用户名: 密码: 验证码:
黑河上游典型小流域森林—草地生态系统水文过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域是我国第二大内陆河流域,上游是主要的产流区,中下游地区是主要的耗水区。由于水资源的匮乏,上游产水一直难以满足中下游地区经济发展和生态平衡的需要,尤其是上个世纪60年代,进入下游的水量减少造成了下游地区严重的生态问题。黑河上游以祁连山区为主,主要覆盖有山地针叶林、灌丛及大量草地。伴随着人类活动的影响,祁连山区植被处于剧烈的变化过程中:20世纪中期许多森林转化为草地和农田;到21纪初期由于封山禁牧及植树造林的实施,上游森植被有了较大的恢复。上游生态系统不同植被类型的相互转换势必会对上游水文过程产生重要的影响,而认识植被变化对水文过程的影响,首要的任务是要理解不同植被类型下的水文过程。只有通过理解不同植被类型下的水文过程及变化机制,才能更好的评估植被变化对流域水文过程的影响。因而,本论文以黑河上游天老池小流域为研究区域,通过建立野外观测样地,对流域内青海云杉林及草地水文过程进行观测。利用野外观测数据,对植被冠层截留、地被物水文特征、植被蒸发散、典型植被下土壤蒸发及典型土壤水文特征等进行了分析与讨论,通过我们的研究发现:
     1、青海云杉林冠截留过程中,林内穿透雨和林外降雨量之间呈现明显的两个阶段:林冠饱和前和林冠饱和后。其中,林外降雨量4.0mm为分界点。在降雨量小于4.0mm之前,林内穿透雨主要以自由穿透雨为主;在降雨量达到4.Omm以后,林冠达到饱和,林内穿透雨主要由冠层滴落水滴为主。林冠截留率在林冠是否达到饱和时有较大的差异:在林冠达到饱和前,林冠截留率远高于林冠饱和后的林冠截留率。通过对降雨强度与截留量之间的关系研究发现,10min尺度上降雨强度和林冠截留量之间呈较好的相关关系。总的来说,林冠截留量随着10min降雨强度的增加而增加。林冠截留量与降雨强度之间是发散的关系,发散点最上方线定义为“干线”,其代表了林冠100%对降雨截留;而最下方线定义为“湿线”,其代表着林冠饱和后的林冠蒸发为林冠截留量。此外,通过青海云杉截留样地90个截留桶观测数据分析表明,不管是在小降雨事件、中降雨事件还是大降雨事件下,林冠截留率均随林冠盖度和植被面积指数的增加而增加。林冠截留率与林冠盖度和植被面积指数之间呈发散的关系,中降雨事件下林冠截留率的增加速率要快于大降雨事件下的增加率。草地冠层截留人工实验观测发现,草地冠层截留过程与青海云杉林冠截留过程类似,同样可以分为冠层饱和前和冠层饱和后。其中禁牧草地需要降雨量达到1.8mm才能出现穿透雨,而放牧草地仅需要1.1mm降雨量并可以出现穿透雨。在出现穿透雨前草地冠层截留量随降雨量增加而增加,在达到穿透雨点后,冠层截留量将随降雨量的增加逐步达到稳定,草地冠层截留量与降雨量之间相关性关系可以用指数函数来拟合。通过比较分析草地冠层截留量与降雨强度之间的关系发现:在穿透雨出现前,截留量的增加不受降雨强度大小的影响,而当降雨量大于穿透雨点后,降雨强度对草地冠层截留量影响较为明显:在降雨强度<0.7-0.8mm/min时草地冠层对降雨的截留量随降雨强度的增加而增加,但降雨强度超过1.0-1.2mm/min冠层截留量反倒随降雨强度的增加而有所下降。利用人工降雨法和水浸泡法测得的草地冠层饱和持水量相差较大,其中降雨强度小于0.3mm/min测的草地冠层饱和持水量(禁牧草地:1.95mm;放牧草地:1.29mm)可以认为是具有现实应用意义的草地冠层饱和持水量。
     2、不同测量方法得到的苔藓层饱和持水率具有较大的差异,其中用降雨法测得的苔藓层饱和持水率平均值为682.48%;水浸泡法得到的苔藓饱和持水率为766.22%。相较于水浸泡法,降雨法更容易受苔藓层各参数的影响,初始含水率、苔藓密度对苔藓层饱和含水率的影响均是一种显著的正相关关系。研究区苔藓蓄积量随着海拔的升高有一定的增加,观测期间平均蓄积量为13.0t/hm2,而苔藓饱和持水率随海拔的升高有一定的下降趋势。综合苔藓蓄积量及饱和持水率变化特征发现,研究区苔藓饱和持水量随海拔变化不是很明显,苔藓层饱和持水量平均值为7.40k/m2,相当于7.4mm的降雨量。
     3、典型晴天草地蒸发散日变化呈现明显的单峰形式,采用Gauss型函数拟合其变化趋势精度较高。草地植被蒸腾在早晨和傍晚均很低,在中午15:00时左右达到最高,一天内草地植被总蒸腾量为0.727mm o典型晴天草地蒸发散基本上与所有的气象要素相关,其中与空气温度相关性最高,其次是气压,太阳辐射及土壤湿度等。通径分析结果表明,对草地蒸发散强度日变化直接影响最大的环境因子是空气温度,其次是土壤温度和土壤水分。典型晴天,青海云杉树干液流密度变化呈单峰型,峰值在4.20-4.66g·cm-2h-1之间变化。树十液流密度日变化与光合有效辐射呈显著正相关,其次足冠层顶端空气温度、地表土壤温度等,然而土壤水分对青海云杉树干液流密度的日变化影响不显著。通径分析显示在我们所采用的7个环境因子中对树干液流密度产生最大直接影响的是冠层顶端空气温度,其次是光合有效辐射,而土壤温度对树干液流密度则有较大的负相关关系。生长季期间单株青海云杉日蒸腾耗水量在0.023-12.10kg/d之间变化,平均值为6.Okg/d,日蒸腾耗水量在晴天和阴雨天相差巨大。从月尺度上来看,青海云杉日蒸腾耗水量从5月初的较低水平直上升,到7月底8月初的时候达到最大,之后逐渐减低,在观测期间内单株青海云杉的总耗水量为803.75kg。月尺度上土壤水分变化趋势和青海云杉日耗水量变化趋势具有非常好的对应关系,对比分析发现研究区冻土的消融作用对青海云杉蒸腾耗水量产生了重要的影响。从相关性分析来看,青海云杉日蒸腾量主要受土壤水分,光合有效辐射和地表土壤温度及冠层顶端空气温度影响。
     4、利用Lysimeter蒸渗仪对土壤日蒸发量的观测结果表明,青海云杉林下土壤蒸发受林冠结构特征的影响较大,林下7号和8号Lysimeter蒸渗仪观测到的有效土壤蒸发量分别为1.17mm/d和1.70mm/d;而林外观测数据显示,在移除林冠结构的影响后,7号和8号Lysimeter蒸渗仪观测到的土壤蒸发日变化趋势非常相似,其平均土壤日蒸发量分别为2.20mm/d和2.44mm/d。在相同气象条件下,由于土壤质地差异带来的土壤日蒸发量相差10.9%。土壤物理性质的差异对土壤蒸发有一定的影响,而表层0-1Ocm土壤属性特征对土壤蒸发影响最大。2011年草地土壤日蒸发量平均值为3.76mm/d;2012年草地土壤日蒸发量平均值为2.90mm/d,由于降水及气象因素的差异导致两年间的土壤蒸发量差异达29.6%。对比生长季不同植被下土壤日蒸发量发现,草地土壤蒸发量要明显高于青海云杉土壤蒸发量,在去除植被冠层的影响后草地土壤蒸发与青海云杉土壤蒸发之间的差异明显变小。此外,不管是青海云杉土壤蒸发还是草地土壤蒸发均与蒸发皿观测到的潜在蒸发显著相关,草地土壤蒸发与蒸发皿潜在蒸发之间相关性最高。观测期间青海云杉林内土壤蒸发平均值为1.44mm/d,为同期潜在蒸发平均值的38.1%;林外观测到的土壤蒸发平均值为2.32mm/d,为同期潜在蒸发平均值的83.7%。从土壤蒸发所占同期潜在蒸发的比率来看,林外土壤蒸发是林内土壤蒸发的2.2倍。对比分析草地与青海云杉土壤蒸发与所占同期潜在蒸发的比率来看,草地土壤蒸发是林外青海云杉土壤蒸发的1.2倍,该增加比例仅为林内和林外青海云杉土壤蒸发增加比例的1/6左右。植被变化对土壤蒸发日变化起最为重要的影响。
     5、青海云杉土壤0-30cm总的饱和蓄水量达249.4mm,土壤饱和含水率高达184.74%;草地0-30cm总的饱和蓄水量为161.8mm,饱和含水率为44.21%。相比较而言,青海云杉土壤水源涵养能力比草地土壤高。不同深度土壤水分特征曲线差异显著,在相同土壤水势下青海云杉土壤持水量要大于草地土壤持水量。青海云杉¨土壤0-30cm土层田间持水量为0.648cm3/cm3,凋萎点含水量为0.126cm3/cm3;而草地土壤0-30cm土层田间持水量为0.403cm3/cm3,凋萎点含水量为0.062cm3/cm3,不管田间持水量还是凋萎点含水量青海云杉土壤均要大于草地土壤。2011年生长季期间青海云杉和草地0-30cm土壤水分含量平均值分别为0.35cm3/cm3和0.23cm3/cm3;2012年生长季两者土壤水分含量平均值分别为0.41cm3/cm3和0.26cm3/cm3.青海云杉平均土壤水分含量要比草地平均土壤水分含量高50%左右。通过对不同水文过程分析发现,相比于草地,虽然青海云杉林冠截留量偏大,植被蒸腾耗水量比草地高,但是青海云杉林下土壤蒸发要低于草地土壤蒸发,加之青海云杉林下地表径流发生几率非常微小,林下苔藓枯落物层的持水、保水作用,增加了土壤的下渗水量,使得青海云杉林内土壤水分高于草地土壤水分。
Heihe River basin is the second longest inland river basin in China, and its water resource mainly originating from the upper reach, while the middle reach and lower reaches are water consumption area. The obvious shortage of the water supply from the upper reach has impact on economic water uses in the middle reach and ecologic water requirement in the lower reach. In1960s, the lower reach encountered serious ecological deterioration because of water decreases from the upper and middle reaches. The upper reach mainly include the Qilian Mountains areas, and the typical vegetation coverage in the mountains area is Qinghai spruce forest, subalpine scrub, alpine meadows and grasslands. In recent decades, vegetation coverage has changed dramatically in this area. For example, in the middle of the last century, the number of forest lands being converted into croplands; while after2000s, lots of grasslands had been converted to forest. The transformations will strongly change the hydrological processes in the upper reach. To discuss these changes, the primary task is to fully understand the hydrological processes under each of vegetation coverage. Therefore, we chose a small watershed (i.e., named Tianlaochi watershed) as the study area, and build several field survey plots to observe and analyze the mechanism of the hydrological processes under forest and grassland. In this research paper, the vegetation canopy interception, the water-holding capacity of the forest floor, the plant transpiration, the soil evaporation and the soil moisture characteristic have been analyzed and discussed, we found:
     1. The processes of canopy interception by the Qinghai spruce forest demonstrated that the relationships between the throughfall and gross precipitation were two-stepped. The first step was canopy unsaturated and the second step was canopy saturated,4.0mm is the threshold. Before the canopy saturated, the throughfall was free-throughfall-dominated. whereas when the canopy saturated, the throughfall was canopy-drop-dictated. The canopy interception rate before the canopy saturated was far higher than the rate after the canopy saturated. Our examination into the relationship between the interception and the10-min average intensity of precipitation showed the interception increased with increasing precipitation intensity, and the relationship was a divergent one. The divergent relationship was bracketed by an upper'dry line'indicating that100%of gross precipitation was intercepted before saturation, and by a lower'wet line'suggesting that the canopy reached the maximum canopy storage capacity and evaporation was the only component of the interception. Besides, the canopy interception of90throughfall collecting tanks under different canopy structures showed that the interception percentage increased with increasing canopy cover (or plant area index) under all of three rainfall-amount conditions, and the relationship also was a divergent one. The percentage of interception increased faster with increasing canopy cover (or plant area index) under intermediate rainfall conditions than that of under heavy rainfall conditions.
     The artificial precipitation experiment for the grassland canopy interception showed the processes of canopy interception by the grass were similarly to Qinghai spruce forest. The relationship between the throughfall and gross precipitation also had two steps (that is, the canopy unsaturated and saturated). There were different break points for the canopy saturated under the grazing prohibition (i.e.,1.8mm) and grazing conditions (i.e.,1.1mm). When the grass canopy unsaturated, the interception was linearly increased with the increasing gross precipitation, and then exponently increased after the canopy saturated. We examined the relationship between the percentage of interception and precipitation intensity, and found that the interception was uninfluenced by the precipitation intensity before the canopy saturated. After the canopy was saturated, interception increased with the increasing precipitation intensity when the intensity was<0.7-0.8mm/min; however, it appeared an opposite trend when the intensity was>1.0-1.2mm/min. Furthermore, our analyses suggested that the water storage capacity of the canopy was difference under different precipitation intensity. In the<0.3mm/min precipitation intensity degree, the water storage capacity for the grazing prohibited grass and grazed grass were1.95mm and1.29mm, respectively. These two values could be seemed as the actual maximum canopy water storage capacity.
     2. The different experimental methods yielded different water-holding capacity of the forest floor. The water balance method supported the average of the water-holding capacity of the moss was682.48%of its biomass, while this value was766.24%by using a direct soaking method. The water balance method was affected by several factors, such as the initial moisture content and density of the moss, which have positive effects to the water-holding capacity. Our results supported the rising trend between the biomass of moss and elevation. However, our results also illustrated a decreasing trend between the rate of the water-holding capacity and elevation; this could be attributed to decreased porosity of the moss along with the increased elevation. In our study area, with increasing elevation, the variation of the saturated water content of the moss were not obvious, and the average saturated water contents of the moss was7.40kg/m2
     3. Our observation data revealed that the variation of grass evapotranspiration rate shows a single-peak changing tendency in a sunny day. The evapotranspiration rate from the grassland was higher than the bare land; the difference of the two could be considered as the grass transpiration. The highest transpiration rate appeared at15:00, while the rate was low during the morning and evening. The total transpiration of the grass in a sunny day was0.727mm. The correlation coefficient and path coefficients between the transpiration rate and environmental factors indicated that the air temperature had the most positive direct effect on transpiration rate, and the subsequent factors were soil temperature and soil moisture. In addition, the air pressure, relative humidity and wind speed had an indirect effect on transpiration rate because the air temperature had relatively close relationship to these factors.
     We used an SF type sap flow systems to measure sap flow of individual Qinghai spruce tree. The data showed that the daily sap flow density had significant singlet variation tendency. In the sunny days, the maximal sap flow density ranged from4.20g·cm-2h-1to4.66g·cm-2h-1. The daily highest sap flow density was positively correlated with the photosynthetically active radiation (PAR); the following factors were air temperature above the canopy and soil temperature. However, the soil moisture was not relevant with the daily sap flow. Furthermore, in all the seven factors, the air temperature above the canopy had the maximal positive direct effect on the sap flow density, while the soil temperature had a negative effect. Our results showed the daily transpiration of the Qinghai spruce stand was between0.023kg/d and12.10kg/d, with the average being6.0kg/d. There was a huge difference between a sunny day and a rainy day. During the growing season, the daily transpiration started to increase at the beginning of May. reached its maximum at the end of the July or the beginning of August, and returned to its minimal value at the end of the growing season. The total transpiration of an individual stand during the growing season was 803.75kg. On the basis of the analyzing result, we compared the daily transpiration and the soil moisture and found that during the growing season, these two factors had similar varying tendency, and the reason may be the melting of frozen soil. The correlation coefficient showed the daily transpiration was most sensitive to the soil moisture, and then the PAR and the air temperature above the canopy.
     4. In this study, the Lysimeter was used to observe the soil evaporation. The results indicated that the daily soil evaporation from the number7and8Lysimeter was1.17mm/d and1.70mm/d under the canopy, as the canopy characters strongly affected the soil evaporation. After removal the impact of forest canopy, the soil evaporation was2.2mm/d and2.44mm/d from the two Lysimeter. Under the same meteorological conditions, the soil texture could introduce10.9%difference of the soil evaporation, but this effect was less than the canopy characters. Besides, the soil evaporation from the grassland Lysimeter showed that the meteorological factors could cause29.6%of the difference, while the soil evaporation was3.76mm/d in2011and2.90mm/d in2012, respectively. During the observation period, the soil evaporation from grassland was higher than the Qinghai spruce forest soil. However, they were all relative with the potential evaporation from the20cm evaporation pan. For example, the average soil evaporation of the Qinghai spruce forest soil under the canopy and open area were1.44mm/d and2.32mm/d, respectively, which accounted for38.1%and83.7%of the average potential evaporation during the same time. The soil evaporation from the open area was2.2times higher than that of under the canopy. Also the grassland soil evaporation suggested that it was1.2times higher than that from the open area. The vegetation could make a greater impact to the soil evaporation.
     5. Our experimental data showed the soil porosity of the Qinghai spruce forest was about53%higher than that of the grassland soil. As a result, the total soil saturated water was249.4mm in the0-30cm of Qinghai spruce forest soil, and was only161.8mm in the0-30cm of grassland soil. There were significant differences in Qinghai spruce forest and grassland soil. In general, under the same soil water potential the Qinghai spruce forest soil had more water than the grassland soil. Our examination showed that the soil holding water of Qinghai spruce forest soil and grassland soil were0.648cm3/cm3and0.403cm3/cm3. respectively. The Qinghai spruce forest soil had higher value than the grassland.
     During the growing season, the average soil water content in the Qinghai spruce forest soil and grassland soil were0.35cm3/cm3and0.23cm3/cm3in2011, while these values were0.41cm3/cm3and0.26cm3/cm3in2012. Compared with the grassland, the soil water content of Qinghai spruce forest was about50%higher. Although the transpiration from the Qinghai spruce stand was higher than the grass, but the soil evaporation from the Qinghai spruce soil was much lower than the grassland soil. In additional, the forest floor could improve the water retention capacity of soil, as a result, the soil water content in the Qinghai spruce forest was higher than that of grassland.
引文
[1]Ansley R. J., Dugas W. A., Heuer M. L., et al. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa)[J]. Journal of Experimental Botany, 1994,45 (6):847-856.
    [2]Avissar R., Avissar P., Mahrer Y., et al. A model to simulate response of plant stomata to environmental conditions[J]. Agricultural and Forest Meteorology,1985,34 (1):21-29.
    [3]Aydin M. A model for evaporation and drainage investigations at ground of ordinary rainfed-areas[J]. Ecological Modelling,2008,217 (1):148-156.
    [4]Bari M. A., Smith N., Ruprecht J. K., et al. Changes in streamflow components following logging and regeneration in the southern forest of Western Australia[J]. Hydrological Processes,1998,10 (3):447-461.
    [5]Berndtsson R., Nodomi K., Yasuda H., et al. Soil water and temperature patterns in an arid desert dune sand[J]. Journal of Hydrology,1996,185 (1):221-240.
    [6]Boast C. W., Robertson T. M. A "micro-lysimeter" method for determining evaporation from bare soil:description and laboratory evaluation[J]. Soil Science Society of America Journal, 1982,46 (4):689-696.
    [7]Bonell M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal of Hydrology,1993,150 (2):217-275.
    [8]Bosch J. M., Hewlett J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology,1982,55 (1):3-23.
    [9]Bowen R. H. Memoirs:Studies on the Golgi Apparatus in Gland-Cells Ⅲ. Lachrymal Glands and Glands of the Male Reproductive System[J]. Quarterly Journal of Microscopical Science, 1926,2 (279):395-418.
    [10]Burt T. P., Swank W. T. Flow frequency responses to hardwood to grass conversion and subsequent succession[J]. Hydrological Processes,1992,6 (2):179-188.
    [11]Buttle J. M., Creed I.E., Pomeroy J. W. Advances in Canadian forest hydrology. 1995-1998[J]. Hydrological Processes,2000,14(9):1551-1578.
    [12]Carlyle-Moses D. E., Price A. G. An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology,1999,214 (1):103-110.
    [13]Childs E. C. The use of soil moisture characteristics in soil studies[J]. Soil Science,1940,50 (4):239-252.
    [14]Colman E. A. A Laboratory Procdure for Determining the Field Capacity of Soils[J]. Soil Science,1947,63 (4):277-284.
    [15]Cosby B. J., Hornberger G. M., Clapp R. B., et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research,1984,20 (6):682-690.
    [16]Daamen C. C., Simmonds L. P., Wallace J. S., et al. Use of microlysimeters to measure evaporation from sandy soils[J]. Agricultural and Forest Meteorology,1993,65 (3):159-173.
    [17]Deguchi A., Hattori S., Park H.-T. The influence of seasonal changes in canopy structure on interception loss:Application of the revised Gash model[J]. Journal of Hydrology,2006,318 (1):80-102.
    [18]Eagleson P. S. Ecohydrology:Darwinian expression of vegetation form and function[M]. Cambridge University Press,2002.
    [19]Famiglietti J. S., Rudnicki J. W., Rodell M. Variability in surface moisture content along a hillslope transect:Rattlesnake Hill, Texas[J]. Journal of Hydrology,1998,210 (1):259-281.
    [20]Fitzjohn C., Ternan J. L., Williams A. G. Soil moisture variability in a semi-arid gully catchment:implications for runoff and erosion control[J]. Catena,1998,32 (1):55-70.
    [21]Fritschen L. J., Cox L., Kinerson R. A 28-meter Douglas-fir in a weighing lysimeter[J]. Forest Science,1973,19 (4):256-261.
    [22]Gallego Fernandez J. B., Rosario Garcia Mora M., Garcia Novo F. Vegetation dynamics of Mediterranean shrublands in former cultural landscape at Grazalema Mountains, South Spain[J]. Plant Ecology,2004,172 (1):83-94.
    [23]Gash J. H. C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society,2006,105 (443):43-55.
    [24]Gash J. H. C., Lloyd C. R., Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology,1995,170(1):79-86.
    [25]Gash J. H. C., Wright I. R., Lloyd C. R. Comparative estimates of interception loss from three coniferous forests in Great Britain[J]. Journal of Hydrology,1980,48 (1):89-105.
    [26]Germer S., Neill C., Krusche A. V., et al. Influence of land-use change on near-surface hydrological processes:undisturbed forest to pasture[J]. Journal of Hydrology,2010,380 (3): 473-480.
    [27]Ghosh R. K. Estimation of soil-moisture characteristics from mechanical properties of soils[J]. Soil Science,1980,130 (2):60.
    [28]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology,1987,3 (4):309-320.
    [29]Granier A., Breda N. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements[J]. Annales Des Sciences Forestieres,1996,53:537-546.
    [30]Granier A., Breda N., Biron P., et al. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands[J]. Ecological Modelling,1999,116(2): 269-283.
    [31]He Z., Zhao W., Liu H., et al. Effect of forest on annual water yield in the mountains of an arid inland river basin:a case study in the Pailugou catchment on northwestern China's Qilian Mountains[J]. Hydrological Processes.2011,26 (4):613-621.
    [32]Helvey J., Patric J. H. Canopy and litter interception of rainfall by hardwoods of eastern United States[J]. Water Resources Research,1965,1 (2):193-206.
    [33]Hillcl D. Applications of soil physics[M]. Academic Press Inc.(London) Ltd.,1980.
    [34]Hillel D., Gardner W. R. Transient infiltration into crust-topped profiles[J]. Soil Science,1970, 109 (2):69-76.
    [35]Horton R. E. Rainfall interception [J]. Monthly Weather Review,1919,47:603-623.
    [36]Hu Z., Yu G.. Zhou Y., et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems:Application of a two-source model[J]. Agricultural and Forest Meteorology,2009,149(9):1410-1420.
    [37]Huang J., Van Den Dool H. M., Georgakakos K. P. Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts[J]. Journal of Climate,1996,9(6):1350-1362.
    [38]Kelliher F. M., Whitehead D., McAneney K. J., et al. Partitioning evapotranspiration into tree and understorey components in two young pinus radiata D. Don stands[J]. Agricultural and Forest Meteorology,1990,50 (3):211-227.
    [39]Kondo J., Saigusa N. A parameterization of evaporation from bare soil surfaces[J]. Journal of Applied Meteorology,1990,29 (5):385-389.
    [40]Kumagai T. o., Saitoh T. M., Sato Y., et al. Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest[J]. Agricultural and Forest Meteorology, 2005,128(1):81-92.
    [41]Laio F. A vertically extended stochastic model of soil moisture in the root zone[J]. Water Resources Research,2006,42 (2):W02406.
    [42]Lankreijer H. J. M., Hendriks M. J., Klaassen W. A comparison of models simulating rainfall interception of forests[J]. Agricultural and Forest Meteorology,1993,64 (3):187-199.
    [43]Leopoldo P. R., Franken W. K., Villa Nova N. A. Real evapotranspiration and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method[J]. Forest Ecology and Management,1995,73 (1):185-195.
    [44]Levia D. F., Frost E. E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology, 2003,274(1):1-29.
    [45]LI-COR. Li-8100A Automated Soil CO2 Flux System Instruction Manual Rev.3[M].2010.
    [46]Liu S. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling,1997,99(2):151-159.
    [47]Lofgren B. M., Hunter T. S., Wilbarger J. Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology[J]. Journal of Great Lakes Research,2011,37 (4):744-752.
    [48]Lorup J. K., Refsgaard J. C., Mazvimavi D. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling:case studies from Zimbabwe[J]. Journal of Hydrology,1998,205 (3):147-163.
    [49]Ludwig J. A., Tongway D. J., Eager R. W., et al. Fine-scale vegetation patches decline in size and cover with increasing rainfall in Australian savannas[J]. Landscape Ecology,1999,14 (6): 557-566.
    [50]Majewski M. S., Glotfelty D. E., U K. T. P., et al. A field comparison of several methods for measuring pesticide evaporation rates from soil[J]. Environmental Science & Technology, 1990,24(10):1490-1497.
    [51]Marimon-Junior B. H., Hay J. D. A new instrument for measurement and collection of quantitative samples of the litter layer in forests[J]. Forest Ecology and Management,2008, 255 (7):2244-2250.
    [52]Marin C. T., Bouten I. W., Dekker S. Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia[J]. Journal of Hydrology,2000,237 (3): 169-183.
    [53]Marshall D. C. Measurement of sap flow in conifers by heat transport [J]. Plant physiology, 1958,33 (6):385.
    [54]Matthias A. D., Salehi R., Warrick A. W. Bare soil evaporation near a surface point-source emitter[J]. Agricultural Water Management,1986,11 (3):257-277.
    [55]McCulloch J. S. G., Robinson M. History of forest hydrology[J]. Journal of Hydrology,1993, 150(2):189-216.
    [56]McNaughton K. G., Black T. A. Study of Evapotranspiration from a Douglas Fir Forest Using the Energy Balance Approach[J]. Water Resources Research,1973,9 (6):1579-1590.
    [57]Mika J., Horvath S., Makra L. Impact of documented land use changes on the surface albedo and evapotranspiration in a plain watershed[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,2001,26 (7):601-606.
    [58]Milly P. C. D. Estimation of Brooks-Corey parameters from water retention data[J]. Water Resources Research,1987,23 (6):1085-1089.
    [59]Mintz Y., Walker G. K. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature[J]. Journal of Applied Meteorology,1993,32(8):1305-1334.
    [60]Miralles D. G., Gash J. H., Holmes T. R. H., et al. Global canopy interception from satellite observations[J]. Journal of Geophysical Research,2010,115 (D16):D16122.
    [61]Mohanty B. P., Skaggs T. H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation[J]. Advances in Water Resources,2001,24 (9):1051-1067.
    [62]Monteith J. L., Moss C. J. Climate and the efficiency of crop production in Britain [and discussion] [J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1977,281 (980):277-294.
    [63]Moran M. S., Rahman A. F., Washburne J. C., et al. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland[J]. Agricultural and Forest Meteorology,1996,80 (2):87-109.
    [64]Moran M. S., Scott R. L., Keefer T. O., et al. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature[J]. Agricultural and Forest Meteorology,2009,149 (1):59-72.
    [65]Murakami S. A proposal for a new forest canopy interception mechanism:splash droplet evaporation [J]. Journal of Hydrology,2006,319(1):72-82.
    [66]Murakami S., Tsuboyama Y., Shimizu T.. et al. Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment[J]. Journal of Hydrology,2000,227 (1): 114-127.
    [67]Muzylo A., Llorens P., Valente F., et al. A review of rainfall interception modelling [J]. Journal of Hydrology,2009,370 (1):191-206.
    [68]Nagler P. L., Glenn E. P., Lewis Thompson T. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods[J]. Agricultural and Forest Meteorology.2003,116(1):73-89.
    [69]Peng H., Zhao C., Feng Z., et al. Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China[J]. Hydrological Processes,2013:DOI:10.1002/ hyp.9713.
    [70]Penman H. L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,193 (1032): 120-145.
    [71]Phillips N., Oren R., Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse-and ring-porous tree species[J]. Plant, Cell & Environment,2006,19 (8):983-990.
    [72]Praveen P., Devaranavadgi V. S., Desai G. A., et al. Estimation of evapotranspiration rate by different methods for paddy crop in South Kodagu, Central Western Ghats[J]. International Journal of Agricultural Engineering,2012,5(1):69-72.
    [73]Pruegar J. H., Hatfield J. L., Aase J. K., et al. Bowen-ratio comparisons with lysimeter evapotranspiration[J]. Agronomy Journal,1997,89 (5):730-736.
    [74]Putuhena W. M., Cordery I. Estimation of interception capacity of the forest floor[J]. Journal of Hydrology,1996,180(1):283-299.
    [75]Putuhena W. M., Cordery I. Some hydrological effects of changing forest cover from eucalypts to Pinus radiata[J]. Agricultural and Forest Meteorology,2000,100 (1):59-72.
    [76]Ratliff L. F., Ritchie J. T., Cassel D. K. Field-measured limits of soil water availability as related to laboratory-measured properties[J]. Soil Science Society of America Journal,1983, 47 (4):770-775.
    [77]Raz-Yaseef N., Rotenberg E., Yakir D. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest[J]. Agricultural and Forest Meteorology,2010,150 (3):454-462.
    [78]Rivers E. D., Shipp R. F. Available water capacity of sandy and gravelly North Dakota soils[J]. Soil Science,1972,113 (2):74-80.
    [79]Roberts S., Vertessy R., Grayson R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age[J]. Forest Ecology and Management,2001,143 (1):153-161.
    [80]Rodriguez-lturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research,2000,36 (I):3-9.
    [81]Rowe L. K., Pearce A. J. Hydrology and related changes after harvesting native forest catchments and establishing Pinus radiata plantations. Part 2. The native forest water balance and changes in streamflow after harvesting[J]. Hydrological Processes,1994,8 (4):281-297.
    [82]Rowe L. K., Taylor C. H. Hydrology and related changes after harvesting native forest catchments and establishing Pinus radiata plantations. Part 3. Stream temperatures[J]. Hydrological Processes,2006,8 (4):299-310.
    [83]Ruprecht J. K.., Schofield N. J. Analysis of streamflow generation following deforestation in southwest Western Australia[J].Journal of Hydrology,1989,105(1):1-17.
    [84]Russo D., Bouton M. Statistical analysis of spatial variability in unsaturated flow parameters[J]. Water Resources Research,1992,28 (7):1911-1925.
    [85]Rutter A. J., Kershaw K. A., Robins P. C., et al. A predictive model of rainfall interception in forests, I. Derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology,1972,9:367-384.
    [86]Schmugge T. J., Kustas W. P., Ritchie J. C., et al. Remote sensing in hydrology[J]. Advances in Water Resources,2002,25 (8):1367-1385.
    [87]Sheffield J., Wood E. F. Characteristics of global and regional drought,1950-2000:Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle[J]. Journal of Geophysical Research,2007,112 (D17):D17115.
    [88]Smith C. M. Riparian afforestation effects on water yields and water quality in pasture catchments[J]. Journal of Environmental Quality,1992,21 (2):237-245.
    [89]Stednick J. D. Monitoring the effects of timber harvest on annual water yield[J]. Journal of Hydrology,1996,176 (1):79-95.
    [90]Swanson R. H., Whitfield D. W. A. A numerical analysis of heat pulse velocity theory and practice[J]. Journal of Experimental Botany,1981,32 (1):221-239.
    [91]Tahiri A. Z., Anyoji H., Yasuda H. Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize[J]. Agricultural Water Management,2006,84 (1):186-192.
    [92]Teklehaimanot Z., Jarvis P. G., Ledger D. C. Rainfall interception and boundary layer conductance in relation to tree spacing[J]. Journal of Hydrology,1991,123 (3):261-278.
    [93]Teuling A. J., Troch P. A. Improved understanding of soil moisture variability dynamics[J]. Geophysical Research Letters,2005,32 (5):L05404.
    [94]Thurow T. L., Blackburn W. H., Taylor Jr C. A. Some vegetation responses to selected livestock grazing strategies, Edwards Plateau, Texas[J]. Journal of Range Management,1988: 108-114.
    [95]Thurow T. L., Blackburn W. H., Warren S. D., et al. Rainfall interception by midgrass, shortgrass, and live oak mottes[J]. Journal of Range Management,1987,40 (5):455-460.
    [96]Tian F. X., Zhao C. Y., Feng Z. D. Simulating evapotranspiration of Qinghai spruce (Piceu crassifolia) forest in the Qilian Mountains, northwestern China[J]. Journal of Arid Environments,2011,75 (7):648-655.
    [97]Todd R. W., Evett S. R., Howell T. A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment[J]. Agricultural and Forest Meteorology,2000.103 (4):335-348.
    [98]Turner K. M. Annual evapotranspiration of native vegetation in a Mediterranean-type climate[J]. Journal of the American Water Resources Association,1991,27 (1):1-6.
    [99]Van Genuchten M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44 (5):892-898.
    [100]Wang L., Caylor K. K.., Villegas.1. C., et al. Partitioning evapotranspiration across gradients of woody plant cover:Assessment of a stable isotope technique[J]. Geophysical Research Letters,2010,37(9):L09401.
    [101]Weiss M., Troufleau D., Baret F., et al. Coupling canopy functioning and radiative transfer models for remote sensing data assimilation[J]. Agricultural and Forest Meteorology,2001. 108(2):113-128.
    [102]Wicht C. L. Determination of the effects of watershed management on mountain streams[J]. Am. Geophys. Union, Trans..1943,2:594-608.
    [103]Williams J., Prebble R. E., Williams W. T., et al. The influence of texture, structure and clay mineralogy on the soil moisture characteristic[J]. Soil Research.1983,21 (1):15-32.
    [104]Wilson K. B., Hanson P. J., Mulholland P. J., et al. A comparison of methods for determining forest evapotranspiration and its components:sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology,2001,106 (2): 153-168.
    [105]Worrall F., Burt T. P. The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models[J]. Journal of Hydrology,1999,221 (1): 75-90.
    [106]Yepez E. A., Williams D. G., Scott R. L., et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology,2003,119(1):53-68.
    [107]Young M. H., Wierenga P. J., Mancino C. F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry[J]. Soil Science Society of America Journal,1997,61 (4):1138-1146.
    [108]Zhang B., Kang S., Li F., et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural and Forest Meteorology,2008,148 (10):1629-1640.
    [109]Zhang B., Kang S., Zhang L., et al. An evapotranspiration model for sparsely vegetated canopies under partial root-zone irrigation[J]. Agricultural and Forest Meteorology,2009,149 (11):2007-2011.
    [110]Zhang L., Dawes W. R., Walker G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research,2001,37 (3):701-708.
    [111]白学良,赵连梅.贺兰山苔藓植物物种多样性,生物量及生态学作用的研究[J].内蒙古大学学报:自然科学版,1998,29(1):118-124.
    [112]包维楷,雷波,冷俐.六种人工针幼林下地表苔藓植物生物量与碳贮量[J].应用生态学报,2005.16(10):1817-1821.
    [113]曹同,高谦,傅星,等.长白山森林生态系统中苔藓植物蓄水量及其在水分循环中的作用[J].森林生态系统研究,1994,7:73-79.
    [114]常娟,王根绪,王一博.黑河流域土地利用变化的影响因素-以张掖地区为例[J].冰川冻土,2005,27(1):117-123.
    [115]常宗强,王有科,席万鹏.祁连山水源涵养林土壤水分的蒸发性能[J].甘肃科学学报,2003,15(3):68-72.
    [116]车宗玺,刘贤德,敬文茂,等.祁连山林区苔藓垂直分布特征水文功能分析[J].水土保持学报,2006,20(6):71-74.
    [117]陈洪松.坡面尺度土壤特性的空间变异性[J].水土保持通报,2005,24(6):45-48.
    [118]陈仁升,康尔泗,吉喜斌,等.黑河源区高山草甸的冻土及水文过程初步研究[J].冰川冻土,2007、29(3):387-396.
    [119]陈亚宁,崔旺诚,李卫红,等.塔里木河的水资源利用与生态保护[J].地理学报,2003,58(2):215-222.
    [120]陈亚宁,张小雷,祝向民,等.新疆塔里木河下游断流河道输水的生态效应分析[J].中国科学:D辑,2004,34(5):475-482.
    [121]程国栋,肖洪浪,陈亚宁.中国西部典型内陆河生态-水文研究[M].北京:气象出版社, 2010.
    [122]程国栋,肖洪浪,徐中民,等.中国西北内陆河水问题及其应对策略-以黑河流域为例[J].冰川冻土,2006,28(3):406-413.
    [123]程国栋,赵传燕,王瑶.内陆河流域森林生态系统生态水文过程研究[J].地球科学进展,2011,26(11):1125-1130.
    [124]程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法,筛析法的比较[J].沉积学报,2001,19(3):449-455.
    [125]傅伯杰,陈利顶.黄土丘陵区小流域土地利用变化对生态环境的影响—以延安市羊圈沟流域为例[J].地理学报,1999,54(3):241-246.
    [126]傅伯杰,邱扬.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [127]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60-75.
    [128]高晓飞,史海珍,杨洁,等.使用微型蒸发器测定土壤蒸发的研究进展[J].水利水电科技进展,2010,30(1):85-90.
    [129]高艳红,刘伟,程国栋,等.黑河流域土壤质地分类数据建立及其模拟效果检验[J].高原气象,2007,26(5):967-974.
    [130]郭伟,文维全,黄玉梅,等.川西亚高山针阔混交林与针叶纯林苔藓凋落物层持水性能研究[J].水土保持学报,2009,23(6):240-243.
    [131]郭雪宝,沈怡.水文学[M].北京:中国建筑工业出版社,2005.
    [132]郭忠升,邵明安.半干旱区人工林草地土壤早化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647.
    [133]何常清,薛建辉,吴永波,等.应用修正的Gash解析模型对岷江上游亚高山川滇高山栎林林冠截留的模拟[J].生态学报,2010,30(5):1125-1132.
    [134]何东宁,王占林,张洪勋.青海乐都地区森林涵养水源效能研究[J].植物生态学报与地植物学学报,1991,15(1):71-78.
    [135]何庆宾,顾宇书,沿丽红,等.长白落叶松人工林地森林土壤水分规律的探讨[J].内蒙古林业调查设计,2010,(1):60-62.
    [136]黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学报,2002,13(9):1057-1060.
    [137]黄铁青,牛栋.中国生态系统研究网络(CERN):(?)概况、成就和展望[J].地球科学进展,2005,20(8):895-902.
    [138]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,23(3):580-587.
    [139]金铭.祁连山水源涵养林冠层与枯落物层水文机理研究[硕士论文].兰州:甘肃农业大学.2006.
    [140]康尔泗.寒区和干旱区水文研究的回顾和展望[J].冰川冻土,1998,20(3):238-244.
    [141]康文星,田大伦,文仕知.杉木人工林水量平衡和蒸散的研究[J].植物生态学与地植物学学报,1992,16(2):187-196.
    [142]蓝永超,孙保沐,丁永建,等.黑河流域生态环境变化及其影响因素分析[J].干旱区资源与环境,2004,18(2):32-39.
    [143]雷志栋.土壤水动力学[M].北京:清华大学出版社,1988.
    [144]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3): 311-318.
    [145]李春杰,任东兴,王根绪,等.青藏高原两种草甸类型人工降雨截留特征分析[J].水科学进展,2009,20(6):769-774.
    [146]李小刚.影响土壤水分特征曲线的因素[J].甘肃农业大学学报,1994,29(3):273-278.
    [147]李新,刘绍民,马明国,等.黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-498.
    [148]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [149]李玉山,韩仕峰,汪正华,等.黄土高原土壤水分性质及其分区[J].中国科学院西北水土保持研究所集刊,1985,2:1-17.
    [150]李志飞,赵雨森,辛颖,等.阿什河上游小流域不同森林类型土壤水分时空分布[J].中国水土保持科学,2010,8(4):86-89.
    [15l]林波,刘庆,吴彦,等.川西亚高山针叶林苔藓凋落物层持水能力研究[J].应用与环境生物学报,2002,8(3):234-238.
    [152]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步分析[J].地理学报,1978,33(2):112-126.
    [153]刘京涛.岷江上游植被蒸散时空格局及其模拟研究[博士论文].北京:中国林业科学研究院.2006.
    [154]刘丽霞,王辉,孙栋元,等.绿洲农田防护林系统土壤蒸发特征研究[J].干旱区资源与环境,2008,(1):162-166.
    [155]刘伦辉,刘文耀,郑征.滇中山地主要植物群落水土保持效益比较[J].水土保持学报,1990,4(1):36-42.
    [156]刘世荣.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [157]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持[J].水土保持研究,1994,1(3):8-13.
    [158]刘新平,张铜会,赵哈林,等.流动沙丘干沙层厚度对土壤水分蒸发的影响[J].干早区地理,2006,29(4):523-526.
    [159]陆光明,孟平.林-果-农复合系统中植物蒸腾及系统蒸散的研究[J].中国农业大学学报,1996,1(5):103-109.
    [160]马玲,饶兴权,赵平,等.马占相思整树蒸腾的日变化和季节变化特征[J].北京林业大学学报,2007,29(1):67-73.
    [16l]马明国,刘强,阎广建,等.黑河流域遥感—地面观测同步试验:森林水文和中游干早区水文试验[J].地球科学进展,2009,24(7):681-695.
    [162]马雪华,张增哲,张仰渠.森林水文学[M].北京:中国林业出版社,1993.
    [163]孟春雷.土壤蒸发及水热传输研究综述[J].土壤通报,2007,38(2):374-378.
    [164]穆兴民,徐学选,陈霁巍.黄土高原生态水文研究[M].北京:中国林业出版社,2001.
    [165]齐善忠,王涛,罗芳,等.黑河流域环境退化特征分析及防治研究[J].地理科学进展,2004,23(1):30-37.
    [166]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,200l,16(5):481-487.
    [167]时忠杰,王彦辉,徐丽宏,等.六盘山主要森林类型枯落物的水文功能[J].北京林业大学学报,2009,31(1):91-99.
    [168]宋炳煜.草原区不同植物群落蒸发蒸腾的研究[J].植物生态学报,1995,19(4):319-328.
    [169]宋克超,康尔泗,金博文,等.黑河流域山区植被带草地蒸散发试验研究[J].冰川冻土,2004,26(3):349-356.
    [170]宋克超,康尔泅,金博文,等.两种小型蒸渗仪在黑河流域山区植被带的应用研究[J].冰川冻土,2004,26(5):617-623.
    [171]孙阁,张志强,周国逸,等.森林流域水文模拟模型的概念,作用及其在中国的应用[J].北京林业大学学报,2007,29(3):178-184.
    [172]孙宏勇,刘昌明,张永强,等.微型蒸发器测定土面蒸发的试验研究[J].水利学报,2004,8:114-118.
    [173]谭俊磊,马明国,车涛,等.基于不同郁闭度的青海云杉冠层截留特征研究[J].地球科学进展,2009,24(7):825-833.
    [174]田风霞,赵传燕,冯兆东.祁连山区青海云杉林蒸腾耗水估算[J].生态学报,2011,31(9):2383-2391.
    [175]田风霞,赵传燕,冯兆东,等.祁连山青海云杉林冠生态水文效应及其影响因素[J].生态学报,2012,32(4):1066-1076.
    [176]田风霞,赵传燕,王瑶.祁连山东段土壤水分时空分布特征及其与环境因子的关系[J].干早地区农业研究,20l0,(6):23-29.
    [177]汪有科,吴钦孝,韩冰,等.森林植被水土保持功能评价[J].水土保持研究,1994,1(3):24-30.
    [178]王安志,裴铁藩.森林蒸散测算方法研究进展与展望[J].应用生态学报,200l,12(6):933-937.
    [179]王安志,裴铁璠.长白山阔叶红松林蒸散量的测算[J].应用生态学报,2002,13(12):1547-1550.
    [180]王根绪,程国栋.近50a来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3):233-238.
    [181]王根绪,刘桂民,常娟.流域尺度生态水文研究评述[J].生态学报,2005,25(4):892-903.
    [182]王根绪,沈永平,钱鞠,等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,25(6):653-659.
    [183]王红闪,黄明斌,张橹.黄土高原植被重建对小流域水循环的影响[J].自然资源学报,2004,19(3):344-350.
    [184]王会肖.砂土土壤蒸发的测定与模拟[J].中国农业气象,1997,18(4):29-35.
    [185]工建,车涛,张立新,等.黑河流域上游寒区水文遥感-地而同步观测试验[J].冰川冻土,2009,31(2):189-197.
    [186]王金叶.祁连山水源涵养林生态系统水分传输过程与机理研究[博士论文].长沙:中南林业科技大学.2006.
    [187]王金叶,车克钧.祁连山水源涵养林生物量的研究[J].福建林学院学报,1998,18(4):319-323.
    [188]王金叶,旧大伦,王彦辉,等.祁连山林草复合流域土壤水文效应[J].水土保持学报,2005,19(3):144-147.
    [189]王金叶,于澎涛,王彦辉.森林生态水文过程研究:以甘肃祁连山水源涵养林为例[M]. 北京:科学出版社,2008.
    [190]王孟本.黄土区土壤水分循环水分研究[J].水土保持学报,1995,9(4):106-108.
    [19l]王书功,康尔泗,金博文,等.黑河山区草地蒸散发量估算方法研究[J].冰川冻土,2003,25(5):558-565.
    [192]王双银,宋孝玉.水资源评价[M].郑州:黄河水利出版社,2008.
    [193]王顺利,王金叶,张学龙,等.祁连山青海云杉林苔藓枯落物分布与水文特性[J].水土保持研究,2006,13(5):156-159.
    [194]王馨,张一平,刘文杰Gash模型在热带季节雨林林冠截留研究中的应用[J].生态学报,2006,26(3):722-729.
    [195]王彦辉,于澎涛.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [196]王艳萍,王力,卫三平Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J].生态学报,2012,32(17):5445-5453.
    [197]王一博,王根绪,张春敏,等.高寒植被生态系统变化对土壤物理化学性状的影响[J].冰川冻土,2007,29(6):921-927.
    [198]王佑民.我国林冠降水再分配研究综述(Ⅰ)[J].西北林学院学报,2000,15(3):1-7.
    [199]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289-298.
    [200]吴钦孝.森林保持水土机理及功能调控技术[M].北京:科学出版社,2005.
    [201]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    [202]夏卫生,雷廷武,刘贤赵,等.土壤水分特征曲线的推算[J].土壤学报,2003,40(2):311-315.
    [203]肖洪浪,程国栋.黑河流域水问题与水管理的初步研究[J].中国沙漠,2006,26(1):1-5.
    [204]徐德应,曾庆波.海南岛尖峰岭热带森林蒸散[J].林业科学研究,1989,l:34-41.
    [205]徐绍辉,张佳宝,刘建立,等.表征土壤水分持留曲线的几种模型的适应性研究[J].土壤学报,2002,39(4):498-504.
    [206]薛立,梁丽丽,任向荣,等.华南典型人工林的土壤物理性质及其水源涵养功能[J].土壤通报,2008,39(5):986-989.
    [207]闫文德,王金叶,王彦辉,等.祁连山排露沟流域土壤水分时空分布[J].西北林学院学报,2006,21(3):21-25.
    [208]严登华,何岩,邓伟,等.生态水文学研究进展[J].地理科学,200l,21(5):467-473.
    [209]叶吉,郝占庆,戴冠华.长白山暗针叶林苔藓植物生物量的研究[J].应用生态学报,2004,15(5):737-740.
    [210]于洋,文仕知,秦景,等.青海云杉、华北落叶松边材液流变化规律及其与气象因子的关系[J].中南林业科技大学学报:自然科学版,2009,29(6):18-23.
    [211]余开亮,陈宁,余四胜,等.物种组成对高寒草甸植被冠层降雨截留容量的影响[J].生态学报,2011,3l(19):5771-5779.
    [212]余新晓,张志强,陈丽华,等.森林生态水文[M].北京:中国林业出版社,2004.
    [213]张富仓,张一平,张君常.温度对土壤水分保持影响的研究[J].土壤学报,1997,34(2):160-169.
    [214]张慧,沈渭寿,王延松,等.黑河流域草地承载力研究[J].自然资源学报,2005,20(4):514-521.
    [215]张苏琼,阎万贵.中国西部草原生态环境问题及其控制措施[J].草业学报,2006,15(5):11-18.
    [216]张卫强,贺康宁,周毅,等.黄土半干早区刺槐林地土壤蒸发特性研究[J].水土保持研究,2007,14(6):396-399.
    [217]张学龙,车克钧,王金叶,等.祁连山寺大隆林区土壤水分动态研究[J].西北林学院学报,1998,13(1):1-9.
    [218]张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.
    [219]张志山,王新平,李新荣,等.沙漠人工植被区土壤蒸发测定[J].中国沙漠,2005,25(2):243-248.
    [220]张治国.晋西黄土丘陵沟壑区水平阶造林减水减沙效益研究[J].中国水土保持,1999,1:24-25.
    [22l]赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385.
    [222]赵双喜,张耀生,赵新全,等.祁连山北坡草地蒸散量及其与影响因子的关系[J].西北农林科技大学学报(自然科学版),2008,36(1):109-115.
    [223]赵文智,程国栋.生态水文学-揭示生态格局和生态过程水文学机制的科学[J].冰川冻土,2001,23(4):450-457.
    [224]赵玉涛,余新晓,程根伟.粗木质残体(CWD)的水文生态功能[J].山地学报,2002,20(1):12-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700