用户名: 密码: 验证码:
黄河三角洲地区地面沉降时空演化特征及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面沉降信息可以通过水准测量、全球定位系统(GPS)和合成孔径雷达(SAR)技术等方式获取,水准测量这种传统方法操作简易且精度高,至今仍被广泛应用于许多地区的沉降监测或验证通过GPS和合成孔径雷达干涉(InSAR)技术获取的沉降结果精度。本文主要利用黄河三角洲地区2002–2008年水准观测数据,并对照已有研究中使用地形图和InSAR技术等方法获得的沉降信息,定量描述了沉降的时空演化特征。鉴于已有研究多是定性分析黄河三角洲构造运动、沉积物自然固结和海平面上升等因素对地面沉降的影响,而广泛认为的地面沉降关键因素—地下水开采尚未在黄河三角洲地面沉降中得到深入研究。因此,本文分析了黄河三角洲地区地下水降落漏斗与地面沉降的空间耦合关系,利用水文地质学、工程地质学、和土力学等理论方法,分层估算了不同深度地层压缩量,重点探讨了开采深层地下水引发的地面沉降机理,有助于该地区地面沉降数学模型的构建,并可为黄河三角洲高效生态经济区的可持续发展提供决策支持。
     研究表明,黄河三角洲地下水动态变化剧烈,广饶县和东营区许多地区处于超采状态,已形成以广饶县城、稻庄镇和大王镇及东营区史口镇和胜利电厂等为中心的深层地下水降落漏斗,漏斗中心水位下降速度为2–3m/yr,埋深已达50–60m,且与地面高程之间存在显著的线性正相关,相关系数为0.92,过度开采深层地下水显然已成为影响沉降的最根本因素。据估算,黄河三角洲深层地下开采造成深部第二、三粘性压缩层分别沉降了36–63mm和98–138mm,是相应第二、三含水砂层沉降量的2–4倍,仅第三粘性压缩层压缩量就占总沉降量的47.6%–57.1%,已成为地面沉降主要贡献层。还分别分析了地下水开采、工程建筑、油气开采、区域构造运动、沉积物自然固结和海平面上升等因素对黄河三角洲地面沉降的影响,估计东营区和广饶县地下水开采严重地区各因素对沉降的贡献比约为28:4:2:3:2:1,地下水开采对地面沉降的贡献比达到70%。最后,依据黄河三角洲地面沉降危害提出具有针对性的防治措施。
Ground deformation measurements can be conducted through leveling as well as globalpositing system (GPS) and synthetic aperture radar (SAR)-based interferometry. Given its simpleoperation and high precision, leveling remains widely used as the traditional method formonitoring land subsidence in many cities and is also employed to calibrate or verify themeasurement accuracy of GPS or Interferometric SAR. In this paper, spatiotemporal evolution ofland subsidence in the Yellow River Delta is described quantitatively by the use of levelingduring2002–2008in contrast with subsidence information obtained by the use of topographicmaps and InSAR technology in existing studies. In view of the qualitative analysis of landsubsidence mechanism such as tectonic movement, the natural consolidation of sediment and sealevel rise et al. in the Yellow River Delta in previous researches, groundwater exploitation widelyregarded as the key factor for land subsidence has not been futher studied in the Yellow RiverDelta. Therefore, the spatial coupling relationship is analysed between the groundwaterdepression cones and land subsidence funnels in this paper. Integrated with hydrogeology,engineering geology, and soil mechanics theory, compression of geological engineering stratumsin different depth is estimated and then focused on the mechanism of land subsidence induced bydeep groundwater exploitation. This will be helpful for constructing the mathematic model ofland subsidence and for providing decision support for the sustainable development of theYellow River Delta efficient ecological economic zone.
     The results show that many parts of Guangrao County and Dongying District have been inoverexploitation with the large amplitude fluctuations of groundwater level. Several deepgroundwater depression cones were primarily centered in Guangrao County, Daozhuang, Shikou and Shengli Towns, where deep groundwater level decline rate is2–3m/years, and the depthranges from50to60m. There existed a significant linear positive correlation betweengroundwater level and elevation in the center of the deep groundwater depression cone, with thecorrelation coefficient of0.92. Obviously, overexploitation of deep groundwater is the mostessential factor to land subsidence. By estimate, the compression of the second and third clayeyaquitards is36–63mm and98–138mm, respectively. Aquitard compression with a thickness ofapproximately300m is two to four times as much as the corresponding aquifers. The thirdclayey compression layer (third aquitard) contributes approximately47.6–57.1%of the totalsubsidence and has become the primary contributing layer of subsidence. In addition, the impactof groundwater exploitation, engineering and construction, oil and gas exploitation, regionaltectonic movement, natural consolidation of sediment and sea level rise on land subsidence in theYellow River Delta has been analysed,respectively. Correspondingly, it is estimated that thecontribution ratio of the six factors to land subsidence is about28:4:2:3:2:1in Dongying Districtand Guangrao Country Where groundwater exploitation contributes70%of total subsidence.Finally, some control measures against land subsidence are proposed according to the harm inthe he Yellow River Delta.
引文
[1] Abidin HZ, Andreas H, Djaja R, et al. Land subsidence characteristics of Jakarta between1997and2005, as estimated using GPS surveys[J]. Gps Solutions,2008,12(1):23-32.
    [2] Abidin HZ, Andreas H, Gumilar I, et al. Land subsidence of Jakarta (Indonesia) and itsrelation with urban development[J]. Natural Hazards,2011,59(3):1753-1771.
    [3] Abidin HZ, Djaja R, Darmawan D, et al. Land subsidence of Jakarta (Indonesia) and itsgeodetic monitoring system[J]. Natural Hazards,2001,23(2-3):365-387.
    [4] Aviles J, Perez-Rocha LE. Regional subsidence of Mexico City and its effects on seismicresponse[J]. Soil Dynamics and Earthquake Engineering,2010,30(10):981-989.
    [5] Borchers J, Galloway D, Davis, et al. Land subsidence—an often overlooked consequence ofour water-use practices[J]. Hydro Visions,1999,8(2).
    [6] Carbognin L, Teatini P, Tomasin A, et al. Global change and relative sea level rise at Venice:what impact in term of flooding[J]. Climate Dynamics,2010,35(6):1055-1063.
    [7] Carbognin L, Teatini P, Tosi L. Eustacy and land subsidence in the Venice Lagoon at thebeginning of the new millennium[J]. Journal of Marine Systems,2004,51(1-4):345-353.
    [8] Chen B, Gong H, Li X, et al. Spatial-temporal characteristics of land subsidencecorresponding to dynamic groundwater funnel in Beijing Municipality, China[J]. ChineseGeographical Science,2011,21(6):753-764.
    [9] Chen CX, Pei SP, Jiao JJ. Land subsidence caused by groundwater exploitation in SuzhouCity, China[J]. Hydrogeology Journal,2003,11(2):275-287.
    [10] Esaki T, Zhou GY, Jiang YJ, et al., A synthetical system for predicting and measuringgroundwater flow and land subsidence in Saga Plain, Japan[M]. Environmental Geotechnics, Vol1, ed. Kamon M. Rotterdam: A a Balkema,1996211-216.
    [11] Gallardo AH, Marui A, Takeda S, et al. Groundwater supply under land subsidenceconstrains in the Nobi Plain[J]. Geosciences Journal,2009,13(2):151-159.
    [12] Gambolati G. Numerical models in land subsidence control[J]. Computer Methods inApplied Mechanics and Engineering,1975,5(2):227-237.
    [13] Geertsma J. Land subsidence above compacting oil and gas reservoirs[J]. Journal ofPetroleum Technology,1973,25(JUN):734-744.
    [14] Holzer.T, Johnson.A. Land subsidence caused by ground water withdrawal in urban areas[J].1985,11(3):245-255.
    [15] Hu RL, Yue ZQ, Wang LC, et al. Review on current status and challenging issues of landsubsidence in China[J]. Engineering Geology,2004,76(1-2):65-77.
    [16] Hung WC, Hwang C, Chang CP, et al. Monitoring severe aquifer-system compaction andland subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River AlluvialFan[J]. Environmental Earth Sciences,2010,59(7):1535-1548.
    [17] J.M.Sharp J, D.W.Hill. Land subsidence along the northeastern Texas Gulf coast: Effects ofdeep hydrocarbon production[J]. Environ Geol,1995(25):181-191.
    [18] Jones LL, Warren JP. Land subsidence costs in houston-baytown area of texas[J]. JournalAmerican Water Works Association,1976,68(11):597-599.
    [19] Ko JY, Day JW. A review of ecological impacts of oil and gas development on coastalecosystems in the Mississippi Delta[J]. Ocean&Coastal Management,2004,47(11-12):597-623.
    [20] Liu CH, Pan YW, Liao JJ, et al. Characterization of land subsidence in the Choshui Riveralluvial fan, Taiwan[J]. Environ Geol,2004,45(8):1154-1166.
    [21] Ma FS, Wei AH, Han ZT, et al. The Characteristics and Causes of Land Subsidence inTanggu Based on the GPS Survey System and Numerical Simulation[J]. Acta GeologicaSinica-English Edition,2011,85(6):1495-1507.
    [22] Mahara Y, Kitaoaka K. Helium isotopic fingerprints of the heavy land subsidence left ingroundwater of the Saga Plain, near Beppu-Shimabara graben, Kyushu, Japan[J]. AppliedGeochemistry,2009,24(3):438-446.
    [23] Mikita M, Yamanaka T, Lorphensri O. Anthropogenic changes in a confined groundwaterflow system in the Bangkok basin, Thailand, part I: was groundwater-recharge enhanced?[J].Hydrological Processes,2011,25(17):2726-2733.
    [24] Osmanoglu B, Dixon TH, Wdowinski S, et al. Mexico City subsidence observed withpersistent scatterer InSAR[J]. International Journal of Applied Earth Observation andGeoinformation,2011,13(1):1-12.
    [25] Ovando-Shelley E, Ossa A, Romo MP. The sinking of Mexico City: Its effects on soilproperties and seismic response[J]. Soil Dynamics and Earthquake Engineering,2007,27(4):333-343.
    [26] Phien-wej N, Giao PH, Nutalaya P. Land subsidence in Bangkok, Thailand[J]. EngineeringGeology,2006,82(4):187-201.
    [27] Pierce RL. Reducing land subsidence in wilmington oil field by use of saline waters[J].Water Resources Research,1970,6(5):1505-1514.
    [28] Poland JF, Guidebook to studies of land subsidence due to ground-water withdrawal[M].United States of America: Unesco,1984.
    [29] Pratt W, Johnson D. Local subsidence in the Goose Creek oil field[J]. The Journal ofGeology,1926,34:577-590.
    [30] Rosepiler MJ, Reilinger R. Land subsidence due to water withdrawal in vicinity of pecos,texas[J]. Engineering Geology,1977,11(4):295-304.
    [31] Sahu P, Sikdar PK. Threat of land subsidence in and around Kolkata City and East KolkataWetlands, West Bengal, India[J]. Journal of Earth System Science,2011,120(3):435-446.
    [32] Sato HP, Abe K, Ootaki O. GPS-measured land subsidence in Ojiya City, Niigata Prefecture,Japan[J]. Engineering Geology,2003,67(3-4):379-390.
    [33] Sharp JM, Hill DW. Land subsidence along the northeastern Texas gulf coast: Effects ofdeep hydrocarbon production[J]. Environ Geol,1995,25(3):181-191.
    [34] Shearer TR. A numerical model to calculate land subsidence, applied at Hangu in China[J].Engineering Geology,1998,49(2):85-93.
    [35] Shen SL, Xu YS. Numerical evaluation of land subsidence induced by groundwaterpumping in Shanghai[J]. Canadian Geotechnical Journal,2011,48(9):1378-1392.
    [36] Shi CX, Zhang D, You LY, et al. Land subsidence as a result of sediment consolidation inthe Yellow River delta[J]. J Coast Res,2007,23(1):173-181.
    [37] Shi XQ, Xue YQ, Wu JC, et al. Characterization of regional land subsidence in YangtzeDelta, China: the example of Su-Xi-Chang area and the city of Shanghai[J]. HydrogeologyJournal,2008,16(3):593-607.
    [38] Sun H, Grandstaff D, Shagam R. Land subsidence due to groundwater withdrawal: potentialdamage of subsidence and sea level rise in southern New Jersey, USA[J]. Environ Geol,1999,37(4):290-296.
    [39] Teatini P, Castelletto N, Ferronato M, et al. Geomechanical response to seasonal gas storagein depleted reservoirs: A case study in the Po River basin, Italy[J]. Journal of GeophysicalResearch-Earth Surface,2011a,116:1-21.
    [40] Teatini P, Castelletto N, Ferronato M, et al. A new hydrogeologic model to predictanthropogenic uplift of Venice[J]. Water Resources Research,2011b,47.
    [41] Teatini P, Ferronato M, Gambolati G, et al. A century of land subsidence in Ravenna, Italy[J].Environ Geol,2005a,47(6):831-846.
    [42] Teatini P, Tosi L, Strozzi T, et al. Resolving land subsidence within the Venice Lagoon bypersistent scatterer SAR interferometry[J]. Physics and Chemistry of the Earth,2012,40-41:72-79.
    [43] Teatini P, Tosi L, Strozzi T, et al. Mapping regional land displacements in the Venicecoastland by an integrated monitoring system[J]. Remote Sensing of Environment,2005b,98(4):403-413.
    [44] Tosi L, Teatini P, Carbognin L, et al. Using high resolution data to reveal depth-dependentmechanisms that drive land subsidence: The Venice coast, Italy[J]. Tectonophysics,2009,474(1-2):271-284.
    [45] Wang GY, You G, Shi B, et al. Long-term land subsidence and strata compression inChangzhou, China[J]. Engineering Geology,2009,104(1-2):109-118.
    [46] Wang J, Gao W, Xu S, et al. Evaluation of the combined risk of sea level rise, landsubsidence, and storm surges on the coastal areas of Shanghai, China[J]. Climatic Change,2012,115(3-4):537-558.
    [47] Wu JC, Shi XQ, Xue YQ, et al. The development and control of the land subsidence in theYangtze Delta, China[J]. Environ Geol,2008,55(8):1725-1735.
    [48] Wu JC, Shi XQ, Ye SJ, et al. Numerical Simulation of Viscoelastoplastic Land Subsidencedue to Groundwater Overdrafting in Shanghai, China[J]. Journal of Hydrologic Engineering,2010,15(3):223-236.
    [49] Xu Y-S, Ma L, Shen S-L, et al. Evaluation of land subsidence by considering undergroundstructures that penetrate the aquifers of Shanghai, China[J]. Hydrogeology Journal,2012,20(8):1623-1634.
    [50] Xu YS, Shen SL, Cai ZY, et al. The state of land subsidence and prediction approaches dueto groundwater withdrawal in China[J]. Natural Hazards,2008,45(1):123-135.
    [51] Xue Y-Q, Zhang Y, Ye S-J, et al. Land subsidence in China[J]. Environ Geol,2005,48(6):713-720.
    [52] Yamanaka T, Mikita M, Lorphensri O, et al. Anthropogenic changes in a confinedgroundwater flow system in the Bangkok Basin, Thailand, part II: how much water has beenrenewed?[J]. Hydrological Processes,2011,25(17):2734-2741.
    [53] Yi LX, Zhang F, Xu H, et al. Land subsidence in Tianjin, China[J]. Environmental EarthSciences,2011,62(6):1151-1161.
    [54]别君,黄海军,樊辉等.现代黄河三角洲地面沉降及其原因分析[J].海洋地质与第四纪地质,2006,26(04):29-35.
    [55]别君.基于GIS的黄河三角洲地面沉降研究及相关分析[D].中国科学院研究生院(海洋研究所),2006.
    [56]陈崇希,裴顺平.地下水开采-地面沉降模型研究[J].水文地质工程地质,2001,28(2):5-8.
    [57]陈戈,阎世骏,李铁锋.天津市深层粘性土对地面沉降的影响及其沉降量计算[J].北京大学学报(自然科学版),2001(06):804-809.
    [58]陈清华,刘池阳,鹿洪友等.黄河三角洲地区浅层沉积序列及构造沉降特征[J].大地构造与成矿学,2002(04):386-389.
    [59]陈沈良,谷国传,吴桑云.黄河三角洲风暴潮灾害及其防御对策[J].地理与地理信息科学,2007(03):100-104+112.
    [60]陈义兰,周兴华,刘忠臣.应用INSAR进行黄河三角洲地面沉降监测研究[J].海洋测绘,2006(02):16-19.
    [61]成国栋,薛春汀,黄河三角洲沉积地质学[M].北京:地质出版社,1997.
    [62]崔小东. Modflow和idp在天津地面沉降数值计算中的应用与开发[J].中国地质灾害与防治学报,1998,9(2):122-128.
    [63]崔亚莉,张戈,邵景力.黄河流域地下水系统划分及其特征[J].资源科学,2004(02):2-8.
    [64]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007,29(3):275-278.
    [65]丁德民,马凤山,张亚民等.高层建筑物荷载与地下水开采叠加作用下的地面沉降特征[J].工程地质学报,2011(03):433-439.
    [66]董克刚,王威,于强等.天津市地面沉降防治历史的调查研究及启示[J].中国地质灾害与防治学报,2008(03):54-59.
    [67]董克刚,周俊,于强等.天津市地面沉降的特征及其危害[J].地质灾害与环境保护,2007,18(1):67-70.
    [68]杜廷芹.现代黄河三角洲地区地面沉降特征研究[D].中国科学院研究生院(海洋研究所),2009.
    [69]段永侯.环渤海新构造活动与渤海形成演化对现今地质环境之影响[J].中国地质灾害与防治学报,1998b,9:110-113.
    [70]段永侯.我国地面沉降研究现状与21世纪可持续发展[J].中国地质灾害与防治学报,1998a,9(2):1-5.
    [71]范晓梅.黄河三角洲地下水动态及其生态效应[D].河海大学,2007.
    [72]冯秀丽,沈渭铨,杨荣民等.现代黄河水下三角洲软土沉积物工程地质特性[J].青岛海洋大学学报,1994(S3).
    [73]高茂生,薛春汀,叶思源等.现代黄河三角洲沉积层压实下沉的计算分析[J].海洋学报(中文版),2010(05):34-40.
    [74]高赞东.东营市油气区水土污染修复治理试验研究[D].中国地质大学(北京),2012.
    [75]龚士良.上海城市建设对地面沉降的影响[J].中国地质灾害与防治学报,1998(02).
    [76]龚士良.上海地面沉降层次分析法研究[J].系统工程,1996(03):30-34.
    [77]龚士良.上海浦东新区工程地质特性及建筑适宜性评价[J].军工勘察,1994(02).
    [78]郭瑞起,广饶县水利志[M].济南:山东电子音像出版社,2011.
    [79]何书金,李秀彬,朱会义等.黄河三角洲土地持续利用优化分析[J].地理科学进展,2001(04):313-323.
    [80]胡惠民,沈永坚.华北地区及其主要城市地面沉降的演变和发展[J].中国地质灾害与防治学报,1991,3(4):1-9.
    [81]黄立人,胡惠民.渤海西、南岸的海面变化及邻近地区的现代地壳垂直运动[J].地壳形变与地震,1991,11(1):1-9.
    [82]李达,张志珣,张维冈等.渤海海域及邻区新构造运动特征与环境地质意义[J].海洋地质动态,2009,25(2):1-7.
    [83]李广雪,庄克琳.黄河三角洲沉积体的工程不稳定性[J].海洋地质与第四纪地质,2000,20(2):21-26.
    [84]李海燕,赵霞则,张丽华.东营市地下水动态分析及对策[J].山东水利,2011(07):51-52.
    [85]李勤奋,方正.上海市地下水可开采量模型计算及预测[J].上海地质,2000,2:36-43.
    [86]李勤奋,王寒梅.上海地面沉降研究[J].高校地质学报,2006(02):169-178.
    [87]李文运,崔亚莉,苏晨等.天津市地下水流-地面沉降耦合模型[J].吉林大学学报(地球科学版),2012(03):805-813.
    [88]刘杜娟.中国沿海地区地面沉降的危害及防治对策——以天津市为例[J].海洋地质动态,2004a(01):1-7.
    [89]刘杜娟.中国沿海地区地面沉降问题思考[J].中国地质灾害与防治学报,2004b(04).
    [90]刘飞.上海市地面沉降变形特征研究[D].中国地质大学(北京),2003.
    [91]刘高焕,叶庆华,刘庆生,黄河三角洲生态环境动态监测与数字模拟[M].北京:科学出版社,2003.
    [92]刘桂仪,张兴乐.黄河三角洲油气资源开发的环境地质问题与经济可持续发展[J].上海地质,2001:36-38.
    [93]刘桂仪.鲁北平原深层地下水开发与环境问题[J].水文地质工程地质,2001(03):43-45.
    [94]刘寒鹏.天津滨海新区高层建筑荷载作用下地面沉降研究[D].长安大学,2010.
    [95]刘青勇,潘世兵,武晓峰等.地下水回灌补源防治咸水入侵技术研究——以山东省广饶县为例[J].自然灾害学报,2006(03):96-100.
    [96]刘毅.确定大江大河防洪堤高度应考虑地面沉降因素――对1998中国大洪水的反思[J].上海地质,1998,3:6-12.
    [97]刘勇,黄海军,刘艳霞等.基于RS和GIS的近代黄河三角洲滩涂变化分析[J].海洋科学,2012(02):82-87.
    [98]刘媛媛.黄河三角洲潮滩表层沉积物非均匀固结机理研究[D].中国海洋大学,2004.
    [99]楼晓明,刘建航,洪毓康.两个相邻高层建筑桩箱基础的共同作用分析[J].土木工程学报,2002,35(3):55-60.
    [100]毛浩,刘孟玉,曾宪锋等.东营市海水入侵现状与防治对策[J].水资源保护,2004(06):57-58+61.
    [101]牛修俊.地层的固结特性与地面沉降临界水位控沉[J].中国地质灾害与防治学报,1998,9(02):68-74.
    [102]秦伟颖,庄新国,黄海军.现代黄河三角洲地区地面沉降的机理分析[J].海洋科学,2008(08):38-43.
    [103]邱汉学,郑西来,张效龙等.黄河农场地区地下水入海通量的数值分析[J].海洋地质动态,2003(03):28-33.
    [104]任美锷.黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测[J].地理学报,1993,48(5):385-393.
    [105]山东省情网,东营市水利志.http://sd.infobase.gov.cn/bin/mse.exe?seachword=&K=b5&A=4&run=12.
    [106]上海市地质处,国外地面沉降论文选译[M].北京:地质出版社,1978.
    [107]师长兴,尤联元,李炳元等.黄河三角洲沉积物的自然固结压实过程及其影响[J].地理科学,2003(02):175-181.
    [108]苏衍坤,孙现申,王历进等.基于GIS的黄河三角洲地区控制点沉降初步分析[J].海洋测绘,2010(05):32-35.
    [109]汤良杰,万桂梅,周心怀等.渤海盆地新生代构造演化特征[J].高校地质学报,2008,14(2):191-198.
    [110]唐益群,崔振东,王兴汉等.密集高层建筑群的工程环境效应引起地面沉降初步研究[J].西北地震学报,2007a(02):105-108.
    [111]唐益群,宋寿鹏,陈斌等.不同建筑容积率下密集建筑群区地面沉降规律研究[J].岩石力学与工程学报,2010(S1):3425-3431.
    [112]唐益群,严学新,王建秀等.高层建筑群对地面沉降影响的模型试验研究[J].同济大学学报(自然科学版),2007b(03):320-325.
    [113]天津市政工程局地质勘探队.天津地面沉降问题的探讨[J].勘察技术资料,1973(04):24-31.
    [114]田洪水,肖俊华,赵淑慧等.黄河三角洲软土的特征及地基处理方法[J].山东建筑工程学院学报,2003(04):24-27.
    [115]王爱华,业治铮.现代黄河三角洲的结构、发育过程和形成模式[J].海洋地质与第四纪地质,1990(01):1-12.
    [116]王大纯,张人权,史毅虹等.,水文地质学基础[M].北京:地质出版社,2002.
    [117]王寒梅.上海地面沉降风险评价及防治管理区建设研究[J].上海地质,2010(04):7-11+17.
    [118]王若柏,孙东平.天津地区地面沉降及其对地理环境的影响[J].地理学报,1994,49(4):317-323.
    [119]王小刚,邹祖光,王秀芹等.东营市城区地面沉降影响因素[J].山东国土资源,2006(05):50-53.
    [120]王秀艳,粱建军,王成敏等.超采深层地下水引起的地质环境效应,第八届全国工程地质大会[C].中国上海:2008.
    [121]王秀艳,刘长礼.深层黏性土渗透释水规律的探讨[J].岩土工程学报,2003(03):308-312.
    [122]韦仕川,吴次芳,杨杨等.基于RS和GIS的黄河三角洲土地利用变化及生态安全研究—以东营市为例[J].水土保持学报,2008(01):185-189.
    [123]魏子新.上海市第四承压含水层应力-应变分析[J].水文地质工程地质,2002(01):1-4.
    [124]吴建政.山东全新世滨海软土与工程地质灾害的研究[J].海洋地质与第四纪地质,1995(03):43-54.
    [125]吴铁钧,金东锡.天津地面沉降防治措施及效果[J].中国地质灾害与防治学报,1998,9(2):6-12.
    [126]武强,谢海澜,赵增敏等.弱透水层变形机理的研究[J].北京科技大学学报,2006(03):207-210.
    [127]肖笃宁,韩慕康,李晓文等.环渤海海平面上升与三角洲湿地保护[J].第四纪研究,2003,23(03):237-246.
    [128]薛春汀.7000年来渤海西岸、南岸海岸线变迁[J].地理科学,2009(02):217-222.
    [129]薛春汀.现代黄河三角洲叶瓣的划分和识别[J].地理研究,1994(02).
    [130]薛禹群,张云,叶淑君等.中国地面沉降及其需要解决的几个问题[J].第四纪研究,2003,23(6):585-593.
    [131]薛禹群.我国地面沉降模拟现状及需要解决的问题[J].水文地质工程地质,2003,30(5):1-5.
    [132]严学新,龚士良,曾正强等.上海城区建筑密度与地面沉降关系分析[J].水文地质工程地质,2002(06):21-25.
    [133]阎世骏,刘长礼.城市地面沉降研究现状与展望[J].地学前缘,1996,3(1):93-98.
    [134]杨新安,程军,王红霞.上海地面沉降及其防治研究[J].上海铁道大学学报,2000(08):71-75.
    [135]姚秀菊,王洪德,张福存等.黄河三角洲地区地下淡水(微咸水)的形成与演化[J].地球学报,2002,23(04):375-378.
    [136]叶淑君,薛禹群,张云等.上海区域地面沉降模型中土层变形特征研究[J].岩土工程学报,2005(02):140-147.
    [137]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(2):1-8.
    [138]尹明泉,韩淑萍.黄河三角洲地区软土的初步研究[J].山东地质,1993(02):12-19.
    [139]于治通.莱洲湾南岸淄河下游咸水入侵调查与研究[D].中国海洋大学,2006.
    [140]张阿根,魏子新.上海地面沉降研究的过去、现在与未来[J].水文地质工程地质,2002(05):72-75.
    [141]张百鸣,金爱善.天津市滨海地区地热资源开发对地面沉降的影响[J].中国地质灾害与防治学报,1998(02):114-119.
    [142]张波,刘桂仪,范立芹等.黄河三角洲南部地下水环境问题与对策[J].山东国土资源,2004(5):51-54.
    [143]张光辉,费宇红,杨丽芝等.深层水漏斗区开采量组成变化特征与机制[J].水科学进展,2010(03):370-376.
    [144]张金兰.东营市城区第四纪松散堆积物工程建筑适宜性评价[J].山东国土资源,2010(07):17-20.
    [145]张金芝,黄海军,刘艳霞等.基于PSInSAR技术的现代黄河三角洲地面沉降监测与分析[J].地理科学,2013.
    [146]张美英,陈莹,赵霞则.东营市2008年地下水动态分析[J].水利科学,2010,1-2:40-42.
    [147]张维然,段正梁,曾正强等.1921—2000年上海市地面沉降灾害经济损失评估[J].同济大学学报(自然科学版),2003(06):743-748.
    [148]张维然,王仁涛.2001-2020年上海市地面沉降灾害经济损失评估[J].水科学进展,2005(06):870-874.
    [149]张效龙,孙永福,刘敦武.黄河三角洲地区地下水分析[J].海洋地质动态,2005(06):26-28.
    [150]张云,薛禹群,李勤奋.上海现阶段主要沉降层及其变形特征分析[J].水文地质工程地质,2003(05):6-11.
    [151]赵文涛,李亮.苏锡常地区地面沉降机理及防治措施[J].中国地质灾害与防治学报,2009(01):88-93.
    [152]郑铣鑫,武强,应玉飞等.21世纪我国沿海地区地面沉降防治问题[J].科技导报,2002(09):47-50.
    [153]郑铣鑫,武强,应玉飞等.中国沿海地区相对海平面上升的影响及地面沉降防治策略[J].科技通报,2001(06):51-55.
    [154]周俊,杨建图,姜衍祥等.天津市滨海新区地面沉降经济损失评估[J].中国人口资源与环境,2010,20(8):154-158.
    [155]龚士良.上海城市建设对地面沉降的影响[J].中国地质灾害与防治学报,1998(02).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700