zhen Shi, Wei Liu. Considerable Hydrogen Permeation Behavior through a Dense Ce0.8Sm0.2O2-δ(SDC) Asymmetric Thick Film. Journal of The Electrochemical Society 160 (2013) F585-F590.
    [104]Yamamura H, Nishino H, Kakinuma K, Nomura K. Crystal Phase and Electrical conductivity in the Pyrochlore-Type Composition Systems, Ln2Ce2O7 (Ln=La, Nd, Sm, Eu, Gd, Y and Yb). J Ceram Soc Jpn.111 (2003) 902-906.
    [105]Yamamura H, Nishino H, Kakinuma K. Ac Conductivity for Eu2Zr2O7 and La2Ce207 with Pyrochlore-Type Composition. J Ceram Soc Jpn.112 (2004) 553-558.
    [106]Vanpoucke DEP, Bultinck P, Cottenier S, Speybroeck VV, Driessche Ⅳ. Density functional theory study of La2Ce2O7:Disordered fluorite versus pyrochlore structure. Physical Review B 84 (2011) 054110
    [107]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protoniceelectronic conductor international journal of hydrogen energy 35 (2010) 4508-4511.
    [108]. Zhiwen Zhu, Litao Yan, Haowei Liu, Wenping Sun, Qingping Zhang, Wei Liu. A mixed electronic and protonic conducting hydrogen separation membrane with asymmetric structure, international journal of hydrogen energy 37 (2012) 12708-12713.
    [109]Li Tao Yan, Shu Min Fang, Wei Liu. Hydrogen Permeation Performance and Chemical Stability of Ni-L1.95Ca0.05Ce2O7-δ in an H2S-Containing Atmosphere. Advanced Materials Research 79-82 (2009) 1695-1698.
    [110]Shumin Fang, Lei Bi,Xiusheng Wu, Haiying Gao, Chusheng Chen, Wei Liu. Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ in an H2S-containing atmosphere Journal of Alloys and Compounds 475 (2009) 935-939.
    [111]Dr. Cecilia Solis, Dr. Vicente B. Vert, Maria Balaguer, Sonia Escolastico, Dr. Stefan Roitsch, Dr. Jose M. Serra. Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode. Materials for LWO-Based Solid Oxide Fuel Cells. Chem Sus Chem 5 (2012) 2155-2158.
    [112]Eric Quarez, Kostiantyn V. Kravchyk, Olivier Joubert. Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics 216 (2012) 19-24.
    [113]Sonia Escolastico, Cecilia Solis, Jose M. Serra. Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes. Solid State Ionics 216 (2012) 31-35.
    [114]Sonia Escolastico, Cecilia Soli's, Jose'M. Serra. Hydrogen separation and stability study of ceramic membranes based on the system NdsLnWO12. international journal of hydrogen energy 36 (2011) 11946-11954.
    [115]Vanesa Gil a, Jonas Gurauskis, Christian Kj(?)lseth, Kjell Wiik, Mari-Ann Einarsrud. Hydrogen permeation in asymmetric La28-xW4+xO54+3x/2 membranes. international journal of hydrogen energy 38 (2013) 3087-3091.
    [116]T. Shimura, S. Fujimoto, H. Iwahara, Proton conduction in nonperovkite-type oxides at elevated temperatures, Solid State Ionics143 (2001) 117-123.
    [117]Reidar Haugsrud. Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics 178 (2007) 555-560.
    [118]Reidar Haugsrud, Christian Kj(?)lseth. Effects of protons and acceptor substitution on the electrical conductivity of La6WO12.Journal of Physics and Chemistry of Solids 69 (2008) 1758-1765.
    [119]Reidar Haugsrud,z Harald Fjeld, Kristoffer R. Haug, Truls Norby. Mixed Ionic and Electronic Conductivity of Undoped and Acceptor-Doped Er6WO12. Journal of The Electrochemical Society 154 (2007) B77-B81.
    [120]M. Amsif, A. Magras6, D. Marrero-Lopez, J. C. Ruiz-Morales, J. Canales-Vazquez, P. Nunez. Mo-Substituted Lanthanum Tungstate La28-yW4+yO54+δ:A Competitive Mixed Electron-Proton Conductor for Gas Separation Membrane Applications. Chem. Mater.24 (2012) 3868-3877.
    [121]Sonia Escolastico, Vicente B. Vert, and Jos_e M. Serra. Preparation and Characterization of Nanocrystalline Mixed Proton-Electronic Conducting Materials Based on the System Ln6WO12-Chem. Mater.21 (2009) 3079-3089.
    [122]Anna Magraso, Carlos Frontera, David Marrero-Lopez and Pedro Nunez. New crystal structure and characterization of lanthanum tungstate "LagWO12" prepared by freeze-drying synthesis. Dalton Trans.46 (2009) 10273-10283.
    [123]Sonia Escolastico, Mariya Ivanova, Cecilia Soils, Stefan Roitsch, Wilhelm A. Meulenberg and Jose" M. Serra. Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ. RSC Advances,2(2012) 4932-4943.
    [124]Wen Xing, Guttorm E. Syvertsen, Tor Grande, Zuoan Li, Reidar Haugsrud. Hydrogen permeation,transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites. Journal of Membrane Science 415-416 (2012) 878-885.
    [125]S.-Y. Jeon, D.-K. Lim, M.-B. Choi, E.D. Wachsman, S.-J. Song. Hydrogen separation by Pd-CaZr0.9Y0.1O3-δ cermet composite membranes. Separation and Purification Technology 79 (2011) 337-341.
    [126]S. Nag, S. Mukhopadhyay, R.N. Basu. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application. Materials Research Bulletin 47 (2012) 925-929.
    [1]Phair JW, Badwal SPS. Review of proton conductors for hydrogen separation. Ionics 2006;12:103-115.
    [2]Adhikari S, Fernando S. Hydrogen separation techniques. Ind Eng Chem Res 2006;Vol.45,pp.875-881.
    [3]Ockwig NW, Nenoff TM. Membranes for Hydrogen Separation. Chem Rev 2007; 107:4078-4110.
    [4]Iwahara H, Yashima T, Hibino T, Ushida H. Performance of solid oxide fuel cell using proton and oxide ionic mixed conductors based on BaCe1-xSmxO3. J Electrochem Soc 1993;140:1687.
    [5]Uchida H, Yoshikawa H, Iwahara H. Dissolution of water vapor (or hydrogen) and proton conduction in SrCeO3 based oxides at high temperatures. Solid State Ionics 1989;35:229-234.
    [6]Song SJ, Wachsman ED, Dorris SE, Balachandran U. Defect chemistry modeling of high-temperature proton-conducting cerates. Solid State Ionics 2002;149:1-10.
    [7]Tetsuo Shimura, Kazumasa Esaka, Hiroshige Matsumoto, Hiroyasu Iwahara. Protonic conduction in Rh-doped AZrO3 (A=Ba, Sr and Ca). Solid State Ionics 2002; 149:237-246.
    [8]Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U. Hydrogen permeability of SrCei1xMxO3-δ (x=0.05, M= Eu, Sm). Solid State Ionics 2004;167:99-105.
    [9]Okada S, Mineshige A, Kikuchi T, Kobune M, Yazawa T. Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium. Thin Solid Films 2007; 515:7342-7346.
    [10]Matsumoto H, Shimura H, Iwahara H, Higuchi T, Kaimai A, Kawada T, Ju Mizusaki J. Hydrogen separation using proton-conducting perovskites. J Alloys Compd 2006; Vol.408-412, pp.456-462.
    [11]Sun WP, Shi Z, Fang SM, Yan LT, Zhu ZW, Liu W. A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ-Ce0.8Sm0.2O2-δ composite cathode. Int J Hydrogen Energy 2010;35:7925-7929.
    [12]Ding HP, Xue XJ. Proton conducting solid oxide fuel cells with layered PrBa0.5Sr0.5Co2O5+δ perovskite cathode. Int J Hydrogen Energy 2010;35:2486-2490.
    [13]Yao LT, Fang SM, Liu W. Hydrogen Permeation Performance and Chemical Stability of Ni-La1.95Ca0.5Ce2O7-δ in an H2S-Containing Atmosphere. Adv Mat Res 2009;Vol.79-82, pp.1695-1698.
    [14]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protonic-electronic conductor. Int J Hydrogen Energy 2010;35:4508-4511.
    [15]Fang SM, Bi L, Yan LT, Sun WP, Chen CS, Liu W. CO2-resistant hydrogen permeation membranes based on doped ceria and nickel. J Phys Chem C 2010;114:10986-10991.
    [16]Kreuer KD. On the development of proton conducting materials for technological applications. Solid State Ionics 1997;97:1-15.
    [17]Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U. Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ. Solid State Ionics 2008;179:1854-1857.
    [18]Zuo CD, Lee TH, Dorris SE, Balachandran U, Liu ML. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-α mixed protonic-electronic conductor. Chem Mater 2006;4647-4650.
    [19]Zuo CD, Lee TH, Dorris SE, Balachandran U, Liu ML. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)03 membrane for hydrogen separation. J Power Sources 2006;159:1291-1295.
    [20]Bonanos N, Knight KS, Ellis B. Perovskite solid electrolytes:Structure, transport properties and fuel cell applications. Solid State Ionics 1995;79:161.
    [21]Gopalan S and Virkar AV. Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells. J Electrochem Soc 1993; 140:1060-1065.
    [22]Norby T, Larring Y. Mixed hydrogen ion-electronic conductors for hydrogen permeable membranes. Solid State Ionics 2000;136:139-148.
    [23]Zhan SJ, Zhu XF, Ji BF, Wang WP, Zhang XL, Wang JB, Yang WS, Lin LW. Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes. J Memb Sci 2009;340:241-248.
    [24]Cheng SG, Gupta VK, Jerry YS Lin. Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics 2005;176:2653-2662.
    [25]Takkeun Oh, Yoon H, Li JL, Wachsman ED. Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes. J Memb Sci 2009;345:1-4.
    [26]Li QM, Zhu XF, Yang WS. Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation. J Memb Sci 2008;325:11-15.
    [27]Watanabe K, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N. Preparation of oxygen evolution layer/La0.6Ca0.4CoO3 dense membrane/porous support asymmetric structure for high-performance oxygen permeation. Solid State Ionics 2008;179:1377-1381.
    [28]Wei CC, Chen OY, Liu Y, Li Y. Ceramic asymmetric hollow fibre membranes-One step fabrication process. J Memb Sci 2008;320:191-197.
    [29]Sun WP, Yan LT, Shi Z, Zhu ZW, Liu W. Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3-δ electrolyte membrane. J Power Sources 2010;195:4727.
    [30]Zhu XF, Wang HH, Yang WS. Relationship between homogeneity and oxygen permeability of composite membranes. J memb sci 2008;309:120-127.
    [31]Misono T, Murata K, Fukui T, Chaichanawong J, Sato K, Abe H, Naito M. Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC. J Power Sources 2006; 157:754-757.
    [32]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance. J Alloys Compd 2010;508:L5-L8.
    [33]Fang SM, Bi L, Wu XS, Gao HY, Cheng CS, Liu W. Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ceo.7Y0.2O3-δ in an H2S-containing atmosphere. J Power Sources 2008;183:126-132.
    [34]Fang SM, Bi L, Yang CL, Yan LT, Chen CS, Liu W. H2S poisoning and regeneration of Ni-BaZr0.1Ce0.7Y0.2O3-δ at intermediate temperature. J Alloys Compd 2009;475:935-939.
    [35]Yang J, Fang SM, Wu XS, Chen CS, Liu W. Hydrogen Permeation of Ni-BaCe0.9Y0.1O3-δ Cermet Journal of inorganic materials 22 (2007) 1243-1246.
    [1]Nathan W. Ockwig, Tina M. Nenoff, Membranes for hydrogen separation, Chem. Rev.107(2007)4078-4110.
    [2]J. W. Phair, S. P. S. Badwal. Review of proton conductors for hydrogen separation. Ionics 12(2006) 103-115
    [3]K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics 97 (1997) 1-15.
    [4]P. Pasierb, E. Drozdz-Ciesla, M. ekas. Properties of BaCe1-xTixO3 materials for hydrogen electrochemical separators. Journal of Power Sources 181 (2008) 17-23
    [5]Shijing Zhan, Xuefeng Zhu, Baofeng Ji,WeipingWang, Xiaoliang Zhang, JiboWangjWeishen Yanga, Liwu Lin. Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes. Journal of Membrane Science 340 (2009) 241-248.
    [6]S.-J. Song, J.-H. Moon, T.H. Lee, S.E. Dorris, U. Balachandran. Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ. Solid State Ionics 179(2008)1854-1857
    [7]Hiroshige Matsumoto, Tetsuo Shimura, Hiroyasu Iwahara, Tohru Higuchi, Keiji Yashiro, Atsushi Kaimai, Tatsuya Kawada, Junichiro Mizusaki. Hydrogen separation using proton-conducting perovskites. Journal of Alloys and Compounds 408-412 (2006) 456-462
    [8]Chendong Zuo, S. E. Dorris, U. Balachandran, Meilin Liu. Effect of Zr-Doping on the Chemical Stability and Hydrogen Permeation of the Ni-BaCe0.8Y0.2O3-δ Mixed Protonic-Electronic Conductor. Chem. Mater.18 (2006) 4647-4650.
    [9]S.-J. Song, T. H. Lee, E. D. Wachsman, L. Chen, S. E. Dorris and U. Balachandran. Defect Structure and Transport Properties of Ni-SrCeO3-δ Cermet for Hydrogen Separation Membrane.152(2005) J125-H129
    [10]Shumin Fang, Lei Bi, Litao Yan, Wenping Sun, Chusheng Chen, and Wei Liu. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Phys. Chem. C 114(2010)10986-10991
    [11]Satoshi Hamakawa, Lin Li, Anwu Li, Enrique Iglesia. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-a thin films Solid State Ionics 48 (2002) 71-81
    [12]Xiaoyao Tan, Jian Song, Xiuxia Meng, Bo Meng. Preparation and characterization of BaCeo.95Tb0.05O3.α hollow fibre membranes for hydrogen permeationJournal of the European Ceramic Society 32 (2012) 2351-2357
    [13]Zhiwen Zhu, Litao Yan, Haowei Liu, Wenping Sun, Qingping Zhang, Wei Liu. A mixed electronic and protonic conducting hydrogen separation membrane with asymmetric structure, international journal of hydrogen energy 37 (2012) 12708-12713
    [14]Vanesa Gil, Jonas Gurauskis, Christian Kj(?)lseth, Kjell Wiik, Mari-Ann Einarsrud. Hydrogen permeation in asymmetric La28-xW4+xO54+3x/2 membranes. International journal of hydrogen energy 38 (2013) 3087-3091.
    [15]Litao Yan, Wenping Sun, Lei Bi, Shumin Fang, Zetian Tao, Wei Liu. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds 508 (2010) L5-L8
    [16]Zhiwen Zhu, Wenping Sun, Litao Yan, Weifeng Liu, Wei Liu, Synthesis and hydrogen permeation of Ni-Ba(Zr0.1Ce0.7Y0.2)O3-δ metal-ceramic asymmetric membranes, international journal of hydrogen energy 36 (2011) 6337-6342.
    [17]L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu, Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. Int. J. Hydrogen Energy 34 (2009) 2421-2425.
    [18]L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun.10 (2008) 1598-1601.
    [19]Litao Yan, Wenping Sun, Lei Bi, Shumin Fang, Zetian Tao, Wei Liu. Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protoniceelectronic conductor. international journal of hydrogen energy 35 (2010) 4508-4511
    [20]Sonia Escola'stico, Cecilia Soli's, Jose'M. Serra. Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. international journal of hydrogen energy 36 (2011) 11946-11954.
    [21]Wen Xing, Guttorm E. Syvertsen, Tor Grande, Zuoan Li, Reidar Haugsrud. Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites. Journal of Membrane Science 415-416 (2012) 878-885.
    [22]Lei Yang, Chendong Zuo, Meilin Liu, High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3-δ(BZCY) fabricated by a modified co-pressing process, Journal of Power Sources 195 (2010) 1845-1848.
    [23]Yamamura H, Nishino H, and Kakinuma K, Ac Conductivity for Eu2Zr2O7 and La2Ce2O7 with Pyrochlore-Type Composition. J Ceram Soc Jpn.112 (2004) 553-555.
    [24]Chendong Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, Meilin Liua. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. Journal of Power Sources 159(2006) 1291-1295
    [25]Yamamura H, Nishino H, Kakinuma K, Nomura K. Crystal Phase and Electrical conductivity in the Pyrochlore-Type Composition Systems, Ln2Ce2O7 (Ln=La, Nd, Sm, Eu, Gd, Y and Yb). J Ceram Soc Jpn.111(2003)902.
    [1]Zuo CD, Lee TH, Dorris SE, Balachandran U, Liu ML. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. Journal of Power Sources.2006;159:1291-1295.
    [2]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds 2010;508:L5-L8.
    [3]Zhu ZW, Sun WP, Yan LT, Liu WF, Liu W. Synthesis and hydrogen permeation of Ni-Ba(Zr01.1Ce0.7Y0.2)O3-δ metal-ceramic asymmetric membranes. International of journal of hydrogen energy 2011;36:6337-6342.
    [4]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protoniceelectronic conductor international journal of hydrogen energy.2010;35:4508-4511.
    [5]Fang SM, Bi L, Yan LT, Sun WP, Cheng CS, Liu W. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Phys. Chem. C. 2010;114:10986-10991.
    [6]Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U. Hydrogen permeability of SrCe1-xMxO3-δ(x=0.05, M=Eu, Sm). Solid State Ionics.2004; 167: 99-105.
    [7]Hamakawa S, Li L, Li AW, Iglesia E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α a thin films. Solid State Ionics.2002;48:71-81.
    [8]Matsumoto H, Shimura T, Iwahara H, Higuchi T, Yashiro K, Kaimai A, Kawada T, Mizusaki J. Hydrogen separation using proton-conducting perovskites. Journal of Alloys and Compounds 2006;408-412:456-462.
    [9]Matsumoto H, Okada S, Hashimoto S, Sasaki K, Yamamoto R, Enoki M, Ishihara T. Hydrogen separation from syngas using high-temperature proton conductors. Ionics.2007; 13:93-99.
    [10]Fang SM, Bi L, Yang CL, Yan LT, Chen CS, Liu W.H2S poisoning and regeneration of Ni-BaZr0.1Ce0.7Y0.2O3-δ at intermediate temperature. Journal of Alloys and Compounds 2009;475:935-939.
    [11]Lin B, Wang SL, Liu XQ, Meng GY. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing.Journal of Alloys and Compounds 2009;478:355-357.
    [12]Bi L, Zhang SQ, Fang SM, Zhang L, Gao HY, Meng GY, L W. In Situ Fabrication of a Supported Ba3Ca1.18Nb1.82O9-δ Membrane Electrolyte for a Proton-Conducting SOFC. J Am Ceram Soc.2008;91:3806-3809.
    [13]Escolastico S, Solis C, Serra JM. Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. Journal of international hydrogen energy.2011;36:11946-11954.
    [14]Wang JD, Xie YH, Zhang ZF, Liu RQ, Li ZJ. Protonic conduction in Ca2+-doped La2M2O7 (M= Ce, Zr) with its application to ammonia synthesis electrochemically. Materials Research Bulletin.2005;40:1294-1302.
    [15]Tao ZT, Bi L, Fang SM, Liu W. A stable La1.95Ca0.05Ce2O7-δ as the electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Power Sources.2011; 196:5840-5843.
    [16]Kovalevsky AV, Yaremchenko AA,. Kolotygin VA,. Shaula AL, Kharton VV, Snijkers FMM, Buekenhoudt A, Frade JR, Naumovich EN. Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. Journal of Membrane Science.2011;380:68-80.
    [17]Roa F, Way JD, McCormick R L,. Paglieri SN. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journa.2003;193:11-22.
    [18]Takkeun Oh, Yoon H, Li JL, Wachsman ED. Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes. J Memb Sci.2009;345:1-4.
    [19]Yamamura H, Nishino H, Kakinuma K, Nomura K. Crystal Phase and Electrical conductivity in the Pyrochlore-Type Composition Systems, Ln2Ce2O7 (Ln=La, Nd, Sm, Eu, Gd, Y and Yb). J Ceram Soc Jpn.2003; 111:902.
    [20]Yamamura H, Nishino H, and Kakinuma K, Ac Conductivity for Eu2Zr2O7 and La2Ce2O7 with Pyrochlore-Type Composition. J Ceram Soc Jpn.112,553 (2004).
    [21]Vanpoucke DEP, Bultinck P, Cottenier S, Speybroeck VV, Driessche IV. Density functional theory study of La2Ce2O7:Disordered fluorite versus pyrochlore structure. Physical Review B.2011;84:054110.
    [22]Katahira K, Kohchi Y, Shimura T, Iwahara H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000:138:91-98.
    [23]Steele B. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃. Solid State Ionics 2000;129:95-110.
    [1]N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation, Chem. Rev.107 (2007)4078-4110.
    [2]R. W. Baker. Future directions of membrane gas separation technology, Ind. Eng. Chem. Res.41 (2002) 1393-1411.
    [3]E. Kikuchi, Membrane reactor application to hydrogen production, Catalysis Today 56 (2000) 97-101.
    [4]M. Oertel, J. Schmitz, W. Weirich, D. Jendryssek-Neumann, R. Schulten, Steam Reforming of Natural Gas with Integrated Hydrogen Separation for Hydrogen Production, Chem. Eng. Technol.10 (1987) 248-255.
    [5]S. Adhikari, S. Fernando, Hydrogen Membrane Separation Techniques, Ind. Eng. Chem. Res.45 (2006) 875-881.
    [6]J. Guan, S.E. Dorris, U. Balachardran, M.L. Liu. Transport properties of BaCe0.95Y0.05O3-α mixed conductors for hydrogen separation, Solid State Ionics 100(1997)45-52.
    [7]S. Hamakawa, L. Li, A. Li, E. Iglesia, Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films, Solid State Ionics 48 (2002) 71-81.
    [8]H. Matsumoto, T. Shimura, H. Iwahara, T. Higuchi, K. Yashiro, A. Kaimai, T. Kawada, J. Mizusaki, Hydrogen separation using proton-conducting perovskites, J. Alloy. Compd.408-412 (2006) 456-462.
    [9]Z.W. Zhu, W.P. Sun, L.T. Yan, W.F. Liu, W. Liu, Synthesis and hydrogen permeation of Ni-Ba(Zr0.1Ce0.7Y0.2)O3-δ metal-ceramic asymmetric membranes, Int. J. Hydrogen Energy; 36 (2011) 633-6342.
    [10]N. Zakowsky, S. Williamson, J.T.S. Irvine, Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3-δ electrolytes for fuel cells and other applications, Solid State Ionics 176(2005)3019.
    [11]S.V. Bhide, A.V. Virkar, Stability of BaCeO3-Based Proton Conductors in Water-Containing Atmospheres, J. Electrochem. Soc.146 (1999) 2038-2044.
    [12]S.M. Fang, L..Bi, X.S. Wu, H.Y. Gao, C. S. Chen, W. Liu, Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ in an H2S-containing atmosphere, J. Power Sources 183 (2008) 126-132.
    [13]K. Xie, R.Q. Yan, X.X. Xu, X.Q. Liu, GY. Meng, The chemical stability and conductivity of BaCe0.9-xYxNb0.1O3-σ proton-conductive electrolyte for SOFC, Mater. Res. Bull.44 (2009) 1474-1480.
    [14]L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu, Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. Int. J. Hydrogen Energy 34 (2009) 2421-2425.
    [15]L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCe0.7Ta0.1Yo.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun.10 (2008) 1598-1601.
    [16]C.S. Tul, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, C.L. Tsai, Thermal stability of Ba(Zr0.8-xCexY0.2)O2.9 ceramics in carbon dioxide, J. Appl. Phys.105 (2009) 103504.
    [17]S.M. Fang, L. Bi, L.T. Yan, W.P. Sun, C.S. Chen, W. Liu, CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel, J. Phys. Chem. C 114 (2010) 10986-10991.
    [18]Z.W. Zhu, L.T. Yan, H.W. Liu, W.P. Sun, Q.P. Zhang, W. Liu, A mixed electronic and protonic conducting hydrogen separation membrane with asymmetric structure, Int. J. Hydrogen Energy 37 (2012) 12708-12713.
    [19]W. Xing, G.E. Syvertsen, T. Grande, Z. Li, R. Haugsru, Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites, J. Membrane Sci.415-416 (2012) 878-885.
    [20]S. Escolastico, C. Solis, J.M. Serra, Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12, Int. J. Hydrogen Energy 36 (2011)11946-54.
    [21]H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Protonic conduction in calcium, strontium and barium zirconates, Solid State Ionics 61 (1993) 65-69.
    [22]T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, Protonic conduction in SrZrO3 based oxides. Solid State Ionics 51 (1992) 101-107.
    [23]P D. ergolesi, E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G Balestrino, E. Traversa, High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition, Nat. Mater.9 (2010) 846.
    [24]Z.Q. Sun, E. Fabbri, L. Bi, E. Traversa, Electrochemical Properties and Intermediate-Temperature Fuel Cell Performance of Dense Yttrium-Doped Barium Zirconate with Calcium Addition, J. Am. Ceram. Soc.95 (2012) 627-635.
    [25]Z.Q. Sun, E. Fabbri, L. Bi, E. Traversa, Lowering grain boundary resistance of BaZr0.8Y0.2O3-δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation, Phys. Chem. Chem. Phys.13 (2011) 7692-7700.
    [26]S.W. Tao, J.T.S. Irvine, A Stable, Easily Sintered Proton-Conducting Oxide Electrolyte for Moderate-Temperature Fuel Cells and Electrolyzers, Adv. Mater. 18(2006)1581-1584.
    [27]E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, E. Traversa, Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells, Adv. Funct. Mater.21 (2011) 158-166.
    [28]Y. Liu, Y.M. Guo, R. Ran, Z.P. Shao, A new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells, J. Membrane Sci. 415-416(2012)391-398.
    [29]L. Bi, E. Fabbri, Z.Q. Sun, E. Traversa, Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3-δ for solid oxide fuel cells (SOFCs), Solid State Ionics 196 (2011) 59-64.
    [30]L.T. Yan, W.P. Sun, L. Bi, S.M. Fang, Z.T. Tao, W. Liu, Influence of fabrication process of Ni-BaCe0.7Zr0.1Yo.2O3-δ cermet on the hydrogen permeation performance, J. Alloy. Compd.50 (2010) L5-L8.
    [31]K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3, Solid State Ionics 138 (2000) 91-98.
    [32]M.Y. Cai, S. Liu, K. Efimov, J. Caro, A. Feldhoff, H.H. Wang,Preparation and hydrogen permeation of BaCe0.95Nd0.05O3-δ membranes, J. Membrane Sci.343 (2009) 90-96.
    [33]S.J. Song, J.H. Moon, T.H. Lee, S.E. Dorris, U. Balachandran, Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ, Solid State Ionics 179(2008)1854-1857.
    [1]L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu, Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. Int. J. Hydrogen Energy 34 (2009) 2421-2425.
    [2]L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun.10 (2008) 1598-1601.
    [3]K. Xie, R.Q. Yan, X.X. Xu, X.Q. Liu, G.Y. Meng, The chemical stability and conductivity of BaCe0.9-xYxNb0.1O3-σ proton-conductive electrolyte for SOFC, Mater. Res. Bull.44 (2009) 1474-1480.
    [4]Chendong Zuo, S, E. Dorris, U. Balachandran, Meilin Liu. Effect of Zr-Doping on the Chemical Stability and Hydrogen Permeation of the Ni-BaCe0.8Y0.2O3-δ Mixed Protonic-Electronic Conductor. Chem. Mater.18 (2006) 4647-4650.
    [5]Chendong Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, Meilin Liu. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. Journal of Power Sources 159 (2006) 1291-1295.
    [6]Yang Jing, Fang Shu-Min, Wu Xiu-Sheng, Chen Chu-Sheng, Liu Wei. Hydrogen Permeation of Ni-BaCeo.9Yo.i03-s Cermet Journal of inorganic materials 22 (2007) 1243-1246.
    [7]Litao Yan, Wenping Sun, Lei Bi, Shumin Fang, Zetian Tao, Wei Liu. Influence of fabrication process of Ni-BaCe0.7Zr0.1Y0.2O3-δ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds 508 (2010) L5-L8.
    [8]Gong Zhang, Stephen Dorris, Uthamalingam Balachandran, Meilin Liu. Effect of Pd Coating on Hydrogen Permeation of Ni-Barium Cerate Mixed Conductor. Electrochem. Solid-State Lett.5 (2002) J5-J7.
    [9]Zhiwen Zhu, Wenping Sun, Litao Yan, Weifeng Liu, Wei Liu. Synthesis and hydrogen permeation of Ni-BaZro.iCeo.7Yo.2)03 metal-ceramic asymmetric membranes. International journal o f hydrogen energy 36 (2011) 6337-6342.
    [10]S.-J. Song, T. H. Lee, E. D. Wachsman, L. Chen, S. E. Dorris, U. Balachandrana. Defect Structure and Transport Properties of Ni-SrCeO3-δ Cermet for Hydrogen Separation Membrane. Journal of The Electrochemical Society 152 (2005) J125-J129.
    [11]Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W. Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protoniceelectronic conductor international journal of hydrogen energy 35 (2010) 4508-4511.
    [12]Shumin Fang, Lei Bi, XiushengWu, Haiying Gao, Chusheng Chen,Wei Liu. Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ in an H2S-containing atmosphere. Journal of Power Sources 183 (2008) 126-132.
    [13]Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U. Thickness dependence of hydrogen permeability for Ni-BaCe0.7Y0.2O3-δ. Solid State Ionics 179 (2008) 1854-1857.
    [14]Xiuxia Meng, Jian Song, Naitao Yang, Bo Meng, Xiaoyao Tan, Zi-Feng Ma, K. Li. Ni-BaCe0.95Tb0.05O3-δ cermet membranes for hydrogen permeation.Journal of Membrane Science 401-402 (2012)300-305.
    [15]Xiaoyao Tan, Jian Song, Xiuxia Meng, Bo Meng. Preparation and characterization of BaCeo.95Tb0.05O3-α hollow fibre membranes for hydrogen permeation. Journal of the European Ceramic Society 32 (2012) 2351-2357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700